# The Discrete Cosine Transform and Chebyshev Expansions¶

Cosine series and the discrete Cosine transform are close relatives of Fourier series and the discrete Fourier transform. A Fourier series in triginometric polynomials is an expansion

$$f(\theta) = \sum_{k=0}^\infty c_k \cos k \theta + \sum_{k=1}^\infty s_k \sin k \theta,$$

where

\begin{align*} c_0 &= {1 \over 2 \pi} \int_0^{2 \pi} f(\theta) \cos k \theta d \theta \cr c_k &= {1 \over \pi} \int_0^{2 \pi} f(\theta) \cos k \theta d \theta \cr s_k &= {1 \over \pi} \int_0^{2 \pi} f(\theta) \sin k \theta d \theta \cr \end{align*}

A Cosine series is an expansion like

$$f(\theta) = \sum_{k=0}^\infty c_k \cos k \theta$$

That is, it is a Fourier series with only cosine terms, no sine terms.

## Cosine series for even functions¶

Even functions satisfy $f(\theta) = f(-\theta)$. Cosine expansions capture evenness, because each Cosine term is even: $\cos k \theta = \cos(-k\theta)$.

Exercise 1(a) Why is it true that, if $f$ is even, we have

$$s_k = 0?$$

Verify this statement for $k=1,2,3$ using quadgk for the even function $f(\theta) = e^{\cos \theta}$.

In :
f=θ->exp(cos(θ))


Out:
(-3.80064384882164e-16,3.674734011551995e-15,2.651001459313375e-15)

Exercise 1(b) When $f$ is even, the integrals can be reduced to have a period. Explain why its true that

\begin{align*} c_0 &= {1 \over \pi} \int_0^{\pi} f(\theta) \cos k \theta d \theta \cr c_k &= {2\over \pi} \int_0^{\pi} f(\theta) \cos k \theta d \theta \cr \end{align*}

Verify this statement using quadgk for the even function $f(\theta) = e^{\cos \theta}$ for $k=0,1,2,3$.

In :
quadgk(θ->f(θ),0,2π)/(2π)-quadgk(θ->f(θ),0,π)/(π)

Out:
-9.159339953157541e-16

Exercise 1(c) Use quadgk to approximate $c_k$ for $f(\theta) = e^{\cos \theta}$. Verify

$$f(\theta) \approx \sum_{k=0}^9 c_k \cos k \theta$$
In :
c=Array(Float64,10)
for k=1:length(c)-1
end

t=0.1
ret=0.

for k=0:length(c)-1
ret+=c[k+1]*cos(k*t)
end
ret-f(t)

Out:
-3.091917832875879e-10

## Non-periodic functions and Chebyshev expansion¶

Consider a non-periodic function $f(x)$ on $[-1,1]$. Then $f(\cos \theta)$ is a periodic, even function on $[0,2\pi]$! Cosine expansion of $f(\cos \theta)$ combined with the change of variables $\theta = \hbox{acos}\, x$ leads to the Chebyshev expansion of a non-periodic function. Remarkably, this expansion is a polynomial expansion.

Exercise 2(a) Consider $f(x) = e^x$. Show that

$$f(x) \approx \sum_{k=0}^9 c_k T_k(x)$$

where $c_k$ are the cosine coefficients of $f(\cos \theta)$ and $T_k(x) \triangleq \cos k \, {\rm acos}\, x$.

In [ ]:



Exercise 2(b) Advanced Use the fact that

$$\int_0^\pi \cos k \theta \sin \theta d \theta = \begin{cases} 2/(1-k^2) & \hbox{k even} \cr 0 & \hbox{otherwise} \end{cases}$$

to approximate

$$\int_{-1}^1 f(x) dx \approx \int_{-1}^1 \sum_{k=0}^{n-1} c_k T_k(x) dx$$

This is known as Clenshaw–Curtis quadrature.

In [ ]:



Exercise 2(c) Advanced Show that $T_k(x)$ are polynomials.

$$\int_{-1}^1 {T_k(x) T_j(y) \over \sqrt{1-x^2}} dx = 0$$

if $k \neq j$.

In [ ]:



## The DCT¶

The Trapezium rule over $[0,\pi]$ also leads to a discrete cosine transform. We can use the trap routine from lectures:

In :
function trap(f,a,b,n)
h=(b-a)/n
x=linspace(a,b,n+1)

v=f(x)
h/2*v+sum(v[2:end-1]*h)+h/2*v[end]
end

Out:
trap (generic function with 1 method)

Exercise 3(a) Use trap to complete the function mydct that returns approximations $[c_0^n,\ldots,c_{n-1}^n]$ to $c_k$. (Hint: make sure you use n-1 when calling trap.) Show experimentally that it is exact for $f(\theta) = \cos \omega \theta$ when $\omega > n$.

In :
function mydct(f::Function,n)
c=zeros(n)
c=trap(f,0,π,n)/π
for k=1:n-1
c[k+1]=trap(θ->cos(k*θ).*f(θ),0,π,n)*2/π
end
c
end

Out:
mydct (generic function with 1 method)
In :
mydct(θ->cos(13θ),10)

Out:
10-element Array{Float64,1}:
3.53395e-16
-4.59413e-16
0.0
5.30092e-16
-6.7145e-16
-1.06018e-16
1.76697e-17
1.0
1.76697e-17
1.41358e-16

The following command is a fast DCT-I.

In :
dctI(v) = FFTW.r2r(v, FFTW.REDFT00)

Out:
dctI (generic function with 1 method)

Exercise 3(b) Advanced Figure out how to calculate $c_k^n$ using dctI and $f$ evaluated at θ=linspace(0,π,n). (Hint: try it with $\cos k \theta$ for different choices of $k$.)

In :
n=11;θ=linspace(0,π,n)
v=exp(cos(θ-0.1))
cfs=dctI(v)/(n-1)
cfs/=2
cfs[end]/=2

cfs

Out:
11-element Array{Float64,1}:
1.33991
1.16995
0.226631
0.0151554
-0.0132564
-0.00865769
-0.00802881
-0.00500644
-0.00554588
-0.00393199
-0.00248131
In [ ]: