Notebook
sink("../code/quad.txt") cat(" model{ ## Priors cf.q ~ dunif(0, 1) cf.T0 ~ dunif(0, 24) cf.Tm ~ dunif(25, 45) cf.sigma ~ dunif(0, 1000) cf.tau <- 1 / (cf.sigma * cf.sigma) ## Likelihood for(i in 1:N.obs){ trait.mu[i] <- -1 * cf.q * (temp[i] - cf.T0) * (temp[i] - cf.Tm) * (cf.Tm > temp[i]) * (cf.T0 < temp[i]) trait[i] ~ dnorm(trait.mu[i], cf.tau) } ## Derived Quantities and Predictions for(i in 1:N.Temp.xs){ z.trait.mu.pred[i] <- -1 * cf.q * (Temp.xs[i] - cf.T0) * (Temp.xs[i] - cf.Tm) * (cf.Tm > Temp.xs[i]) * (cf.T0 < Temp.xs[i]) } } # close model ",fill=T) sink()
sink("jags-logistic.bug") cat(" model { ## Likelihood for (i in 1:N) { Y[i] ~ dlnorm(log(mu[i]), tau) mu[i] <- K*Y0/(Y0+(K-Y0)*exp(-r*t[i])) } ## Priors r~dexp(1000) K ~ dunif(0.01, 0.6) Y0 ~ dunif(0.09, 0.15) tau<-1/sigma^2 sigma ~ dexp(0.1) } # close model ",fill=T) sink()