
Object Detection with YOLO on Artwork Dataset

Yihui He∗

Computer Science Department, Xi’an Jiaotong University
heyihui@stu.xjtu.edu.cn†

Abstract

I design a small object detection network, which is
simplified from YOLO(You Only Look Once[15]) network.
YOLO is a fast and elegant network that can extract meta
features, predict bounding boxes and assign scores to
bounding boxes. Compared with RCNN, it doesn’t have
complex pipline, which is easier for me to implement.
Start from a ImageNet pretrained model, I train my YOLO
on PASCAL VOC2007 training dataset. And validate my
YOLO on PASCAL VOC2007 validation dataset. Finally, I
evaluate my YOLO on an artwork dataset(Picasso dataset).
With the best parameters, I got 40% precision and 35% re-
call.

1. Introduction & Related Work

For object detection task in the past, Exhaustive search
[6, 13, 17], segmentation based approaches [5, 7], and Re-
gion Convolutional Network based approaches[11, 10, 16]
have been widely used.

Exhaustive search approachs attempts to search for all
object proposals in an image. The major drawback is com-
putationally expensive. And thus requires constraints to
prune the search space and reduce the number of consid-
ered locations, at the cost of completeness. In [8], Felzen-
szwalb et al. performed an exhaustive search using HOG
features and a linear SVM. This resulted in excellent ob-
ject detection performance. To better guide the exhaustive
search, in [14], Lampert et al. used an appearance model,
combined with a branch and bound technique, to remove
scale, aspect ratio, and grid constraints from the previous
exhaustive search formulation. However, their method still
requires evaluation on over 100,000 proposals [2].

Segmentation approaches attempts to construct object
proposals from the underlying pixels. In [12], the authors

∗Yihui is a CS sophomore, with Xi’an Jiaotong University. This work
is his course project for 2016 Spring CS281B Advanced Computer Vision
taught by Prof. Yuan-Fang Wang, when he was an international exchange
student at University of California, Santa Barbara.
†My UCSB email is yihui@umail.ucsb.edu. Perm Number: X289793

1. Resize image.

2. Run convolutional network.

3. Non-max suppression.

Dog: 0.30

Person: 0.64

Horse: 0.28

Figure 1: The YOLO Detection System. (1) resizes the input
image to 448×448, (2) runs a single convolutional network on the
image, and (3) thresholds the resulting detections by the model’s
confidence.

segment objects based on a parts model. Each part is de-
scribed by appearance and shape features. In [3], Arbelaez
et al. use a contour detector which has been shown to pro-
vide excellent results. Although segmentation methods per-
form well, they are often computationally expensive.

Region Convolutional Network approaches attempt to
use additional neural network to propose bounding boxes.
Girshick et al. use convolutional network features to train a
pipeline consisting of a classifier and regression step, called
R-CNN [11]. R-CNN, fast R-CNN and faster R-CNN are
faster and more accurate compared with previous methods.
However, their training pipline is complex and still not effi-
cient enough.

Single Convolutional Network approach, namely
YOLO, is a fast and accurate detection system. They frame
object detection as a regression problem to spatially sepa-
rated bounding boxes and associated class probabilities. A
single neural network predicts bounding boxes and class
probabilities directly from full images in one evaluation.
Since the whole detection pipeline is a single network, it
can be optimized end-to-end directly on detection perfor-
mance.

In this work, I implement and investigate YOLO.

2. Feature Extraction & Classification Scheme
in One Network: YOLO

In this section, I’ll briefly introduce YOLO algoithm that
I employed. For more details, you can read the original
paper[15]. The pipline of standard YOLO is show in fig-
ure1.

1



S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. It divides the image into an S×S grid and
for each grid cell predicts B bounding boxes, confidence for those
boxes, and C class probabilities. These predictions are encoded as
an S × S × (B ∗ 5 + C) tensor.

YOLO unify the separate components of object detec-
tion into a single neural network. It uses features from the
entire image to predict each bounding box. It also predicts
all bounding boxes across all classes for an image simulta-
neously.

First, YOLO divides the input image into an S × S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally, confidence is Pr(Object) ∗ IOUtruth

pred .
Each bounding box consists of 5 predictions: x, y, w,

h, and confidence. The (x, y) represent the center of the
box.(w, h) represents size of a bounding box. Confidence
prediction represents the IOU between the predicted box
and any ground truth box.

Each grid cell also predicts C conditional class probabil-
ities, Pr(Classi|Object).

At test time, the conditional class probabilities times the
box confidence gives class-specific confidence scores for
each box, which encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

In practice, I use S = 7, B = 2. PASCAL VOC has 20
labelled classes so C = 20. Network output is a 7× 7× 30
tensor. The architecture of YOLO is similar with ordinary
convolutional neural network(Like AlexNet), only differ-
ence is object function. So I’ll not discuss the architecture
in details, which is shown in figure3.

3. Technical Details

In this section, I’ll discuss technical details in my project.

3.1. Features

The convolutional neural layers before output are used
for generate features. Since the original YOLO described
in previous section is a large network. I design a smaller
network for this project, which is similar with YOLO.
My architecture is shown below(FC: Full-connected,
Conv:convolution, pool:max-pooling, Drop:Dropout)

Warp image > 448 x 448 x 3 image
Conv 448 x448x3 image , 16 f i l t e r s
poo l 448 x448x16 image , 2 s i z e , 2 s t r i d e
Conv 224 x224x16 image , 32 f i l t e r s
poo l 224 x224x32 image , 2 s i z e , 2 s t r i d e
Conv 112 x112x32 image , 64 f i l t e r s
poo l 112 x112x64 image , 2 s i z e , 2 s t r i d e
Conv 56 x56x64 image , 128 f i l t e r s
poo l 56 x56x128 image , 2 s i z e , 2 s t r i d e
Conv 28 x28x128 image , 256 f i l t e r s
poo l 28 x28x256 image , 2 s i z e , 2 s t r i d e
Conv 14 x14x256 image , 512 f i l t e r s
poo l 14 x14x512 image , 2 s i z e , 2 s t r i d e
Conv 7 x7x512 image , 1024 f i l t e r s
Conv 7 x7x1024 image , 1024 f i l t e r s
Conv 7 x7x1024 image , 1024 f i l t e r s
FC 50176 i n p u t s , 256 o u t p u t s
FC 256 i n p u t s , 4096 o u t p u t s
Drop 4096 i n p u t s , 0 . 5 p r o b a b i l i t y
FC 4096 i n p u t s , 1470 o u t p u t s

There’s no explicit features in YOLO,since features
are extracted by neural network automatically. Actu-
ally, the last convolutional layer can be regard as feature
map(7x7x1024).

3.2. Classification Scheme

As I’ve described in the previous section, YOLO is a
unified neural network for multi-objects detection. Specifi-
cally, YOLO converts detection task into a regression prob-
lem. In this regression problem, the position of bounding
boxes and confidence for each class are our regression ob-
ject Y . The raw image is X .

3.3. Dataset Selection & Partition

I select two small dataset: PASCAL VOC2007(400MB,
9000 images) and Picasso Artwork Dataset[9](218 paint-
ings).

Pretraining For objects detection tasks, researchers usu-
ally initalize their network with pretrained models on Ima-
geNet. I initalize my neural network with caffe pretrained

2



448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 3: The Architecture. The convolutional layers are pretrained on the ImageNet classification task at half the resolution (224 224
input image) and then double the resolution for detection. Note that since this network is too large, I design a simplified network which is
described in section 3.1.

model1. So that for training part, I only need to perform
fine-tuning on PASCAL VOC2007.

Training & Validation Since PASCAL VOC2007 is not
large(9000 images) and it is also a commonly used dataset
for object detection tasks, I choose it for training and test-
ing. I use 6000 images from PASCAL VOC2007 as training
dataset, and the rest 3000 images from PASCAL VOC2007
as validation dataset.

Testing I choose Picasso Artwork Dataset as testing
dataset for 3 reasons. (i) Artwork dataset is interesting and
new for me. (ii) There’s many algoithms tested on it. (iii)
Since artwork style is different from real world, it can tell
whether a classifier have good generalization to other do-
mains.

3.4. Cross-Validation

I’ve mentioned in previous subsection that I have 6000
images for training and 3000 images for testing. So I per-
formed a 3-fold cross-validation. One also needed to men-
tioned is that, I also performed exponential moving aver-
age, which also helps improving performance and prevent-
ing overfitting. This is a special technique for neural net-
work. It is formalized as follow:

Wt = α ·Wt + (1− α) ·Wt−1

Here, W is the weights of my model, αis the exponential
decay rate. So that the final model is an ensemble of pre-
vious iterations. I’ll show in experiments section that these
two techniques both help improve performance.

1https://github.com/BVLC/caffe/wiki/Model-Zoo

4. Experiments

I implement my YOLO with TensorFlow[1] in python.
Training, validation, and testing are performed on my laptop
Thinkpad T440p.

4.1. Training & Cross-Validation

First, I perform 3-fold cross-validation on PASCAL
VOC2007 as described in previous section. For each
training time, I also perform exponential moving average
weights. To show the effect of cross-validation, I compare
3 standalone models with the combined model. It turns
out that the combined model have 3% mAP improvement,
which have 43% mAP.

To show the effect of exponential moving average
weights, I train a model without exponential moving aver-
age weights as control group. Then I compare it with the
model above. It turns out that Without exponential moving
average weights, mAP drops 1%.

After training, I compared my model with other public
algoithms on Pascal VOC2007, which is shown in table1.

It seems obvious that my YOLO implementation has
lower mAP compared with the original paper. That makes
sense because my implementation has fewer layers and
fewer filters compared with the original paper. As for
frames per second, since the benchmark results got by other
algorithms are tested on GPU. My result is from my laptop
CPU. So it is not comparable. However, you can still see
that the FPS is higher that Fast R-CNN. We can safely claim
that YOLO has a good trade-off between speed and perfor-
mance compared with other state-of-the-art algorithms.

3



Real-Time Detectors Train mAP FPS
30Hz DPM[18] 2007 26.1 30
YOLO 2007+2012 63.4 45
Fast R-CNN[10] 2007+2012 70.0 0.5
Faster R-CNN[16] 2007+2012 73.2 7
Mine(simple YOLO) 2007 43 0.77(CPU)

Table 1: Detection systems comparision PASCAL VOC. Com-
paring the performance and speed of detectors. YOLO have good
trade-off between speed and performance. That’s also a reason
that I employ YOLO in this project.

Figure 4: Some interesting results in real world

I include some interesting detection results in figure4.
Some are successful, some failed.

4.2. Testing

After training on PASCAL VOC2007, I start testing on
Picasso Artwork Dataset. Since it is a small dataset with
only 218 images, it only takes me 3 minites to go through
the full dataset, even on my CPU. Some successful and
failed examples are shown in figure5.

4.2.1 Tuning Threshold: Precision Recall Trade-off

Threshold of object bounding boxes confidence is the
most important parameter for me to tune. I’ve mentioned
in second section that confidence threshold is defined as
IoU(intersection over union) between predicted box and the
ground truth. a confidence threshold of 50% means that
we’ll accept proposals that believes their bounding boxes
have more that 50% overlap with real object. Increase con-
fidence threshold will lead to less bounding box proposals
for each image. Decrease confidence threshold will result
in more bounding boxes. It’s like the threshold for SIFT,
which controls number of feature points. I’ve tested 5 value
for confidence threshold(100%, 75%, 50%, 25%, 0%) and
compare my result with other public algoithms, which is

Figure 5: The two on the left are successful examples. The
two on the right are failed examples.

Poselets
RCNN

D&T

Humans

DPM

YOLO

My YOLO

Figure 6: Picasso Dataset precision-recall curves

shown in figure6. Human perfomance on Picasso Artwork
Dataset is the dot in right up corner.

4.2.2 Comparision with Other Models

After considering the trade-off between precision and re-
call, I select confidence threshold of 50% as my final model,
which has precision of 40% and recall of 35% . I compared
my YOLO with other algoithms in table2.

4



AP Best F1
YOLO 53.3 0.590
R-CNN 10.4 0.225
DPM 37.8 0.458
Poselets[4] 17.8 0.271
D&T[6] 1.9 0.051
Mine 34 0.373

Table 2: AP and F˙1 score evaluation of different algorithms
on Picasso Dataset

From this table, you can easily see that, (i) current state-
of-the-art is still far away from human perfromance, which
also means that current algoithms do not have good gener-
alization on non-real image. (ii) YOLO have a better gener-
alization than other algoithms. (iii) The result I got is rea-
sonable, since my model is a simplified YOLO.

5. Conclusion & Lessons Learned
I learned a lot from through this project. Here I draw

some conclusions and show some lessons I learned.

• I extensively read papers on objects detection tasks.
Get the general idea of exhaustive search approaches,
segmentation approaches and convolutional neural net-
work approach.

• Important parameters like threshold need to be tuned
very carefully. Precision and recall trade-off need to
be decide.

• Cross-Validation is a good way for most models to fur-
ther improve their accuracy. However, need some time
to implement myself, since there’s no cross-validation
module in most machine learning packages.

• Objects detection is a computation expensive problem.
It takes long time to train, validate and test, if I want to
get good perfomance.

• Though many computer vision tasks like image clas-
sification have surpass human performance. However,
there’s still a lot of work to be done on objects detec-
tion task.

Finally, thanks to this project, it helps me gain a deep and
broad view on objects detection task!

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow. org. 3

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010. 1

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. PAMI, 2011.
1

[4] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In Computer Vi-
sion, 2009 IEEE 12th International Conference on, pages
1365–1372. IEEE, 2009. 5

[5] J. Carreira and C. Sminchisescu. Constrained parametric
min-cuts for automatic object segmentation. In CVPR. IEEE,
2010. 1

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 1, 5

[7] I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV. 2010. 1

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. PAMI, 2010. 1

[9] S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting peo-
ple in cubist art. In Computer Vision-ECCV 2014 Workshops,
pages 101–116. Springer, 2014. 2

[10] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1440–1448,
2015. 1, 4

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 1

[12] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition
using regions. In CVPR, 2009. 1

[13] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient
object localization and image classification. In CVPR. IEEE,
2009. 1

[14] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient
subwindow search: A branch and bound framework for ob-
ject localization. PAMI, 2009. 1

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015. 1

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, pages
91–99, 2015. 1, 4

[17] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 2004. 1

[18] J. Yan, Z. Lei, L. Wen, and S. Li. The fastest deformable part
model for object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2497–2504, 2014. 4

5


