import csv
import random
import operator
import math
random.seed(47)
def viewDataset(file):
with open(file) as csvfile:
lines = csv.reader(csvfile)
for row in lines:
print(', '.join(row))
dataset = r'../datasets/iris.data'
# viewDataset(dataset)
def handleDataset(filename, split):
trainingSet = []
testSet = []
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset) - 1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
return trainingSet, testSet
# test handleDataset
trainingSet, testSet = handleDataset(dataset, 0.66)
print ('Train: ' + repr(len(trainingSet)))
print ('Test: ' + repr(len(testSet)))
Train: 101 Test: 49
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow((instance1[x] - instance2[x]), 2)
return math.sqrt(distance)
# Test Euclidean Distance
data1 = [2, 2, 2, 'a']
data2 = [4, 4, 4, 'b']
distance = euclideanDistance(data1, data2, 3)
print('Distance: ' + repr(distance))
Distance: 3.4641016151377544
def getKNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance) - 1
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
# test getKNeighbors
trainSet = [[2, 2, 2, 'a'], [4, 4, 4, 'b']]
testInstance = [5, 5, 5]
k = 1
neighbors = getKNeighbors(trainSet, testInstance, 1)
print(neighbors)
[[4, 4, 4, 'b']]
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
# print(classVotes)
sortedVotes = sorted(classVotes.items(),
key=operator.itemgetter(1), reverse=True)
# print(sortedVotes)
return sortedVotes[0][0]
# test getResponse
neighbors = [[1, 1, 1, 'a'], [2, 2, 2, 'a'], [3, 3, 3, 'b']]
print(getResponse(neighbors))
a
def getAccuracy(testSet, predictions):
correct = 0
testSet_length = len(testSet)
for x in range(testSet_length):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/testSet_length) * 100.0
# test getAccuracy
testSet = [[1, 1, 1, 'a'], [2, 2, 2, 'a'], [3, 3, 3, 'b']]
predictions = ['a', 'a', 'a']
accuracy = getAccuracy(testSet, predictions)
print(accuracy)
66.66666666666666
from sklearn.metrics import accuracy_score
def main():
# prepare data
split = 0.8
trainingSet, testSet = handleDataset(dataset, split)
print('Train: ' + repr(len(trainingSet)))
print('Test: ' + repr(len(testSet)))
# generate predictions
predictions = []
k = 3
for x in range(len(testSet)):
neighbors = getKNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print(f'> predicted = {result}, actual = {testSet[x][-1]}')
accuracy = getAccuracy(testSet, predictions)
print(f'k: {k}, Accuracy: {round(accuracy,3)}%')
main()
Train: 121 Test: 29 > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-setosa, actual = Iris-setosa > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-virginica, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-virginica, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-versicolor > predicted = Iris-versicolor, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica > predicted = Iris-virginica, actual = Iris-virginica k: 3, Accuracy: 89.655%