!pip install -q tensorflow-gpu==2.0.0-alpha0
|████████████████████████████████| 332.1MB 59kB/s |████████████████████████████████| 419kB 45.0MB/s |████████████████████████████████| 3.0MB 42.1MB/s |████████████████████████████████| 61kB 27.7MB/s
import tensorflow as tf
tf.__version__
'2.0.0-alpha0'
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time
import pathlib
from IPython import display
!mkdir -p ~/.kaggle/ && mv kaggle.json ~/.kaggle/
!kaggle datasets download -d jessicali9530/celeba-dataset
Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /root/.kaggle/kaggle.json' Downloading celeba-dataset.zip to /content 99% 1.20G/1.21G [00:09<00:00, 184MB/s] 100% 1.21G/1.21G [00:09<00:00, 133MB/s]
!unzip -q celeba-dataset.zip
!unzip -q img_align_celeba.zip
!ls
celeba-dataset.zip list_attr_celeba.csv list_landmarks_align_celeba.csv img_align_celeba list_bbox_celeba.csv sample_data img_align_celeba.zip list_eval_partition.csv
folder_name = 'img_align_celeba'
images_dir = os.listdir(folder_name)
all_image_paths = [os.path.join(folder_name, img_dir) for img_dir in images_dir]
len(images_dir)
202599
buffer_size = len(images_dir)
batch_size = 128
train_steps = int(buffer_size / batch_size)
img_size = 128
train_steps
1582
def load_images(image_path):
image = tf.image.decode_jpeg(tf.io.read_file(image_path), channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
# image = image / 127.5
# image = image - 1.
image = tf.image.resize(image, [img_size, img_size])
return image
dataset = tf.data.Dataset.from_tensor_slices(all_image_paths).shuffle(buffer_size)
dataset = dataset.map(load_images)
dataset = dataset.batch(batch_size)
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(8*8*1024, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((8, 8, 1024)))
assert model.output_shape == (None, 8, 8, 1024)
model.add(layers.Conv2DTranspose(512, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 16, 16, 512)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(256, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 32, 32, 256)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 64, 64, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 128, 128, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(1, 1), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 128, 128, 3)
return model
generator = make_generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
numpy_images = generated_image.numpy()
scaled_images = (((numpy_images - numpy_images.min()) * 255) / (numpy_images.max() - numpy_images.min())).astype(np.uint8)
plt.imshow(scaled_images[0])
<matplotlib.image.AxesImage at 0x7f1cc036e6a0>
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[128, 128, 3]))
assert model.output_shape == (None, 64, 64, 64)
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
assert model.output_shape == (None, 32, 32, 128)
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
assert model.output_shape == (None, 16, 16, 256)
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(512, (5, 5), strides=(1, 1), padding='same'))
assert model.output_shape == (None, 16, 16, 512)
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(1024, (5, 5), strides=(2, 2), padding='same'))
assert model.output_shape == (None, 8, 8, 1024)
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1, activation=None))
return model
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print(decision)
tf.Tensor([[-7.11333e-05]], shape=(1, 1), dtype=float32)
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
epochs = 25
noise_dim = 100
num_examples_to_generate = 16
seed = tf.random.normal([num_examples_to_generate, noise_dim])
@tf.function
def train_step(images):
noise = tf.random.normal([batch_size, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
print(f"Starting epoch: {epoch + 1}/{epochs}")
start = time.time()
step = 0
for image_batch in dataset:
if step % 100 == 0:
print(f"step: {step}/{train_steps}")
step += 1
train_step(image_batch)
display.clear_output(wait=True)
generate_and_save_images(generator,
epoch + 1,
seed)
checkpoint.save(file_prefix = checkpoint_prefix)
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
display.clear_output(wait=True)
generate_and_save_images(generator,
epochs,
seed)
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
numpy_images = predictions.numpy()
scaled_images = (((numpy_images - numpy_images.min()) * 255) / (numpy_images.max() - numpy_images.min())).astype(np.uint8)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i + 1)
plt.imshow(scaled_images[i])
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
%%time
train(dataset, epochs)
Time for epoch 13 is 3285.4593210220337 sec Starting epoch: 14/25 step: 0/1582 step: 100/1582
noise = tf.random.normal([1, noise_dim])
generated_images = generator(noise, training=False)
numpy_images = generated_images.numpy()
scaled_images = (((numpy_images - numpy_images.min()) * 255) / (numpy_images.max() - numpy_images.min())).astype(np.uint8)
plt.imshow(scaled_images[0])
plt.axis('off')
plt.savefig('generated image.png')
plt.show()