Pandas Tutorial | Hedaro >

Lesson 5

These tutorials are also available through an email course, please visit http://www.hedaro.com/pandas-tutorial to sign up today.

We will be taking a brief look at the stack and unstack functions.

In [1]:
# Import libraries
import pandas as pd
import sys
In [2]:
print('Python version ' + sys.version)
print('Pandas version: ' + pd.__version__)
Python version 3.7.4 (default, Aug  9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)]
Pandas version: 1.0.5
In [3]:
# Our small data set
d = {'one':[1,1],'two':[2,2]}
i = ['a','b']

# Create dataframe
df = pd.DataFrame(data = d, index = i)
df
Out[3]:
one two
a 1 2
b 1 2
In [4]:
df.index
Out[4]:
Index(['a', 'b'], dtype='object')
In [5]:
# Bring the columns and place them in the index
stack = df.stack()
stack
Out[5]:
a  one    1
   two    2
b  one    1
   two    2
dtype: int64
In [6]:
# The index now includes the column names
stack.index
Out[6]:
MultiIndex([('a', 'one'),
            ('a', 'two'),
            ('b', 'one'),
            ('b', 'two')],
           )
In [7]:
unstack = df.unstack()
unstack
Out[7]:
one  a    1
     b    1
two  a    2
     b    2
dtype: int64
In [8]:
unstack.index
Out[8]:
MultiIndex([('one', 'a'),
            ('one', 'b'),
            ('two', 'a'),
            ('two', 'b')],
           )

We can also flip the column names with the index using the T (transpose) function.

In [9]:
transpose = df.T
transpose
Out[9]:
a b
one 1 1
two 2 2
In [10]:
transpose.index
Out[10]:
Index(['one', 'two'], dtype='object')

This tutorial was created by HEDARO