Hawaiian shirt: No!
Told Byron: No.

Date: Tuesday, February 12,2019

Announcements

- HW \# 2 due thursday 2 midnight
- Read Ch. 3 of Probabilistic programming for Hackers by thursday
- Almost done with grading... will have key on Thursday
[Slide 19 - Markov Chain Simulation]

$$
\mathscr{q}=\left(\begin{array}{l}
\text { to } \\
\\
P_{i j}
\end{array} \left\lvert\, \quad \begin{array}{r}
P_{i j}=\mathbb{P}\left(\begin{array}{l}
\text { moving from } s \text { tate } i \\
\text { at time } t \text { to } i \\
\text { at tame } t+1)
\end{array}\right.
\end{array}\right.\right.
$$

Example 1: \quad state space
Question 2: $\quad S=\{1,2\}$

$$
\begin{aligned}
& \text { Where } \begin{array}{l}
1=\text { no rain } \\
2=\text { rain }
\end{array} \\
& \left.q=\begin{array}{cc}
1 \\
2(1-\beta & \beta^{2} \\
1-\alpha & \alpha
\end{array}\right) \quad \begin{array}{l}
\text { Add rows to } 1 \\
\text { So yes, this is } M C!
\end{array}
\end{aligned}
$$

Example 2:

$$
S=\{1,2,3\}
$$

where

$$
1=\text { Cheerful }
$$

$$
2=50-50
$$

$$
3=\text { Glum }
$$

$$
\left.o f=\begin{array}{ccc}
1 & 2 & 3 \\
2 & \left.\begin{array}{cc}
0.5 & 0.4 \\
0.3 \\
0.3 & 0.4 \\
3 & 0.3 \\
0.2 & 0.3 \\
0.5
\end{array} \right\rvert\,
\end{array}\right\} \begin{aligned}
& \text { Rows add to } 1_{1} \\
& \text { so yes, }\left\{x_{t}, t 70\right\} \text { is a MC. }
\end{aligned}
$$

Example 3:

$$
\begin{aligned}
& S=\{0,1, \ldots, N\} \\
& P_{i j}= \begin{cases}1 & \text { if } i=j=0 \\
1 & \text { if } i=j=N \\
1-p & \text { if } i \neq 0, N ; j=i-1 \quad \text { (Goes broke) } \\
P & \text { if } i \neq 0, N ; j=i+1 \quad \text { (wins fortune of } S N \text {) } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
P_{i j}=\left\{\begin{array}{cl}
1, & i=j=0 \\
1, & i=j=N \\
1-P, & i \neq O, N, j=i-1 \\
P, & i \neq O, N j j=i+1 \\
O, & 0 . \omega
\end{array}\right.
$$

Stationary distribution of a DTMC

$$
\begin{aligned}
\pi_{j}: & =\mathbb{P}\left(x_{t}=j\right) \\
& =\underset{\text { Long run probability }}{ } \begin{array}{l}
\text { process visits state } j .
\end{array}
\end{aligned}
$$

It can be calculated using the equation:

$$
\pi j=\sum_{i \in S} \pi_{i} p_{i j}
$$

This means we can solve $\pi=\pi 99$ to get the stationary distribution π.
[Markov Chain monte carlo]
MCMC Basics

* We will start $w /$ some proposal $g_{1}(\theta)$
* Subsequently update at each step t (usage $g_{t}(\theta)$)
\rightarrow The way to do this is to simulate from a transition Probability distribution $g_{t}(\theta)=T_{t}\left(\theta^{t} \mid \theta^{t-1}\right)$ so that the standard distribution of the Markov Chain with transition probability matrix π_{t} is exactly $\mathbb{P}(\theta \mid y)$.
* Key take away: If you sample long enough, eventually well sample from the Posterior! "u
* An (unfortunate) take away is that the first few (maybe thousand) samples could be complete garbage.
* This is taken into account with a BuinIn parameter, which specifies how many samples should be tossed out.
* NOW our goal is to come up with smart Te's so that we get $P(\theta \mid y)$ as our stationary distribution.
Three main algorithms to do this:

1) Gibbs Sampler

- Most efficient
$!\Rightarrow$ - Requires knowing the conditional distribution of $\theta^{t} \mid \theta^{t^{-1}}$ which is rarely ever known \ddot{n}
- will likely never use

2) Metropolis Algorithm

- Rna most efficient
- Requires a symmetric proposal distribution. which we can always come up with io
- Will probably use the mort often

3) Metropolis-Hastings Algorithm

- slowest
- requires no information
- generalizes the Metropolis algorithm
- It can readily be used, but typically stick w/ metropolis.

$$
\left(\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right) \rightarrow \mathbb{P}\left(\theta_{1}, \ldots, \theta_{d} \mid y\right)
$$

τ there is dependence among parameters

A valid Symmetric proposal:
$J\left(\theta^{t} \mid \theta^{t-1}\right)=$ Density of $N\left(\theta^{t-1}, 1\right)$ w/ mean $\theta^{\text {th }}$ works!
(*)

$$
f\left(\theta_{a} \mid \theta b\right)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-\left(\theta_{a}-\theta b\right)^{2}}{2}} \stackrel{?}{=} f\left(\theta b \mid \theta_{a}\right)
$$

