
1

Gomoku
Shun Zhang 15300180012 Donghao Li 15307100013 Pingxuan Huang 15307130283

I. INTRODUCTION

In this AI project, we first explored various algorithms
for Gomoku, such as Monte Carlo Tree Search, Genetic
Algorithm, Threat Space Search. However, we found
that these algorithms have some unavoidable flaws: the
Monte Carlo Tree Search Algorithm requires too much
simulations. If we only perform a very small search,
we will have a very high probability to get some bad
solutions. Genetic algorithms are also facing the same
problem, requiring larger populations and iterations. Be-
sides, genetic algorithms rely on some parameter turning
and it is difficult to set them well. The third one is Threat
Space Search Algorithm, and it is slow because it needs
to constantly create threats and challenge the threat. But
its power is quite considerable compared to the previous
two randomized algorithms.

Afterwards, we refer to some successful AI, especially
Yixin and its blog. We found that since the rules for
the victory of Gomoku are local and the number of
steps is very short, we do not need to consider the steps
as far as Go. Therefore, the state of arts Gomoku AI
is mostly based on Adversarial search algorithm and
Alpha-Beta pruning. So we turned our attention to the
scoring system and Adversarial search algorithm . It
turns out that we are right. The first version of our AI
defeated some of the lower-rated AIs. After that, we
spent a long time constantly enhancing it, mainly in two
areas. The first one is to speed up the search so that we
can search faster and deeper. The second is to increase
the VCX module to solve the horizontal problem (short-
sightedness problem) and improve the level of AI. The
final version’s performance is surprising, none of our
team could defeat it!

Subsequent articles will be presented in the order de-
scribed above, with some possible future improvements.

II. ALGORITHM EXPLORATION

A. MCTree

At first, we try to realize the algorithm of Monte-
Carlo Tree Search, which can be referred to mcts.py.
However, we found that because of limited computation
resource and time, the MCTS algorithm often returns a
bad result of simulation. Also, our board is 20 × 20,
which is much bigger than the standard 15 × 15. The
MCTS algorithm becomes more ‘stupid’. (It performs
well on a small board such as 10× 10). For example in

Figure 1, it is obvious that MCTS failed to defend in the
left figure and the other one on a small board succeeded
to do so.

Fig. 1. ‘stupid’ and not so ‘stupid’ MCTS. Note that the board is
printed below and those positions with win rate higher than 40% are
printed above.

B. Mini-Max Tree Search

The most competitive and stable algorithm that we
found is Mini-Max Tree Search, which is also known
as adversarial search. The basic idea is covered in our
course. Besides, there are some remarks:

• leaf node (evaluate)
Given a certain deep, the leaf node is defined as the
one with deep 0. And the evaluation at a leaf node
is defined as follows:

maxp{scoreAI(p)} −maxp{scoreopp(p)}

where opp denotes the opponent of our AI, and p
denotes available position.

• generate potential nodes
A core question of Mini-Max Tree Search is that
there are many available positions (nodes) at one
layer, especially when the game is just started.
Obviously, there are a lot of positions that are
hopeless without any search. So how to generate
fewer potential nodes without missing some valu-
able cases is quite essential.
In our AI, we generate potential positions based on
our scoring and we rearrange them in order of their
scores, this will do great help in α-β pruning.

• α-β pruning
This part is also covered in our course. In addition,
another case for pruning is that when one player
wins, there is no need to go deeper.



2

C. Genetic Algorithm

1) Algorithm: Generally speaking, We could roughly
separate GA into 5 parts: coding scheme, original popu-
lation, crossover and mutation operations, and the fitness
function. limited by space, we will describe only the
coding schema and fitness function:

First, according to original paper [2], we
would set a list of coordinates as an individual,
which means we could present an individual as
[A1, O1, A2, O2 · · · ](where A denotes agent and O
denotes opponent). Then, simply put, our scoring/fitness
function is based on a rating table, details will be
presented latter.

By the way, GA-searching will converges when the
best next move of the latest 5 generation are the same.

2) Implement: Implement process including two seg-
ments: fitness function & GA structure.

Fitness function (grading function):
To score one genome, we first grade each

gene(coordinate) separately, then sum them up.
When comes to single gene, we need to take both
attack and defend into consideration, so we will check
this table twice(set player as different color each time)
and sum these 2 scores up. We need to set score as
positive if it is Agent’s move, vice versa. Because we
need to take different directions, pieces and lines into
consideration, we need to construct a system to match
pattern:

First, we need to find all neighbors of one coordinate
(pieces with same color which connect to this coordinate)
in 8 direction(up, right...). Second, based on each neigh-
bor, we will check its 8 directions to count its neighbors.
After getting these data, we can do template matching
for each neighbor, then we will select the best score as
result.

GA structure: we coded 2 functions and 3 classes
to implement GA. The 2 function are Mutation &
Crossover. The 3 classes are Board, Population and
Wuzi GA:

• Board: Package cheeseboard, which could output
available pieces, check weather one coordinate is
free or not and update chessboard.

• Population: Simulate genetic process, which have
the ability to generate primate population, to select
individuals, to generate next generation and find out
the best next move of one generation. By the way,
according to paper [3], we choose to cross first and
then mutate.

• Wuzi GA: Apply GA on Gomoku, which will set
select function, code individual and control general
process.

3) Experiment & Enhancement: First, we added some
optimization:

• To accelerate algorithm, we transformed duplicate
checking(same gene cannot appear twice in one
genome) from population-generation process to
individual-evaluating process: if we find a duplicate
gene, we will assign this individual -1 point.

• In order to encourage early victories, we directly
assign the (negative) maximum value to the
redundant steps(steps after agent/opponent win).

• if there is still no convergence when time runs
out, we will choose the last one of most common
coordinates from the best next move of latest 5
generation.

Then we did some enhancement in experiment:
First, we noticed that if one line are blocked in both

side, grading function will see it as 2 lines blocked on
only one side. So we made our select function check one
whole line(in both directions) each time.

Then we noticed that our agent was not good at
defending. First we think it is because too much steps
considering will influence AI’s judgment. So we set the
length of genome as 2. Although not-defend problem can
be resolved, AI will become short-sighted. So we refined
our fitness function, to be specific, we directly assign the
(negative) maximum value to the redundant steps if we
meet 4 renju, and we changed the genome length into 4.

III. ALGORITHM ACCELERATION

A. Fast evaluation

1) Make score dictionary: For a certain square, we
assume that its engaging radius is 5. That is to say,
only the 40 squares around it (5 squares on each side,
4 directions) that matters. Obviously, the four directions
share the same number of patterns. So the dictionary for
one direction is enough and we will only discuss the case
of broad-wise direction.

Assume that now we have a square, denoted
as x. the 10 engaging squares are denoted as
i1, i2, i3, i4, i5, i6, i7, i8, i9, i10. For any 1 ≤ j ≤ 10,
ij = 1 if this square is occupied by AI, or, ij = 2 if
this squared is occupied by opponent. Otherwise, ij = 0
if the square is empty. This is consistent to the setting
of Piskvork.

After that, for a pattern like
i1, i2, i3, i4, i5, x, i6, i7, i8, i9, i10, it’s represented as
integer:

x ∗M5 +

5∑
j=1

ij ∗M11−j +

10∑
j=6

ij ∗M10−j

which is equivalent to integer i1i2i3i4i5xi6i7i8i9i10 if
M = 10.



3

However, here we choose that M = 3 to make the
integers much smaller, in order to save disk usage also
to avoid projection conflict. (Note that the pattern should
be symmetric, but I enccounted some projection conflict
during symmetric projection.)

Then, our job is to give every pattern a score. The
basic score settings are:

TABLE I
THE BASIC SCORE SETTINGS

Pattern Score Pattern Score

Five 10000000 - -
Four 100000 BlockedFour 10000
Three 1000 BlockedThree 100
Two 100 BlockedTwo 10
One 10 BlockedOne 1

Our scoring is based on Table I and some Gomoku
rules. Further details can be found in getPointCache.py.

2) Updating pattern: Till here, we have all patterns
with scores, so the last thing to do is to update the
patterns after taking a move.

A popular and sound method is to update within
engaging area. After a move has been taken, only the
40 squares defined above should be updated according
to our assumption. And with our score dictionary before,
the update schedule is quite simple.

• Role x takes move (m,n)
Also, we take a square (m − 2, n)(if valid) for
example. Note that (m,n) is the i7 of square
(m− 2, n), so the new pattern should be

Patternnew = Patternold + x ∗M10−7

• Role x removes move (m,n)
Again, we take a square (m − 2, n)(if valid) for
example. Symmetrically, the new pattern should be

Patternnew = Patternold − x ∗M10−7

3) Get a square’s score: In summary, one square
has four patterns for four directions, respectively. The
patterns are keys and their values are correlated scores.
With all the preparations above, getting a certain square’s
score only requires the sum of scores for the four
direction.

Also, with the score setting in Table reftab-score, the
score of a square determines its actual gomoku pattern.
For example, a (straight) four owns score more than
100000. A double three owns score more than 2000. This
feature will do great help in other parts of our project.

B. Zobrist Hashing

Another method to accelerate our Mini-Max Tree
Search as well as VCX is to create a cache for seen

cases to avoid repeated calculations. Zobrist Hashing is
a popular and easy way to do this job. It is quite suitable
for games such as gomoku or chess.

Fig. 2. An example for the advantage of Zobrist Hashing

For example in Figure 2, the different sequences lead
to the same board, which means that when we decide
our next move, the order of the past sequences does not
matter. Zobrist Hashing is just an algorithm that can hash
the board with same patterns, despite of how the board
become to the current one. The steps are also simple:

• generate two random matrixes (large integer) of size
L1×L2 for both AI and opp, denoted as MAI and
Mopp

• generate a large integer for the initial board, denoted
as code

• when AI takes move (i, j), code = code∧MAI [i][j]
• when opp takes move (i, j), code = code ∧
Mopp[i][j]

• when AI removes move (i, j), code = code ∧
MAI [i][j]

• when opp removes move (i, j), code = code ∧
Mopp[i][j]

Here ∧ is the XOR operation and L1×L2 is the size
of the board.

IV. VCX
A. Introduction

In the minimax search, we calculate the score for all
candidate points. According to the existing technology,
namely Alpha-Beta pruning and limiting the number of
candidate points (witch is not safe pruning), we can
at most consider 6-level search. (If there are too many
candidate points, we can’t finish the 6-layer search!) This
means that we can’t perform calculations at any later
point. And in many cases, we can force our opponents
to make choices by constantly generating threats to win.
This will reflect the problem of extremely small search,
that is, the horizontal line effect.

In order to overcome the horizontal line effect, we
first think of the method is to increase the depth of the
maximum search. This method is not advisable because
the amount of calculation increases exponentially with
increasing depth. We do not have sufficient resources to
deal with deep searches, and some killing pattern is often
hidden after seven or eight steps. It is difficult for us to
adopt a search with too much nodes.



4

Here we use the strategy of ”Killing”, that is, to find
a winning strategy to win the game. In the process, we
actually did a very small search, but in order to increase
the depth of the search, we reduced the width of each
layer. That is, the number of candidate points. Originally
it would consider things such as ”Open Two” and but
VCX would only consider Open Three and Closed Four,
so it would reduce the number of candidate points.

Here we propose a new concept: VCX, where X could
be ”T” for Three or ”F” for Four. This concept means
that we could control the game and win.

In actual testing, we could even consider the situation
after fifteen steps. Keep a quick pace. And, this max
and mini search only has the concept of winning and
not losing, there is no concept of utility value, if it
finds it will return the optimal position. Note that what
is generated here is a sufficiently unnecessary condition
that there are some killings but we can’t find them.

Since the VCX is a depth-first search, we hope to
find the optimal solution, which is the fastest killing
of the opponent’s solution. Otherwise, there will be
a situation of ”teasing opponents”, that is, constantly
flushing without quick victory.

And we have adopted two strategies for VCX: VCF
is introduced separately in VCT and below:

B. VCF
This situation can be understood as finding a winning

strategy by using the four steps. The following is a brief
introduction: Our candidate points will only produce
points for Open Four and Closed Four, so the opposite
may only consider themselves to be five or block us, not
considering other positions such as three, Closed Four,
and Opne Four. Therefore, there are fewer candidates. If
it cannot be blocked, I will win.

C. VCT
This situation continues to threat, winning through

the Double Three, the following is a brief introduction:
Because our candidate points are three points and four
points, we need to consider the opposite of the four
points because it will win faster than us. Therefore, the
candidate set generated by this situation is larger than
the first case. It can be considered that the second case
includes more killing patterns, but correspondingly, the
speed will be slower. Therefore, we first perform VCF,
and if it is found, it will return, otherwise it will perform
VCT, which will greatly improve efficiency.

D. Iterative deepening search
Iterative deepening search is a method to quickly find

the optimal solution. Its principle is very simple. Firstly,
a depth-first search is performed for one layer. If no

solution is found, a layer of depth is added until the
solution is found. In this way, we can enjoy the low space
complexity and time complexity of depth-first search,
and we can find the optimal solution. And it seems
that we have done a lot of unrelated searches, such as
repeatedly traversing many shallow leaf nodes, but in
fact these only occupy a small part of the search, and
decisive or the last layer of time. So we can ignore the
part that does not count duplicates.

E. Pruning for VCX
In the killing, we also need pruning to ensure the speed

of the algorithm. First of all, we need to pay attention
when running the iterative deepening algorithm. Many
times, when we run to a certain depth, we find that
there is no new threat behind, so we should terminate
the iterative deepening algorithm. We designed a module
to detect whether the leaf nodes are still threatening, so
we saved a lot of unnecessary search and improved the
search efficiency.

F. End the game with killing!
In the game, we observed a pity: our AI occupies a

favorable situation, but we have been reluctant to behave.
Finally we missed the time and missed the success.
Therefore, we will give priority to the VCX process.
If we have found a killing strategy before, then we will
return to the killing with the wind speed after the next
opponent’s action, killing the game and not wasting any
chance!

V. CURRENT BOTTLENECKS AND FUTURE
IMPROVEMENTS

Our current bottleneck mainly has two parts. The
first is the computational problem. Due to the speed
limitations of Python itself and possible defects in some
of our functions, our computing power is relatively weak
and we can only search 4 to 6 layers. If we can accelerate
we will achieve better results. The second is to limit
the ability to kill the module. If we can consider more
situations, we can find out the winning strategy in more
situations to win. So we want to try to speed up the code
and try to threaten the space search and kill it.

REFERENCES

[1] Jun Hwan Kang,Hang Joon Kim, Effective Monte-Carlo Tree
Search Strategies for Gomoku AI, IJCTA, 9(10), 2016, pp.
4833-4841

[2] Junru Wanga, Lan Huangb,Evolving Gomoku Solver by Genetic
Algorithm,IEEE WARTIA,2014

[3] JINXING XIE and JIEFANG DONG,Heuristic Genetic Algo-
rithms for General Capacitated Lot-Sizing Problems,2001

[4] Louis Victor Allis,Searching for Solutions in Games and Arti
cial Intelligence,Version 8.0 of July 1, 1994


