# Import the necessary libraries
%matplotlib inline
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
from netCDF4 import num2date
import numpy as np
import xarray as xr
import scipy.ndimage as ndimage
ds = xr.open_dataset('hgt.199601.nc')
ds
/home/jon/dev/xarray/xarray/conventions.py:494: SerializationWarning: variable 'hgt' has multiple fill values {9.96921e+36, -9.96921e+36}, decoding all values to NaN. use_cftime=use_cftime,
<xarray.Dataset> Dimensions: (level: 29, time: 248, x: 349, y: 277) Coordinates: * time (time) datetime64[ns] 1996-01-01 ... 1996-01-31T21:00:00 * level (level) float32 1000.0 975.0 950.0 ... 150.0 125.0 100.0 lat (y, x) float32 ... lon (y, x) float32 ... * y (y) float32 0.0 32463.0 64926.0 ... 8927325.0 8959788.0 * x (x) float32 0.0 32463.0 64926.0 ... 11264660.0 11297120.0 Data variables: Lambert_Conformal int32 ... hgt (time, level, y, x) float32 ... Attributes: Conventions: CF-1.2 centerlat: 50.0 centerlon: -107.0 comments: institution: National Centers for Environmental Prediction latcorners: [ 1.000001 0.897945 46.3544 46.63433 ] loncorners: [-145.5 -68.32005 -2.569891 148.6418 ] platform: Model standardpar1: 50.0 standardpar2: 50.000001 title: 8x Daily NARR history: created Fri Feb 12 16:59:48 MST 2016 by NOAA/ESRL/PSD dataset_title: NCEP North American Regional Reanalysis (NARR) references: https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html source: http://www.emc.ncep.noaa.gov/mmb/rreanl/index.html
# Make all longitudes positive for plotting purposes
ds['lon'].data[ds['lon'].data < 0] += 360
hgt = ds.metpy.parse_cf('hgt')
hgt
<xarray.DataArray 'hgt' (time: 248, level: 29, y: 277, x: 349)> [695272216 values with dtype=float32] Coordinates: * time (time) datetime64[ns] 1996-01-01 ... 1996-01-31T21:00:00 * level (level) float32 1000.0 975.0 950.0 925.0 ... 150.0 125.0 100.0 lat (y, x) float32 ... lon (y, x) float32 214.5 214.685 214.8705 ... 357.35638 357.4301 * y (y) float32 0.0 32463.0 64926.0 ... 8894862.0 8927325.0 8959788.0 * x (x) float32 0.0 32463.0 64926.0 ... 11264660.0 11297120.0 crs object Projection: lambert_conformal_conic Attributes: GRIB_id: 7 GRIB_name: HGT dataset: NARR 3-hourly grid_mapping: Lambert_Conformal level_desc: Pressure Levels long_name: 3-hourly Geopotential Heights on Pressure Levels parent_stat: Other standard_name: geopotential_height statistic: Individual Obs units: m valid_range: [-1500. 35800.] var_desc: Geopotential height actual_range: [ -452.56787 16661.324 ]
# Calculate grid parameters
dx, dy = mpcalc.lat_lon_grid_deltas(hgt.metpy.longitude, hgt.metpy.latitude)
f = mpcalc.coriolis_parameter(hgt.metpy.latitude).to_base_units()
hgt_500 = hgt.metpy.sel(vertical=500 * units.hPa, time='1996-01-25 06:00')
uwnd, vwnd = mpcalc.geostrophic_wind(hgt_500, f, dx, dy)
# Set projection of data and grab data for plotting state boundaries
data_proj = hgt.metpy.cartopy_crs
states_provinces = cfeature.NaturalEarthFeature(
category='cultural',
name='admin_1_states_provinces_lakes',
scale='50m',
facecolor='none')
# Make figure and set title
fig = plt.figure(figsize=(17., 11.))
ax = plt.subplot(111, projection=data_proj)
plt.title('500-hPa heights (m) and geostrophic wind vectors, Jan 25, 1996 06z', {'fontsize':18})
# Set extent and plot map lines
ax.set_extent([-90., -60, 35., 55.], ccrs.PlateCarree())
ax.coastlines('50m', edgecolor='gray', linewidth=0.75)
ax.add_feature(states_provinces, edgecolor='gray', linewidth=0.5)
# Plot 500-hPa heights
clevs_500_hght = np.arange(0, 8000, 60)
cs = ax.contour(hgt.metpy.x, hgt.metpy.y, hgt_500, clevs_500_hght,
colors='black', linewidths=1.5, linestyles='solid')
plt.clabel(cs, fmt='%d')
# Plot Wind Barbs
ax.quiver(hgt.metpy.x[0::4], hgt.metpy.y[0::4],
uwnd[0::4, 0::4], vwnd[0::4, 0::4], scale=2e3,
width=0.0015, pivot='middle')
plt.show()
# Make figure and set title
fig = plt.figure(figsize=(17., 11.))
ax = plt.subplot(111, projection=ccrs.PlateCarree())
plt.title('500-hPa heights (m) and geostrophic wind vectors, Jan 25, 1996 06z', {'fontsize':18})
# Set extent and plot map lines
ax.set_extent([-90., -60, 35., 55.], ccrs.PlateCarree())
ax.coastlines('50m', edgecolor='gray', linewidth=0.75)
ax.add_feature(states_provinces, edgecolor='gray', linewidth=0.5)
# Plot 500-hPa heights
clevs_500_hght = np.arange(0, 8000, 60)
cs = ax.contour(hgt.metpy.x, hgt.metpy.y, hgt_500, clevs_500_hght,
colors='black', linewidths=1.5, linestyles='solid',
transform=data_proj)
plt.clabel(cs, fmt='%d')
# Plot Wind Barbs
ax.quiver(hgt.metpy.x[0::4], hgt.metpy.y[0::4],
uwnd[0::4, 0::4].m, vwnd[0::4, 0::4].m, scale=2e3,
width=0.0015, pivot='middle',
transform=data_proj)
plt.show()
# Make figure and set title
fig = plt.figure(figsize=(17., 11.))
ax = plt.subplot(111, projection=ccrs.PlateCarree())
plt.title('500-hPa heights (m) and geostrophic wind vectors, Jan 25, 1996 06z', {'fontsize':18})
# Set extent and plot map lines
ax.set_extent([-90., -60, 35., 55.], ccrs.PlateCarree())
ax.coastlines('50m', edgecolor='gray', linewidth=0.75)
ax.add_feature(states_provinces, edgecolor='gray', linewidth=0.5)
# Plot 500-hPa heights
# Using lat/lon rather than native CRS is fine for a scalar
clevs_500_hght = np.arange(0, 8000, 60)
cs = ax.contour(hgt.metpy.longitude, hgt.metpy.latitude, hgt_500, clevs_500_hght,
colors='black', linewidths=1.5, linestyles='solid',
transform=ccrs.PlateCarree())
plt.clabel(cs, fmt='%d')
# Plot Wind Barbs
# Can't use lat/lon for vector when not on lat/lon CRS!
ax.quiver(hgt.metpy.longitude[0::4, 0::4], hgt.metpy.latitude[0::4, 0::4],
uwnd[0::4, 0::4].m, vwnd[0::4, 0::4].m, scale=2e3,
width=0.0015, pivot='middle',
transform=ccrs.PlateCarree())
plt.show()