Date: Thursday, April 18, 2019

Note: 50 far, greedy, E-greedy, and Softmax look at the mean/proportion at each round only!
\rightarrow There is no concern cor variability or uncertainty of the reward.

- We can make optimization more efficient by accounting for the spread or variability of the reward distibibutiond at each round.
Two methods: 1) Upper confidence bound (UCB)

2) Probability matching/Bayesian sampling
[Slide is wrong, correction:]
$U C B: \arg \max _{k}\left(r_{k t}+\sqrt{\frac{2 \log (t)}{n_{k t}}}\right)$
So for UCB, instead of just updating $r_{k t}$ as in the previous methods, we now update $r_{k t}+\sqrt{\frac{2 \log (t)}{n_{k t}}}$ at each round.

UCB in practice
for $t=1, \ldots, T$
choose arm with $\arg \max _{k}\left(r_{k t}+\sqrt{\frac{2 \log (t)}{n_{k t}}}\right)$
Return arm with highest value
4 This is greedy in nature, and can be made more efficient by relying on the entire distribution of rewards.

Randomized probability matching: reward of arm k us to time t value of interest: P ($r_{k t}$ is optimal)

$$
P\left(r_{k t}=\max _{j \in 1, \ldots, k}\left\{r_{j t}\right\}\right)=P_{k t}
$$

We allocate units to arm k with probability $P_{k t}$.
The probability we wrote up ($P_{k t}$) can be thought of in the following way:
$R=\left(r_{1}, r_{2}, \ldots, r_{k}\right)=$ True rewards for each arm
$\pi(R)=$ prior distribution on R
a) If rj_{j} is a proportion, use a Beta dis tribution (or uniform $(0,1)$)
Assume rewards are independent and each distributed as $u(0,1)$, then

$$
\pi(R)=\prod_{j=1}^{k} 1=1
$$

b) If i_{j} is continou), use a $N\left(\mu_{j}, 1\right)$ distribution where $\mu_{j}=$ the initialized reward for arm j.

$$
\pi(R)=\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{\left(r_{j}-r j\right)^{2}}{2}\right\}
$$

(product of normal)

Data: The reward up to time t. That is $r_{i t}, \ldots, r_{k t}$

$$
r_{t}=\left(r_{1 t}, \ldots, r_{k} t\right) \text { < estimated valued up to round } t
$$ same ar what is dove

Generating process: $f\left(r_{t} \mid R\right)$ in $\&$-greedy.
true rewards
up to time t
Our value of interest can be thought of as the posterior distribution of A given the rewards up to time t :
(*)

$$
P_{k t}=P\left(r_{k}=\max \left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \mid\left(r_{1 t}, \ldots, r_{k t}\right)\right)
$$

To get to $(*)$ is by calculating

$$
P\left(R \mid r_{1 t}, \ldots, r_{k t}\right) \propto \pi(R) f\left(r_{1 t}, \ldots, r_{k t} \mid R\right)
$$

once we get r, we can then simulate say 1000 time's and calculate the proportion of times r_{k} was maximum as our value for pet.

1) rewards are proportion \rightarrow use dilichlet-multinomial model (Dirichlet Posterior)
2) rewards are continous \rightarrow the normal-normal model (normal posterior)

For proportions:
Algorithm: Initialize and calculate rewards 4 Normalise to probabilities for $t=1,2, \ldots, T$
Calculate Dirichlet posterior Parameters for Pit,..., Phi.
Simulate 1000 Samples from Dirichlet and Calculate

$$
P_{k t}=P\left(r_{x} \text { is max at time } t\right)
$$

Pull arms with Probabilities Pit,.., Pe and update prob.

For continous values:
Algorithm: Initialize and calculate reward) for $t=1,2, \ldots$, ,
Calculate normal posterior parameters for $r_{1}, \ldots, r_{k t}$.

Simulate 1000 Samples from Normal and calculap

$$
P_{k t}=P\left(r_{k}\right. \text { is max at tire t) }
$$

Pull arms with Probabilities Pit,..., Pat and update prob.

$$
\begin{array}{rlrl|}
\pi(R) & =\prod_{j=1}^{u} f\left(r_{j}\right) & x \sim v(0,1) & , \cdots \cdots i \\
& =\prod_{j=1}^{n} 1 & f(x)=1 & \vdots \\
& &
\end{array}
$$

RPM (Randomized Prob. Matching)

- has been found to be the most efficient lin terms of iteration d needed) to identify the optimal condition.
- This is viewed by looking at the optimality probability plot J.

.... is optimal and converges to 1
- Converges to 0

