Analyse des retour utilisateur

Ce projet a pour but d'analyser les donné des applications mise a la disposition des utilisateurs via IOS et Androïd. cette manoeuvre a pour but de mettre sur pied une strategie efficace pour une meilleur visibilité des publicité et interaction des utilisateur avec celles-ci, afin d'accroitre le revenus de la boite.

In [1]:
#open file from AppleStore
open_ios = open('AppleStore.csv')
from csv import reader
read_ios = reader (open_ios)
ios_data = list (read_ios)
ios_header = ios_data[0]
iosdata = ios_data[1:]

#open file from googlestore
open_google = open('googleplaystore.csv')
from csv import reader
read_google = reader (open_google)
google_data = list (read_google)
google_header = google_data[0]
googledata = google_data[1:]
In [2]:
def explore_data(dataset, start, end, rows_and_columns=False):
    dataset_slice = dataset[start:end]    
    for row in dataset_slice:
        print(row)
        print('\n') # adds a new (empty) line after each row

    if rows_and_columns:
        print('Number of rows:', len(dataset))
        print('Number of columns:', len(dataset[0]))
In [3]:
print (ios_header)
print ('\n')
explore_data(iosdata, 0, 4, True)
['id', 'track_name', 'size_bytes', 'currency', 'price', 'rating_count_tot', 'rating_count_ver', 'user_rating', 'user_rating_ver', 'ver', 'cont_rating', 'prime_genre', 'sup_devices.num', 'ipadSc_urls.num', 'lang.num', 'vpp_lic']


['284882215', 'Facebook', '389879808', 'USD', '0.0', '2974676', '212', '3.5', '3.5', '95.0', '4+', 'Social Networking', '37', '1', '29', '1']


['389801252', 'Instagram', '113954816', 'USD', '0.0', '2161558', '1289', '4.5', '4.0', '10.23', '12+', 'Photo & Video', '37', '0', '29', '1']


['529479190', 'Clash of Clans', '116476928', 'USD', '0.0', '2130805', '579', '4.5', '4.5', '9.24.12', '9+', 'Games', '38', '5', '18', '1']


['420009108', 'Temple Run', '65921024', 'USD', '0.0', '1724546', '3842', '4.5', '4.0', '1.6.2', '9+', 'Games', '40', '5', '1', '1']


Number of rows: 7197
Number of columns: 16
In [4]:
print (google_header)
print ('\n')
explore_data(googledata, 0, 4, True)
['App', 'Category', 'Rating', 'Reviews', 'Size', 'Installs', 'Type', 'Price', 'Content Rating', 'Genres', 'Last Updated', 'Current Ver', 'Android Ver']


['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up']


['Coloring book moana', 'ART_AND_DESIGN', '3.9', '967', '14M', '500,000+', 'Free', '0', 'Everyone', 'Art & Design;Pretend Play', 'January 15, 2018', '2.0.0', '4.0.3 and up']


['U Launcher Lite – FREE Live Cool Themes, Hide Apps', 'ART_AND_DESIGN', '4.7', '87510', '8.7M', '5,000,000+', 'Free', '0', 'Everyone', 'Art & Design', 'August 1, 2018', '1.2.4', '4.0.3 and up']


['Sketch - Draw & Paint', 'ART_AND_DESIGN', '4.5', '215644', '25M', '50,000,000+', 'Free', '0', 'Teen', 'Art & Design', 'June 8, 2018', 'Varies with device', '4.2 and up']


Number of rows: 10841
Number of columns: 13

cleaning data in the data set of android applications

In [5]:
print (googledata[10472])
print ('\n')
['Life Made WI-Fi Touchscreen Photo Frame', '1.9', '19', '3.0M', '1,000+', 'Free', '0', 'Everyone', '', 'February 11, 2018', '1.0.19', '4.0 and up']


In [6]:
del (googledata [10472])
In [7]:
print(googledata [10472])
['osmino Wi-Fi: free WiFi', 'TOOLS', '4.2', '134203', '4.1M', '10,000,000+', 'Free', '0', 'Everyone', 'Tools', 'August 7, 2018', '6.06.14', '4.4 and up']

If we explore the Google Play data set long enough, we'll find that some apps have more than one entry. For example, we'll print the application Instagram:

In [8]:
for app in googledata:
    name = app[0]
    if name == 'Instagram':
        print (app)
['Instagram', 'SOCIAL', '4.5', '66577313', 'Varies with device', '1,000,000,000+', 'Free', '0', 'Teen', 'Social', 'July 31, 2018', 'Varies with device', 'Varies with device']
['Instagram', 'SOCIAL', '4.5', '66577446', 'Varies with device', '1,000,000,000+', 'Free', '0', 'Teen', 'Social', 'July 31, 2018', 'Varies with device', 'Varies with device']
['Instagram', 'SOCIAL', '4.5', '66577313', 'Varies with device', '1,000,000,000+', 'Free', '0', 'Teen', 'Social', 'July 31, 2018', 'Varies with device', 'Varies with device']
['Instagram', 'SOCIAL', '4.5', '66509917', 'Varies with device', '1,000,000,000+', 'Free', '0', 'Teen', 'Social', 'July 31, 2018', 'Varies with device', 'Varies with device']
In [9]:
duplicate_apps = []
unique_apps =[]

for app in googledata:
    name = app[0]
    if name in unique_apps:
        duplicate_apps.append(name)
    else:
        unique_apps.append(name)
print ('Number of duplicate apps:', len(duplicate_apps))
print ('\n')
print ('Examples of duplicate apps:', duplicate_apps [:15])
Number of duplicate apps: 1181


Examples of duplicate apps: ['Quick PDF Scanner + OCR FREE', 'Box', 'Google My Business', 'ZOOM Cloud Meetings', 'join.me - Simple Meetings', 'Box', 'Zenefits', 'Google Ads', 'Google My Business', 'Slack', 'FreshBooks Classic', 'Insightly CRM', 'QuickBooks Accounting: Invoicing & Expenses', 'HipChat - Chat Built for Teams', 'Xero Accounting Software']

We don't want to count certain apps more than once when we analyze data, so we need to remove the duplicate entries and keep only one entry per app

To do that, we will:

Create a dictionary where each key is a unique app name, and the value is the highest number of reviews of that app Use the dictionary to create a new data set, which will have only one entry per app (and we only select the apps with the highest number of reviews)

In [10]:
reviews_max = {}
for rows in googledata:
    name = rows[0]
    n_reviews = float(rows[3])
    if name in reviews_max and reviews_max[name]< n_reviews:
        reviews_max[name] = n_reviews
    elif name not in reviews_max:
        reviews_max[name] = n_reviews
        
print('Expected length:', len(googledata) - 1181)
print('Actual length:', len(reviews_max))
Expected length: 9659
Actual length: 9659

Now, let's use the reviews_max dictionary to remove the duplicates. For the duplicate cases, we'll only keep the entries with the highest number of reviews. In the code cell below:

  • We start by initializing two empty lists, android_clean and already_added.
  • We loop through the android data set, and for every iteration:
  • We isolate the name of the app and the number of reviews.
  • We add the current row (app) to the android_clean list, and the app name (name) to the already_added list if: The number of reviews of the current app matches the number of reviews of that app as described in the reviews_max dictionary; and The name of the app is not already in the already_added list. We need to add this supplementary condition to account for those cases where the highest number of reviews of a duplicate app is the same for more than one entry (for example, the Box app has three entries, and the number of reviews is the same). If we just check for reviews_max[name] == n_reviews, we'll still end up with duplicate entries for some apps.
In [11]:
android_clean = []
already_added = []

for app in googledata:
    name = app[0]
    n_reviews = float(app[3])    
    if n_reviews == reviews_max[name] and name not in already_added:
        android_clean.append(app)
        already_added.append(name)
print (len (android_clean))
9659

Now let's quickly explore the new data set, and confirm that the number of rows is 9,659.

In [12]:
explore_data(android_clean, 0, 3, True)
['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up']


['U Launcher Lite – FREE Live Cool Themes, Hide Apps', 'ART_AND_DESIGN', '4.7', '87510', '8.7M', '5,000,000+', 'Free', '0', 'Everyone', 'Art & Design', 'August 1, 2018', '1.2.4', '4.0.3 and up']


['Sketch - Draw & Paint', 'ART_AND_DESIGN', '4.5', '215644', '25M', '50,000,000+', 'Free', '0', 'Teen', 'Art & Design', 'June 8, 2018', 'Varies with device', '4.2 and up']


Number of rows: 9659
Number of columns: 13
In [13]:
def is_english(string):
    
    for character in string:
        if ord(character) > 127:
            return False
    
    return True

print(is_english('Instagram'))
print(is_english('爱奇艺PPS -《欢乐颂2》电视剧热播'))
True
False

The function seems to work fine, but some English app names use emojis or other symbols (™, — (em dash), – (en dash), etc.) that fall outside of the ASCII range. Because of this, we'll remove useful apps if we use the function in its current form

In [14]:
print(is_english('Docs To Go™ Free Office Suite'))
print(is_english('Instachat 😜'))

print(ord('™'))
print(ord('😜'))
False
False
8482
128540
In [15]:
def is_english(string):
    non_ascii = 0
    
    for character in string:
        if ord(character) > 127:
            non_ascii += 1
    
    if non_ascii > 3:
        return False
    else:
        return True

print(is_english('Docs To Go™ Free Office Suite'))
print(is_english('Instachat 😜'))
True
True

we're going to separate non-english apps from english apps

In [16]:
android_english = []
ios_english = []

for app in android_clean:
    name = app[0]
    if is_english(name):
        android_english.append(app)
        
for app in iosdata:
    name = app[1]
    if is_english(name):
        ios_english.append(app)
        
explore_data(android_english, 0, 3, True)
print('\n')
explore_data(ios_english, 0, 3, True)
['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up']


['U Launcher Lite – FREE Live Cool Themes, Hide Apps', 'ART_AND_DESIGN', '4.7', '87510', '8.7M', '5,000,000+', 'Free', '0', 'Everyone', 'Art & Design', 'August 1, 2018', '1.2.4', '4.0.3 and up']


['Sketch - Draw & Paint', 'ART_AND_DESIGN', '4.5', '215644', '25M', '50,000,000+', 'Free', '0', 'Teen', 'Art & Design', 'June 8, 2018', 'Varies with device', '4.2 and up']


Number of rows: 9614
Number of columns: 13


['284882215', 'Facebook', '389879808', 'USD', '0.0', '2974676', '212', '3.5', '3.5', '95.0', '4+', 'Social Networking', '37', '1', '29', '1']


['389801252', 'Instagram', '113954816', 'USD', '0.0', '2161558', '1289', '4.5', '4.0', '10.23', '12+', 'Photo & Video', '37', '0', '29', '1']


['529479190', 'Clash of Clans', '116476928', 'USD', '0.0', '2130805', '579', '4.5', '4.5', '9.24.12', '9+', 'Games', '38', '5', '18', '1']


Number of rows: 6183
Number of columns: 16

Isolating the Free Apps

As we mentioned in the introduction, we only build apps that are free to download and install, and our main source of revenue consists of in-app ads. Our data sets contain both free and non-free apps, and we'll need to isolate only the free apps for our analysis. Below, we isolate the free apps for both our data sets.

In [17]:
android_final = []
ios_final = []

for app in android_english:
    price = app[7]
    if price == '0':
        android_final.append(app)
        
for app in ios_english:
    price = app[4]
    if price == '0.0':
        ios_final.append(app)
        
print(len(android_final))
print(len(ios_final))
8864
3222

Our goal is to determine the types of applications that are likely to attract more users, as our revenues are strongly influenced by the number of people using our applications.

Ainis, the validation strategy for an application idea includes three steps:

Create a minimal Android version of the app and add it to Google Play. If the application has a good response from users, we develop it further. If the app is profitable after six months, we create an iOS version of the app and add it to the App Store.

Let's begin the analysis by getting a sense of the most common genres for each market. For this, we'll build a frequency table for the prime_genre column of the App Store data set, and the Genres and Category columns of the Google Play data set.

We are going to build two functions that we can use to analyze the frequency tables:

A function to generate frequency tables that show percentages Another function that we can use to display the percentages in descending order

In [18]:
def freq_table(dataset, index):
    freq_dict={}
    total = 0
    for row in dataset:
        total+=1
        kind = row[index]
        if  kind in freq_dict:
            freq_dict[kind]+=1
        else:
            freq_dict[kind]= 1
            
    table_percentages = {}
    for key in freq_dict:
        percentage = (freq_dict[key] / total) * 100
        table_percentages[key] = percentage 
    
    return table_percentages 

def display_table (dataset, index):
    table = freq_table(dataset, index)
    table_display = []
    
    for key in table:
        key_val_as_tuple = (table[key], key)
        table_display.append(key_val_as_tuple)
    table_sorted = sorted(table_display, reverse = True)
    
    for entry in table_sorted:
        print(entry[1], ':', entry[0])

We start by examining the frequency table for the prime_genre column of the App Store data set.

In [19]:
display_table(ios_final, 11)
Games : 58.16263190564867
Entertainment : 7.883302296710118
Photo & Video : 4.9658597144630665
Education : 3.662321539416512
Social Networking : 3.2898820608317814
Shopping : 2.60707635009311
Utilities : 2.5139664804469275
Sports : 2.1415270018621975
Music : 2.0484171322160147
Health & Fitness : 2.0173805090006205
Productivity : 1.7380509000620732
Lifestyle : 1.5828677839851024
News : 1.3345747982619491
Travel : 1.2414649286157666
Finance : 1.1173184357541899
Weather : 0.8690254500310366
Food & Drink : 0.8069522036002483
Reference : 0.5586592178770949
Business : 0.5276225946617008
Book : 0.4345127250155183
Navigation : 0.186219739292365
Medical : 0.186219739292365
Catalogs : 0.12414649286157665

We can see that among the free English apps, more than a half (58.16%) are games. Entertainment apps are close to 8%, followed by photo and video apps, which are close to 5%. Only 3.66% of the apps are designed for education, followed by social networking apps which amount for 3.29% of the apps in our data set.

The general impression is that App Store (at least the part containing free English apps) is dominated by apps that are designed for fun (games, entertainment, photo and video, social networking, sports, music, etc.), while apps with practical purposes (education, shopping, utilities, productivity, lifestyle, etc.) are more rare. However, the fact that fun apps are the most numerous doesn't also imply that they also have the greatest number of users — the demand might not be the same as the offer.

Let's continue by examining the Genres and Category columns of the Google Play data set (two columns which seem to be related)

In [20]:
display_table(android_final, 1)
FAMILY : 18.907942238267147
GAME : 9.724729241877256
TOOLS : 8.461191335740072
BUSINESS : 4.591606498194946
LIFESTYLE : 3.9034296028880866
PRODUCTIVITY : 3.892148014440433
FINANCE : 3.7003610108303246
MEDICAL : 3.531137184115524
SPORTS : 3.395758122743682
PERSONALIZATION : 3.3167870036101084
COMMUNICATION : 3.2378158844765346
HEALTH_AND_FITNESS : 3.0798736462093865
PHOTOGRAPHY : 2.944494584837545
NEWS_AND_MAGAZINES : 2.7978339350180503
SOCIAL : 2.6624548736462095
TRAVEL_AND_LOCAL : 2.33528880866426
SHOPPING : 2.2450361010830324
BOOKS_AND_REFERENCE : 2.1435018050541514
DATING : 1.861462093862816
VIDEO_PLAYERS : 1.7937725631768955
MAPS_AND_NAVIGATION : 1.3989169675090252
FOOD_AND_DRINK : 1.2409747292418771
EDUCATION : 1.1620036101083033
ENTERTAINMENT : 0.9589350180505415
LIBRARIES_AND_DEMO : 0.9363718411552346
AUTO_AND_VEHICLES : 0.9250902527075812
HOUSE_AND_HOME : 0.8235559566787004
WEATHER : 0.8009927797833934
EVENTS : 0.7107400722021661
PARENTING : 0.6543321299638989
ART_AND_DESIGN : 0.6430505415162455
COMICS : 0.6204873646209386
BEAUTY : 0.5979241877256317

The landscape seems significantly different on Google Play: there are not that many apps designed for fun, and it seems that a good number of apps are designed for practical purposes (family, tools, business, lifestyle, productivity, etc.). However, if we investigate this further, we can see that the family category (which accounts for almost 19% of the apps) means mostly games for kids.

In [21]:
display_table(android_final, 9)
Tools : 8.449909747292418
Entertainment : 6.069494584837545
Education : 5.347472924187725
Business : 4.591606498194946
Productivity : 3.892148014440433
Lifestyle : 3.892148014440433
Finance : 3.7003610108303246
Medical : 3.531137184115524
Sports : 3.463447653429603
Personalization : 3.3167870036101084
Communication : 3.2378158844765346
Action : 3.1024368231046933
Health & Fitness : 3.0798736462093865
Photography : 2.944494584837545
News & Magazines : 2.7978339350180503
Social : 2.6624548736462095
Travel & Local : 2.3240072202166067
Shopping : 2.2450361010830324
Books & Reference : 2.1435018050541514
Simulation : 2.0419675090252705
Dating : 1.861462093862816
Arcade : 1.8501805054151623
Video Players & Editors : 1.7712093862815883
Casual : 1.7599277978339352
Maps & Navigation : 1.3989169675090252
Food & Drink : 1.2409747292418771
Puzzle : 1.128158844765343
Racing : 0.9927797833935018
Role Playing : 0.9363718411552346
Libraries & Demo : 0.9363718411552346
Auto & Vehicles : 0.9250902527075812
Strategy : 0.9138086642599278
House & Home : 0.8235559566787004
Weather : 0.8009927797833934
Events : 0.7107400722021661
Adventure : 0.6768953068592057
Comics : 0.6092057761732852
Beauty : 0.5979241877256317
Art & Design : 0.5979241877256317
Parenting : 0.4963898916967509
Card : 0.45126353790613716
Casino : 0.42870036101083037
Trivia : 0.41741877256317694
Educational;Education : 0.39485559566787
Board : 0.3835740072202166
Educational : 0.3722924187725632
Education;Education : 0.33844765342960287
Word : 0.2594765342960289
Casual;Pretend Play : 0.236913357400722
Music : 0.2030685920577617
Racing;Action & Adventure : 0.16922382671480143
Puzzle;Brain Games : 0.16922382671480143
Entertainment;Music & Video : 0.16922382671480143
Casual;Brain Games : 0.13537906137184114
Casual;Action & Adventure : 0.13537906137184114
Arcade;Action & Adventure : 0.12409747292418773
Action;Action & Adventure : 0.10153429602888085
Educational;Pretend Play : 0.09025270758122744
Simulation;Action & Adventure : 0.078971119133574
Parenting;Education : 0.078971119133574
Entertainment;Brain Games : 0.078971119133574
Board;Brain Games : 0.078971119133574
Parenting;Music & Video : 0.06768953068592057
Educational;Brain Games : 0.06768953068592057
Casual;Creativity : 0.06768953068592057
Art & Design;Creativity : 0.06768953068592057
Education;Pretend Play : 0.056407942238267145
Role Playing;Pretend Play : 0.04512635379061372
Education;Creativity : 0.04512635379061372
Role Playing;Action & Adventure : 0.033844765342960284
Puzzle;Action & Adventure : 0.033844765342960284
Entertainment;Creativity : 0.033844765342960284
Entertainment;Action & Adventure : 0.033844765342960284
Educational;Creativity : 0.033844765342960284
Educational;Action & Adventure : 0.033844765342960284
Education;Music & Video : 0.033844765342960284
Education;Brain Games : 0.033844765342960284
Education;Action & Adventure : 0.033844765342960284
Adventure;Action & Adventure : 0.033844765342960284
Video Players & Editors;Music & Video : 0.02256317689530686
Sports;Action & Adventure : 0.02256317689530686
Simulation;Pretend Play : 0.02256317689530686
Puzzle;Creativity : 0.02256317689530686
Music;Music & Video : 0.02256317689530686
Entertainment;Pretend Play : 0.02256317689530686
Casual;Education : 0.02256317689530686
Board;Action & Adventure : 0.02256317689530686
Video Players & Editors;Creativity : 0.01128158844765343
Trivia;Education : 0.01128158844765343
Travel & Local;Action & Adventure : 0.01128158844765343
Tools;Education : 0.01128158844765343
Strategy;Education : 0.01128158844765343
Strategy;Creativity : 0.01128158844765343
Strategy;Action & Adventure : 0.01128158844765343
Simulation;Education : 0.01128158844765343
Role Playing;Brain Games : 0.01128158844765343
Racing;Pretend Play : 0.01128158844765343
Puzzle;Education : 0.01128158844765343
Parenting;Brain Games : 0.01128158844765343
Music & Audio;Music & Video : 0.01128158844765343
Lifestyle;Pretend Play : 0.01128158844765343
Lifestyle;Education : 0.01128158844765343
Health & Fitness;Education : 0.01128158844765343
Health & Fitness;Action & Adventure : 0.01128158844765343
Entertainment;Education : 0.01128158844765343
Communication;Creativity : 0.01128158844765343
Comics;Creativity : 0.01128158844765343
Casual;Music & Video : 0.01128158844765343
Card;Action & Adventure : 0.01128158844765343
Books & Reference;Education : 0.01128158844765343
Art & Design;Pretend Play : 0.01128158844765343
Art & Design;Action & Adventure : 0.01128158844765343
Arcade;Pretend Play : 0.01128158844765343
Adventure;Education : 0.01128158844765343

The difference between the Genres and the Category columns is not crystal clear, but one thing we can notice is that the Genres column is much more granular (it has more categories). We're only looking for the bigger picture at the moment, so we'll only work with the Category column moving forward.

Up to this point, we found that the App Store is dominated by apps designed for fun, while Google Play shows a more balanced landscape of both practical and for-fun apps. Now we'd like to get an idea about the kind of apps that have most users.

In [22]:
genres_ios = freq_table(ios_final, -5)

for genre in genres_ios:
    total = 0
    len_genre = 0
    for app in ios_final:
        genre_app = app[-5]
        if genre_app == genre:            
            n_ratings = float(app[5])
            total += n_ratings
            len_genre += 1
    avg_n_ratings = total / len_genre
    print(genre, ':', avg_n_ratings)
    
Utilities : 18684.456790123455
Shopping : 26919.690476190477
Book : 39758.5
Education : 7003.983050847458
News : 21248.023255813954
Travel : 28243.8
Entertainment : 14029.830708661417
Business : 7491.117647058823
Lifestyle : 16485.764705882353
Food & Drink : 33333.92307692308
Social Networking : 71548.34905660378
Weather : 52279.892857142855
Productivity : 21028.410714285714
Photo & Video : 28441.54375
Finance : 31467.944444444445
Medical : 612.0
Sports : 23008.898550724636
Music : 57326.530303030304
Navigation : 86090.33333333333
Catalogs : 4004.0
Games : 22788.6696905016
Health & Fitness : 23298.015384615384
Reference : 74942.11111111111

On average, navigation apps have the highest number of user reviews,followed by reference app and social networking

In [25]:
categories_android = freq_table(android_final, 1)

for category in categories_android:
    total = 0
    len_category = 0
    for app in android_final:
        category_app = app[1]
        if category_app == category:            
            n_installs = app[5]
            n_installs = n_installs.replace(',', '')
            n_installs = n_installs.replace('+', '')
            total += float(n_installs)
            len_category += 1
    avg_n_installs = total / len_category
    print(category, ':', avg_n_installs)
COMMUNICATION : 38456119.167247385
HEALTH_AND_FITNESS : 4188821.9853479853
BEAUTY : 513151.88679245283
ENTERTAINMENT : 11640705.88235294
LIBRARIES_AND_DEMO : 638503.734939759
COMICS : 817657.2727272727
PHOTOGRAPHY : 17840110.40229885
SPORTS : 3638640.1428571427
FOOD_AND_DRINK : 1924897.7363636363
SHOPPING : 7036877.311557789
NEWS_AND_MAGAZINES : 9549178.467741935
DATING : 854028.8303030303
FINANCE : 1387692.475609756
BOOKS_AND_REFERENCE : 8767811.894736841
PRODUCTIVITY : 16787331.344927534
SOCIAL : 23253652.127118643
ART_AND_DESIGN : 1986335.0877192982
WEATHER : 5074486.197183099
EVENTS : 253542.22222222222
MAPS_AND_NAVIGATION : 4056941.7741935486
TRAVEL_AND_LOCAL : 13984077.710144928
TOOLS : 10801391.298666667
HOUSE_AND_HOME : 1331540.5616438356
GAME : 15588015.603248259
FAMILY : 3695641.8198090694
AUTO_AND_VEHICLES : 647317.8170731707
PERSONALIZATION : 5201482.6122448975
BUSINESS : 1712290.1474201474
PARENTING : 542603.6206896552
LIFESTYLE : 1437816.2687861272
VIDEO_PLAYERS : 24727872.452830188
MEDICAL : 120550.61980830671
EDUCATION : 1833495.145631068

On average, communication apps have the most installs: 38,456,119. This number is heavily skewed up by a few apps that have over one billion installs (WhatsApp, Facebook Messenger, Skype, Google Chrome, Gmail, and Hangouts), and a few others with over 100 and 500 million installs:

In [26]:
for app in android_final:
    if app[1] == 'COMMUNICATION' and (app[5] == '1,000,000,000+'
                                      or app[5] == '500,000,000+'
                                      or app[5] == '100,000,000+'):
        print(app[0], ':', app[5])
WhatsApp Messenger : 1,000,000,000+
imo beta free calls and text : 100,000,000+
Android Messages : 100,000,000+
Google Duo - High Quality Video Calls : 500,000,000+
Messenger – Text and Video Chat for Free : 1,000,000,000+
imo free video calls and chat : 500,000,000+
Skype - free IM & video calls : 1,000,000,000+
Who : 100,000,000+
GO SMS Pro - Messenger, Free Themes, Emoji : 100,000,000+
LINE: Free Calls & Messages : 500,000,000+
Google Chrome: Fast & Secure : 1,000,000,000+
Firefox Browser fast & private : 100,000,000+
UC Browser - Fast Download Private & Secure : 500,000,000+
Gmail : 1,000,000,000+
Hangouts : 1,000,000,000+
Messenger Lite: Free Calls & Messages : 100,000,000+
Kik : 100,000,000+
KakaoTalk: Free Calls & Text : 100,000,000+
Opera Mini - fast web browser : 100,000,000+
Opera Browser: Fast and Secure : 100,000,000+
Telegram : 100,000,000+
Truecaller: Caller ID, SMS spam blocking & Dialer : 100,000,000+
UC Browser Mini -Tiny Fast Private & Secure : 100,000,000+
Viber Messenger : 500,000,000+
WeChat : 100,000,000+
Yahoo Mail – Stay Organized : 100,000,000+
BBM - Free Calls & Messages : 100,000,000+

If we removed all the communication apps that have over 100 million installs, the average would be reduced roughly ten times:

In [27]:
under_100_m = []

for app in android_final:
    n_installs = app[5]
    n_installs = n_installs.replace(',', '')
    n_installs = n_installs.replace('+', '')
    if (app[1] == 'COMMUNICATION') and (float(n_installs) < 100000000):
        under_100_m.append(float(n_installs))
        
sum(under_100_m) / len(under_100_m)
Out[27]:
3603485.3884615386

We see the same pattern for the video players category, which is the runner-up with 24,727,872 installs. The market is dominated by apps like Youtube, Google Play Movies & TV, or MX Player. The pattern is repeated for social apps (where we have giants like Facebook, Instagram, Google+, etc.), photography apps (Google Photos and other popular photo editors), or productivity apps (Microsoft Word, Dropbox, Google Calendar, Evernote, etc.).

Again, the main concern is that these app genres might seem more popular than they really are. Moreover, these niches seem to be dominated by a few giants who are hard to compete against.

The game genre seems pretty popular, but previously we found out this part of the market seems a bit saturated, so we'd like to come up with a different app recommendation if possible.

The books and reference genre looks fairly popular as well, with an average number of installs of 8,767,811. It's interesting to explore this in more depth, since we found this genre has some potential to work well on the App Store, and our aim is to recommend an app genre that shows potential for being profitable on both the App Store and Google Play.

Let's take a look at some of the apps from this genre and their number of installs:

In [28]:
for app in android_final:
    if app[1] == 'BOOKS_AND_REFERENCE':
        print(app[0], ':', app[5])
E-Book Read - Read Book for free : 50,000+
Download free book with green book : 100,000+
Wikipedia : 10,000,000+
Cool Reader : 10,000,000+
Free Panda Radio Music : 100,000+
Book store : 1,000,000+
FBReader: Favorite Book Reader : 10,000,000+
English Grammar Complete Handbook : 500,000+
Free Books - Spirit Fanfiction and Stories : 1,000,000+
Google Play Books : 1,000,000,000+
AlReader -any text book reader : 5,000,000+
Offline English Dictionary : 100,000+
Offline: English to Tagalog Dictionary : 500,000+
FamilySearch Tree : 1,000,000+
Cloud of Books : 1,000,000+
Recipes of Prophetic Medicine for free : 500,000+
ReadEra – free ebook reader : 1,000,000+
Anonymous caller detection : 10,000+
Ebook Reader : 5,000,000+
Litnet - E-books : 100,000+
Read books online : 5,000,000+
English to Urdu Dictionary : 500,000+
eBoox: book reader fb2 epub zip : 1,000,000+
English Persian Dictionary : 500,000+
Flybook : 500,000+
All Maths Formulas : 1,000,000+
Ancestry : 5,000,000+
HTC Help : 10,000,000+
English translation from Bengali : 100,000+
Pdf Book Download - Read Pdf Book : 100,000+
Free Book Reader : 100,000+
eBoox new: Reader for fb2 epub zip books : 50,000+
Only 30 days in English, the guideline is guaranteed : 500,000+
Moon+ Reader : 10,000,000+
SH-02J Owner's Manual (Android 8.0) : 50,000+
English-Myanmar Dictionary : 1,000,000+
Golden Dictionary (EN-AR) : 1,000,000+
All Language Translator Free : 1,000,000+
Azpen eReader : 500,000+
URBANO V 02 instruction manual : 100,000+
Bible : 100,000,000+
C Programs and Reference : 50,000+
C Offline Tutorial : 1,000+
C Programs Handbook : 50,000+
Amazon Kindle : 100,000,000+
Aab e Hayat Full Novel : 100,000+
Aldiko Book Reader : 10,000,000+
Google I/O 2018 : 500,000+
R Language Reference Guide : 10,000+
Learn R Programming Full : 5,000+
R Programing Offline Tutorial : 1,000+
Guide for R Programming : 5+
Learn R Programming : 10+
R Quick Reference Big Data : 1,000+
V Made : 100,000+
Wattpad 📖 Free Books : 100,000,000+
Dictionary - WordWeb : 5,000,000+
Guide (for X-MEN) : 100,000+
AC Air condition Troubleshoot,Repair,Maintenance : 5,000+
AE Bulletins : 1,000+
Ae Allah na Dai (Rasa) : 10,000+
50000 Free eBooks & Free AudioBooks : 5,000,000+
Ag PhD Field Guide : 10,000+
Ag PhD Deficiencies : 10,000+
Ag PhD Planting Population Calculator : 1,000+
Ag PhD Soybean Diseases : 1,000+
Fertilizer Removal By Crop : 50,000+
A-J Media Vault : 50+
Al-Quran (Free) : 10,000,000+
Al Quran (Tafsir & by Word) : 500,000+
Al Quran Indonesia : 10,000,000+
Al'Quran Bahasa Indonesia : 10,000,000+
Al Quran Al karim : 1,000,000+
Al-Muhaffiz : 50,000+
Al Quran : EAlim - Translations & MP3 Offline : 5,000,000+
Al-Quran 30 Juz free copies : 500,000+
Koran Read &MP3 30 Juz Offline : 1,000,000+
Hafizi Quran 15 lines per page : 1,000,000+
Quran for Android : 10,000,000+
Surah Al-Waqiah : 100,000+
Hisnul Al Muslim - Hisn Invocations & Adhkaar : 100,000+
Satellite AR : 1,000,000+
Audiobooks from Audible : 100,000,000+
Kinot & Eichah for Tisha B'Av : 10,000+
AW Tozer Devotionals - Daily : 5,000+
Tozer Devotional -Series 1 : 1,000+
The Pursuit of God : 1,000+
AY Sing : 5,000+
Ay Hasnain k Nana Milad Naat : 10,000+
Ay Mohabbat Teri Khatir Novel : 10,000+
Arizona Statutes, ARS (AZ Law) : 1,000+
Oxford A-Z of English Usage : 1,000,000+
BD Fishpedia : 1,000+
BD All Sim Offer : 10,000+
Youboox - Livres, BD et magazines : 500,000+
B&H Kids AR : 10,000+
B y H Niños ES : 5,000+
Dictionary.com: Find Definitions for English Words : 10,000,000+
English Dictionary - Offline : 10,000,000+
Bible KJV : 5,000,000+
Borneo Bible, BM Bible : 10,000+
MOD Black for BM : 100+
BM Box : 1,000+
Anime Mod for BM : 100+
NOOK: Read eBooks & Magazines : 10,000,000+
NOOK Audiobooks : 500,000+
NOOK App for NOOK Devices : 500,000+
Browsery by Barnes & Noble : 5,000+
bp e-store : 1,000+
Brilliant Quotes: Life, Love, Family & Motivation : 1,000,000+
BR Ambedkar Biography & Quotes : 10,000+
BU Alsace : 100+
Catholic La Bu Zo Kam : 500+
Khrifa Hla Bu (Solfa) : 10+
Kristian Hla Bu : 10,000+
SA HLA BU : 1,000+
Learn SAP BW : 500+
Learn SAP BW on HANA : 500+
CA Laws 2018 (California Laws and Codes) : 5,000+
Bootable Methods(USB-CD-DVD) : 10,000+
cloudLibrary : 100,000+
SDA Collegiate Quarterly : 500+
Sabbath School : 100,000+
Cypress College Library : 100+
Stats Royale for Clash Royale : 1,000,000+
GATE 21 years CS Papers(2011-2018 Solved) : 50+
Learn CT Scan Of Head : 5,000+
Easy Cv maker 2018 : 10,000+
How to Write CV : 100,000+
CW Nuclear : 1,000+
CY Spray nozzle : 10+
BibleRead En Cy Zh Yue : 5+
CZ-Help : 5+
Modlitební knížka CZ : 500+
Guide for DB Xenoverse : 10,000+
Guide for DB Xenoverse 2 : 10,000+
Guide for IMS DB : 10+
DC HSEMA : 5,000+
DC Public Library : 1,000+
Painting Lulu DC Super Friends : 1,000+
Dictionary : 10,000,000+
Fix Error Google Playstore : 1,000+
D. H. Lawrence Poems FREE : 1,000+
Bilingual Dictionary Audio App : 5,000+
DM Screen : 10,000+
wikiHow: how to do anything : 1,000,000+
Dr. Doug's Tips : 1,000+
Bible du Semeur-BDS (French) : 50,000+
La citadelle du musulman : 50,000+
DV 2019 Entry Guide : 10,000+
DV 2019 - EDV Photo & Form : 50,000+
DV 2018 Winners Guide : 1,000+
EB Annual Meetings : 1,000+
EC - AP & Telangana : 5,000+
TN Patta Citta & EC : 10,000+
AP Stamps and Registration : 10,000+
CompactiMa EC pH Calibration : 100+
EGW Writings 2 : 100,000+
EGW Writings : 1,000,000+
Bible with EGW Comments : 100,000+
My Little Pony AR Guide : 1,000,000+
SDA Sabbath School Quarterly : 500,000+
Duaa Ek Ibaadat : 5,000+
Spanish English Translator : 10,000,000+
Dictionary - Merriam-Webster : 10,000,000+
JW Library : 10,000,000+
Oxford Dictionary of English : Free : 10,000,000+
English Hindi Dictionary : 10,000,000+
English to Hindi Dictionary : 5,000,000+
EP Research Service : 1,000+
Hymnes et Louanges : 100,000+
EU Charter : 1,000+
EU Data Protection : 1,000+
EU IP Codes : 100+
EW PDF : 5+
BakaReader EX : 100,000+
EZ Quran : 50,000+
FA Part 1 & 2 Past Papers Solved Free – Offline : 5,000+
La Fe de Jesus : 1,000+
La Fe de Jesús : 500+
Le Fe de Jesus : 500+
Florida - Pocket Brainbook : 1,000+
Florida Statutes (FL Code) : 1,000+
English To Shona Dictionary : 10,000+
Greek Bible FP (Audio) : 1,000+
Golden Dictionary (FR-AR) : 500,000+
Fanfic-FR : 5,000+
Bulgarian French Dictionary Fr : 10,000+
Chemin (fr) : 1,000+
The SCP Foundation DB fr nn5n : 1,000+

The book and reference genre includes a variety of apps: software for processing and reading ebooks, various collections of libraries, dictionaries, tutorials on programming or languages, etc. It seems there's still a small number of extremely popular apps that skew the average:

In [29]:
for app in android_final:
    if app[1] == 'BOOKS_AND_REFERENCE' and (app[5] == '1,000,000,000+'
                                            or app[5] == '500,000,000+'
                                            or app[5] == '100,000,000+'):
        print(app[0], ':', app[5])
Google Play Books : 1,000,000,000+
Bible : 100,000,000+
Amazon Kindle : 100,000,000+
Wattpad 📖 Free Books : 100,000,000+
Audiobooks from Audible : 100,000,000+

However, it looks like there are only a few very popular apps, so this market still shows potential. Let's try to get some app ideas based on the kind of apps that are somewhere in the middle in terms of popularity (between 1,000,000 and 100,000,000 downloads):

In [30]:
for app in android_final:
    if app[1] == 'BOOKS_AND_REFERENCE' and (app[5] == '1,000,000+'
                                            or app[5] == '5,000,000+'
                                            or app[5] == '10,000,000+'
                                            or app[5] == '50,000,000+'):
        print(app[0], ':', app[5])
Wikipedia : 10,000,000+
Cool Reader : 10,000,000+
Book store : 1,000,000+
FBReader: Favorite Book Reader : 10,000,000+
Free Books - Spirit Fanfiction and Stories : 1,000,000+
AlReader -any text book reader : 5,000,000+
FamilySearch Tree : 1,000,000+
Cloud of Books : 1,000,000+
ReadEra – free ebook reader : 1,000,000+
Ebook Reader : 5,000,000+
Read books online : 5,000,000+
eBoox: book reader fb2 epub zip : 1,000,000+
All Maths Formulas : 1,000,000+
Ancestry : 5,000,000+
HTC Help : 10,000,000+
Moon+ Reader : 10,000,000+
English-Myanmar Dictionary : 1,000,000+
Golden Dictionary (EN-AR) : 1,000,000+
All Language Translator Free : 1,000,000+
Aldiko Book Reader : 10,000,000+
Dictionary - WordWeb : 5,000,000+
50000 Free eBooks & Free AudioBooks : 5,000,000+
Al-Quran (Free) : 10,000,000+
Al Quran Indonesia : 10,000,000+
Al'Quran Bahasa Indonesia : 10,000,000+
Al Quran Al karim : 1,000,000+
Al Quran : EAlim - Translations & MP3 Offline : 5,000,000+
Koran Read &MP3 30 Juz Offline : 1,000,000+
Hafizi Quran 15 lines per page : 1,000,000+
Quran for Android : 10,000,000+
Satellite AR : 1,000,000+
Oxford A-Z of English Usage : 1,000,000+
Dictionary.com: Find Definitions for English Words : 10,000,000+
English Dictionary - Offline : 10,000,000+
Bible KJV : 5,000,000+
NOOK: Read eBooks & Magazines : 10,000,000+
Brilliant Quotes: Life, Love, Family & Motivation : 1,000,000+
Stats Royale for Clash Royale : 1,000,000+
Dictionary : 10,000,000+
wikiHow: how to do anything : 1,000,000+
EGW Writings : 1,000,000+
My Little Pony AR Guide : 1,000,000+
Spanish English Translator : 10,000,000+
Dictionary - Merriam-Webster : 10,000,000+
JW Library : 10,000,000+
Oxford Dictionary of English : Free : 10,000,000+
English Hindi Dictionary : 10,000,000+
English to Hindi Dictionary : 5,000,000+

This niche seems to be dominated by software for processing and reading ebooks, as well as various collections of libraries and dictionaries, so it's probably not a good idea to build similar apps since there'll be some significant competition.

We also notice there are quite a few apps built around the book Quran, which suggests that building an app around a popular book can be profitable. It seems that taking a popular book (perhaps a more recent book) and turning it into an app could be profitable for both the Google Play and the App Store markets.

However, it looks like the market is already full of libraries, so we need to add some special features besides the raw version of the book. This might include daily quotes from the book, an audio version of the book, quizzes on the book, a forum where people can discuss the book, etc.

Conclusions

In this project, we analyzed data about the App Store and Google Play mobile apps with the goal of recommending an app profile that can be profitable for both markets.

We concluded that taking a popular book (perhaps a more recent book) and turning it into an app could be profitable for both the Google Play and the App Store markets. The markets are already full of libraries, so we need to add some special features besides the raw version of the book. This might include daily quotes from the book, an audio version of the book, quizzes on the book, a forum where people can discuss the book, etc