In [1]:

```
import sys
sys.path.append('../code')
from init_mooc_nb import *
init_notebook()
```

We have two choices for your coding assignments of this week. Consider the task complete when you finish one of the two.

This is especially true since both of the assignments constitute a complete paper :)

As usual, start by grabbing the notebooks of this week (`w2_majorana`

). They are once again over here.

Explore what happens when we change one the important knobs of the nanowire model, the external magnetic field. We studied what happens when $B$ is pointing along the $z$ direction. However, what happens when the magnetic field is tilted?

Generalize the Hamiltonian of the nanowire to the case of a magnetic field with three components $B_x, B_y, B_z$. How do the new terms look like?

Go into the `nanowire`

notebook. Modify the `nanowire_chain`

function to include the magnetic field pointing in general direction.
Plot the band structure for different field directions, and compare to the original case of having only $B_z$. What changes?

Compare your results with what you find over here:

**Effects of tilting the magnetic field in 1D Majorana nanowires**(arXiv:1403.4464) Javier Osca, Daniel Ruiz, LlorenĂ§ Serra

Now let's switch to the signatures of Majoranas. The code for these is in the `signatures`

notebook.

How does the $4\pi$-periodic Josephson effect disapper? We argued that we cannot just remove a single crossing. Also periodicity isn't a continuous variable and cannot just change. So what is happening?

Study the spectrum of a superconducting ring as a function of magnetic field, as you make a transition between the trivial and the topological regimes.

What do you see? Compare your results with the paper below.

**Signatures of topological phase transitions in mesoscopic superconducting rings**(arXiv:1210.3237) Falko Pientka, Alessandro Romito, Mathias Duckheim, Yuval Oreg, Felix von Oppen

In [2]:

```
MoocSelfAssessment()
```

Out[2]:

In [3]:

```
MoocDiscussion('Labs', 'Majorana nanowire')
```

Out[3]:

As we mentioned, there are really hundreds of papers that use the models and concepts that we used in the lecture.

Here is a small selection of the ones that you may find interesting.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven

Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one superconducting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.',

**Hint:** Welcome to the real world.

M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, C. W. J. Beenakker

We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or Fermi energy shows plateaus at half-integer multiples of 4e^2/h if the superconductor is in a topologically nontrivial phase. In contrast, the plateaus are at the usual integer multiples in the topologically trivial phase. Disorder destroys all plateaus except the first, which remains precisely quantized, consistent with previous results for a tunnel contact. The advantage of a ballistic contact over a tunnel contact as a probe of the topological phase is the strongly reduced sensitivity to finite voltage or temperature.',

**Hint:** Majorana conductance with many modes.

Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen, Matthew P. A. Fisher

Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.',

**Hint:** To play a nice melody, you just need a keyboard.
This paper first showed how Majoranas in wire networks can be moved around

Roman M. Lutchyn, Tudor Stanescu, S. Das Sarma

We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor. We show that when odd number of subbands are occupied the system realizes non-trivial topological state supporting Majorana modes localized at the ends. We study the topological quantum phase transition in this system and analytically calculate the phase diagram as a function of the chemical potential and magnetic field. Our key finding is that multiband occupancy not only lifts the stringent constraint of one-dimensionality but also allows to have higher carrier density in the nanowire and as such multisubband nanowires are better-suited for observing the Majorana particle. We study the robustness of the topological phase by including the effects of the short- and long-range disorder. We show that in the limit of strong interband mixing there is an optimal regime in the phase diagram ("sweet spot") where the topological state is to a large extent insensitive to the presence of disorder.

**Hint:** Real nanowires are more complicated.

Do you know of another paper that fits into the topics of this week, and you think is good? Then you can get bonus points by reviewing that paper instead!

In [4]:

```
MoocSelfAssessment()
```

Out[4]:

In [5]:

```
MoocDiscussion("Reviews", "Majoranas")
```

Out[5]: