Df 1 0 1_H 1 Analysis

Show how to express ROOT's standard H1 analysis with RDataFrame.

Author: Axel Naumann, Danilo Piparo (CERN)
This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Tuesday, June 15, 2021 at 07:23 AM.

In [1]:
auto Select = [](ROOT::RDataFrame &dataFrame) {
   using Farray_t = ROOT::VecOps::RVec<float>;
   using Iarray_t = ROOT::VecOps::RVec<int>;

   auto ret = dataFrame.Filter("TMath::Abs(md0_d - 1.8646) < 0.04")
                 .Filter("ptds_d > 2.5")
                 .Filter("TMath::Abs(etads_d) < 1.5")
                 .Filter([](int ik, int ipi, Iarray_t& nhitrp) { return nhitrp[ik - 1] * nhitrp[ipi - 1] > 1; },
                         {"ik", "ipi", "nhitrp"})
                 .Filter([](int ik, Farray_t& rstart, Farray_t& rend) { return rend[ik - 1] - rstart[ik - 1] > 22; },
                         {"ik", "rstart", "rend"})
                 .Filter([](int ipi, Farray_t& rstart, Farray_t& rend) { return rend[ipi - 1] - rstart[ipi - 1] > 22; },
                         {"ipi", "rstart", "rend"})
                 .Filter([](int ik, Farray_t& nlhk) { return nlhk[ik - 1] > 0.1; }, {"ik", "nlhk"})
                 .Filter([](int ipi, Farray_t& nlhpi) { return nlhpi[ipi - 1] > 0.1; }, {"ipi", "nlhpi"})
                 .Filter([](int ipis, Farray_t& nlhpi) { return nlhpi[ipis - 1] > 0.1; }, {"ipis", "nlhpi"})
                 .Filter("njets >= 1");

   return ret;
};

const Double_t dxbin = (0.17 - 0.13) / 40; // Bin-width

A helper function is created:

In [2]:
%%cpp -d
Double_t fdm5(Double_t *xx, Double_t *par)
{
   Double_t x = xx[0];
   if (x <= 0.13957)
      return 0;
   Double_t xp3 = (x - par[3]) * (x - par[3]);
   Double_t res =
      dxbin * (par[0] * pow(x - 0.13957, par[1]) + par[2] / 2.5066 / par[4] * exp(-xp3 / 2 / par[4] / par[4]));
   return res;
}

A helper function is created:

In [3]:
%%cpp -d
Double_t fdm2(Double_t *xx, Double_t *par)
{
   static const Double_t sigma = 0.0012;
   Double_t x = xx[0];
   if (x <= 0.13957)
      return 0;
   Double_t xp3 = (x - 0.1454) * (x - 0.1454);
   Double_t res = dxbin * (par[0] * pow(x - 0.13957, 0.25) + par[1] / 2.5066 / sigma * exp(-xp3 / 2 / sigma / sigma));
   return res;
}

A helper function is created:

In [4]:
%%cpp -d
void FitAndPlotHdmd(TH1 &hdmd)
{
   // create the canvas for the h1analysis fit
   gStyle->SetOptFit();
   auto c1 = new TCanvas("c1", "h1analysis analysis", 10, 10, 800, 600);
   hdmd.GetXaxis()->SetTitleOffset(1.4);

   // fit histogram hdmd with function f5 using the loglikelihood option
   auto f5 = new TF1("f5", fdm5, 0.139, 0.17, 5);
   f5->SetParameters(1000000, .25, 2000, .1454, .001);
   hdmd.Fit("f5", "lr");

   hdmd.DrawClone();
}

A helper function is created:

In [5]:
%%cpp -d
void FitAndPlotH2(TH2 &h2)
{
   // create the canvas for tau d0
   auto c2 = new TCanvas("c2", "tauD0", 100, 100, 800, 600);

   c2->SetGrid();
   c2->SetBottomMargin(0.15);

   // Project slices of 2-d histogram h2 along X , then fit each slice
   // with function f2 and make a histogram for each fit parameter
   // Note that the generated histograms are added to the list of objects
   // in the current directory.
   auto f2 = new TF1("f2", fdm2, 0.139, 0.17, 2);
   f2->SetParameters(10000, 10);
   h2.FitSlicesX(f2, 0, -1, 1, "qln");

   // See TH2::FitSlicesX documentation
   auto h2_1 = (TH1D *)gDirectory->Get("h2_1");
   h2_1->GetXaxis()->SetTitle("#tau [ps]");
   h2_1->SetMarkerStyle(21);
   h2_1->DrawClone();
   c2->Update();

   auto line = new TLine(0, 0, 0, c2->GetUymax());
   line->Draw();
}
In [6]:
TChain chain("h42");
chain.Add("root://eospublic.cern.ch//eos/root-eos/h1/dstarmb.root");
chain.Add("root://eospublic.cern.ch//eos/root-eos/h1/dstarp1a.root");
chain.Add("root://eospublic.cern.ch//eos/root-eos/h1/dstarp1b.root");
chain.Add("root://eospublic.cern.ch//eos/root-eos/h1/dstarp2.root");

ROOT::EnableImplicitMT(4);

ROOT::RDataFrame dataFrame(chain);
auto selected = Select(dataFrame);
Plugin No such file or directory loading sec.protocol libXrdSeckrb5-4.so

Note: the title syntax is ";<label x axis>;<label y axis>"</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [7]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-c++"><pre><span></span><span class="k">auto</span> <span class="n">hdmdARP</span> <span class="o">=</span> <span class="n">selected</span><span class="p">.</span><span class="n">Histo1D</span><span class="p">({</span><span class="s">"hdmd"</span><span class="p">,</span> <span class="s">"Dm_d;m_{K#pi#pi} - m_{K#pi}[GeV/c^{2}]"</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mf">0.13</span><span class="p">,</span> <span class="mf">0.17</span><span class="p">},</span> <span class="s">"dm_d"</span><span class="p">);</span> <span class="k">auto</span> <span class="n">selectedAddedBranch</span> <span class="o">=</span> <span class="n">selected</span><span class="p">.</span><span class="n">Define</span><span class="p">(</span><span class="s">"h2_y"</span><span class="p">,</span> <span class="s">"rpd0_t / 0.029979f * 1.8646f / ptd0_d"</span><span class="p">);</span> <span class="k">auto</span> <span class="n">h2ARP</span> <span class="o">=</span> <span class="n">selectedAddedBranch</span><span class="p">.</span><span class="n">Histo2D</span><span class="p">({</span><span class="s">"h2"</span><span class="p">,</span> <span class="s">"ptD0 vs Dm_d"</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mf">0.135</span><span class="p">,</span> <span class="mf">0.165</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">-3</span><span class="p">,</span> <span class="mi">6</span><span class="p">},</span> <span class="s">"dm_d"</span><span class="p">,</span> <span class="s">"h2_y"</span><span class="p">);</span> <span class="n">FitAndPlotHdmd</span><span class="p">(</span><span class="o">*</span><span class="n">hdmdARP</span><span class="p">);</span> <span class="n">FitAndPlotH2</span><span class="p">(</span><span class="o">*</span><span class="n">h2ARP</span><span class="p">);</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"> <div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre> FCN=10684 FROM MIGRAD STATUS=CONVERGED 209 CALLS 210 TOTAL EDM=1.2814e-06 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 p0 9.59915e+05 8.87690e+04 2.77938e+02 -4.39940e-08 2 p1 3.51114e-01 2.27896e-02 2.22437e-04 1.27888e-01 3 p2 1.18503e+03 5.92240e+01 3.18237e+00 1.06503e-05 4 p3 1.45569e-01 5.93973e-05 4.11621e-06 1.60533e+00 5 p4 1.24388e-03 6.60206e-05 3.72402e-06 -3.36599e+00 ERR DEF= 0.5 </pre> </div> </div> <div class="output_area"> <div class="prompt"></div> <div class="output_subarea output_stream output_stderr output_text"> <pre>Info in <TH2D::DoFitSlices>: Slice fit 0 (-3.300000,-3.000000) Info in <TH2D::DoFitSlices>: Slice fit 1 (-3.000000,-2.700000) Info in <TH2D::DoFitSlices>: Slice fit 2 (-2.700000,-2.400000) Info in <TH2D::DoFitSlices>: Slice fit 3 (-2.400000,-2.100000) Info in <TH2D::DoFitSlices>: Slice fit 4 (-2.100000,-1.800000) Info in <TH2D::DoFitSlices>: Slice fit 5 (-1.800000,-1.500000) Info in <TH2D::DoFitSlices>: Slice fit 6 (-1.500000,-1.200000) Info in <TH2D::DoFitSlices>: Slice fit 7 (-1.200000,-0.900000) Info in <TH2D::DoFitSlices>: Slice fit 8 (-0.900000,-0.600000) Info in <TH2D::DoFitSlices>: Slice fit 9 (-0.600000,-0.300000) Info in <TH2D::DoFitSlices>: Slice fit 10 (-0.300000,0.000000) Info in <TH2D::DoFitSlices>: Slice fit 11 (0.000000,0.300000) Info in <TH2D::DoFitSlices>: Slice fit 12 (0.300000,0.600000) Info in <TH2D::DoFitSlices>: Slice fit 13 (0.600000,0.900000) Info in <TH2D::DoFitSlices>: Slice fit 14 (0.900000,1.200000) Info in <TH2D::DoFitSlices>: Slice fit 15 (1.200000,1.500000) Info in <TH2D::DoFitSlices>: Slice fit 16 (1.500000,1.800000) Info in <TH2D::DoFitSlices>: Slice fit 17 (1.800000,2.100000) Info in <TH2D::DoFitSlices>: Slice fit 18 (2.100000,2.400000) Info in <TH2D::DoFitSlices>: Slice fit 19 (2.400000,2.700000) Info in <TH2D::DoFitSlices>: Slice fit 20 (2.700000,3.000000) Info in <TH2D::DoFitSlices>: Slice fit 21 (3.000000,3.300000) Info in <TH2D::DoFitSlices>: Slice fit 22 (3.300000,3.600000) Info in <TH2D::DoFitSlices>: Slice fit 23 (3.600000,3.900000) Info in <TH2D::DoFitSlices>: Slice fit 24 (3.900000,4.200000) Info in <TH2D::DoFitSlices>: Slice fit 25 (4.200000,4.500000) Info in <TH2D::DoFitSlices>: Slice fit 26 (4.500000,4.800000) Info in <TH2D::DoFitSlices>: Slice fit 27 (4.800000,5.100000) Info in <TH2D::DoFitSlices>: Slice fit 28 (5.100000,5.400000) Info in <TH2D::DoFitSlices>: Slice fit 29 (5.400000,5.700000) Info in <TH2D::DoFitSlices>: Slice fit 30 (5.700000,6.000000) Info in <TH2D::DoFitSlices>: Slice fit 31 (6.000000,6.300000) </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt"> </div><div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Draw all canvases</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [8]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-c++"><pre><span></span><span class="n">gROOT</span><span class="o">-></span><span class="n">GetListOfCanvases</span><span class="p">()</span><span class="o">-></span><span class="n">Draw</span><span class="p">()</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"> <div class="prompt"></div> <div class="output_png output_subarea "> <img src=" " > </div> </div> <div class="output_area"> <div class="prompt"></div> <div class="output_png output_subarea "> <img src=" " > </div> </div> </div> </div> </div> </div> </div> </div> <footer class="footer hidden-print"> <div class="container"> <div class="col-md-4"> <p> This website does not host notebooks, it only renders notebooks available on other websites. </p> </div> <div class="col-md-4"> <p> Delivered by <a href="http://www.fastly.com/">Fastly</a>, Rendered by <a href="https://ovhcloud.com">OVHcloud</a> </p> <p> nbviewer GitHub <a href="https://github.com/jupyter/nbviewer">repository</a>. </p> </div> <div class="col-md-4"> <p> nbviewer version: <a href="https://github.com/jupyter/nbviewer/commit/90c61ccda0e4ae08ce46511c45505b49663fb019"> 90c61cc </a> </p> <p> nbconvert version: <a href="https://github.com/jupyter/nbconvert/releases/tag/5.6.1"> 5.6.1 </a> </p> <p> Rendered <span class='date' data-date='Tue, 15 Jun 2021 13:25:41 UTC' title='Tue, 15 Jun 2021 13:25:41 UTC'>(Tue, 15 Jun 2021 13:25:41 UTC)</span> </p> </div> </div> </footer> <script src="/static/components/bootstrap/js/bootstrap.min.js"></script> <script src="/static/components/headroom.js/dist/headroom.min.js"></script> <script src="/static/components/headroom.js/dist/jQuery.headroom.min.js"></script> <script> $(function(){ $("#menubar").headroom({ tolerance: 5, offset: 205, classes: { initial: "animated", pinned: "slideInDown", unpinned: "slideOutUp" } })}); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-52617120-5', 'auto', {'storage': 'none'}); ga('set', 'anonymizeIp', true); ga('send', 'pageview'); </script> <script> require({ paths: { moment: "/static/components/moment/min/moment.min.js" } }, ["moment"], function(moment){ var date = $("footer .date"), m = moment(new Date(date.data('date'))), update = function(){ date.text(m.fromNow()); }; setInterval(update, 61*1000); update(); var w = $(window).scroll(function(event){ $("body").toggleClass("scrolled", w.scrollTop() > 0); }); }); </script> <!--NEW RELIC Stop Perf Measurement--> <!--NEW RELIC End--> </body> </html>