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1 Introduction

Since the late 1990s central bank communication about future intentions of monetary policy,

i.e. forward guidance, has become an increasingly important part of central banks’ toolkit

worldwide, especially after the Great Recession. By now, there is a consensus among pol-

icymakers and academics that forward guidance should remain a central part of monetary

policy going forward.1 Despite its relevance, our understanding of how forward guidance

affects economic agents, and hence transmits to the macroeconomy, is still limited.

In this paper, I study the transmission of forward guidance to investment, traditionally

the most responsive part of GDP to monetary policy. In particular, I examine the role

of firm-level uncertainty in the transmission. This focus is motivated by a large body of

work which emphasizes the importance of a firm’s uncertainty on its investment decision, as

well as the implications of agents’ uncertainty for the overall effectiveness of macroeconomic

policies (Bloom, 2014). However, the literature on forward guidance has, so far, neither

theoretically nor empirically paid much attention to firms’ uncertainty. This paper fills

this gap by studying the following two questions: How does a firm’s uncertainty matter

for its investment response to forward guidance? What does this imply for the aggregate

transmission of forward guidance?

To address the first question, I employ a quarterly firm-level panel of U.S. publicly traded

firms from 1996–2019 combining various datasets. The resulting micro-level dataset is ideal

for my purposes with its rich set of firm characteristics, as well as its long and relatively

high-frequency time dimension. To measure firm-level uncertainty, I employ firms’ option-

implied volatility, an ex-ante measure of the expected volatility of a firm’s stock, which

captures a broad notion of uncertainty. The construction of the quarterly forward guidance

shock follows key insights from recent empirical papers. Using 30-minute changes around

FOMC meetings, I estimate a surprise in the slope of the yield curve which has no effect

on the federal funds rate (Gürkaynak, Sack, and Swanson, 2005). Further, I purge the

surprises from potentially problematic variation coming from macroeconomic news (Bauer

and Swanson, 2020), and sum them up to a quarterly measure. On the aggregate, a positive

shock (an expected tightening) leads to a rise in longer-term interest rates, a contraction in

economic activity, and a fall in prices.

Using Jordà’s (2005) local projection, I estimate the heterogeneous effect of forward

guidance on firms’ capital stock depending on their uncertainty level. The key result can

1In a survey conducted by Blinder, Ehrmann, De Haan, and Jansen (2017), 72 percent of central bank governors
and 87 percent of academics think that forward guidance should remain in the central banks’ toolkit.
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be summarized as follows: For both positive and negative forward guidance shocks, firms

with high uncertainty reduce their capital stock relative to less uncertain firms. Put differ-

ently, more uncertain firms respond “as if” they are more pessimistic. Hence, higher firm

uncertainty amplifies firms’ investment response to contractionary forward guidance and at-

tenuates it after expansionary forward guidance. Importantly, in my estimation I control for

a multitude of other firm characteristics and allow the effect of forward guidance to vary by

each of them. Hence, my findings cannot be explained by firm characteristics emphasized

in previous papers which study the transmission of conventional monetary policy, such as

firm size (Gertler and Gilchrist, 1994), age (Cloyne, Ferreira, Froemel, and Surico, 2018),

liquidity (Jeenas, 2018), or leverage (Ottonello and Winberry, 2020). Further, I do not find

strong evidence of the same firm-level heterogeneity in response to conventional monetary

policy shocks.

To study the implication of my empirical findings for the aggregate transmission of for-

ward guidance, I build a medium-scale New Keynesian model with a high-uncertainty and

a low-uncertainty sector. Each sector is populated by a representative household who owns

the firms and their capital stock. Both sectors are identical except for their expectation

formation of the path of future policy rates. I model the forward guidance shock as a set of

noisy signals about future policy deviations (Campbell, Ferroni, Fisher, and Melosi, 2019).

Here, the noise reflects that agents might not find the communication perfectly credible or

understandable. The key difference between the sectors is that while the household in the

low-uncertainty sector knows how informative the forward guidance signals are, the house-

hold in the high-uncertainty sector is ambiguous (Knightian uncertain) about the signal

informativeness and acts according to a worst-case belief due to her ambiguity aversion.

Hence, the high-uncertainty sector is more responsive to contractionary forward guidance

and less responsive to expansionary forward guidance.

I calibrate the model for a quantitative evaluation. The forward guidance shock in the

model is set to match the impact effect on the yield curve of its empirical counterpart. I

calibrate the ambiguity of the high-uncertainty sector such that the model can match the

heterogeneity in response to a forward guidance shock observed in the data. Then, I assess

the aggregate transmission of forward guidance at different states of the economy. To do so,

I change the relative size of each sector consistent with shifts in the empirical distribution

of the firm-level uncertainty measure during expansions and recessions. The model implies

a reduced effectiveness of expansionary forward guidance of 33 percent during recessions.

Hence, my results suggest that forward guidance is less powerful when needed.
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Related Literature My paper relates to several strands of the literature in monetary eco-

nomics. First, my paper relates to the empirical literature on the transmission of forward

guidance. So far, most papers focus on the financial market and macroeconomic effects

of forward guidance (e.g., Gürkaynak, Sack, and Swanson, 2005; Campbell, Evans, Fisher,

and Justiniano, 2012; Nakamura and Steinsson, 2018a; Bundick and Smith, 2020; Lunsford,

2020). While there is substantial work on the heterogeneous transmission of conventional

monetary policy, very few papers have focused on the heterogeneous transmission of forward

guidance so far. Andrade, Gaballo, Mengus, and Mojon (2019) study the differential response

of professional forecasters to forward guidance, while Coibion, Georgarakos, Gorodnichenko,

and Weber (2020) study the effect of forward guidance on households’ expectations. My

contribution is to show that there is also substantial heterogeneity in the transmission of for-

ward guidance to investment. Further, my paper emphasizes the role of firms’ uncertainty

in the transmission of shocks, which the literature on forward guidance has not focused on

so far but which is widely documented in the uncertainty literature (Bloom, 2014).

Second, this paper relates to a growing literature which incorporates agents’ ambiguity

aversion in monetary economics, and in macroeconomics more generally. This is done either

using the multiple-priors preferences as axiomatized by Gilboa and Schmeidler (1989) and

Epstein and Schneider (2003) as done in this paper or using the robust control theory by

Hansen and Sargent (2001, 2010). Examples include Adam and Woodford (2012), Ilut and

Schneider (2014), Benigno and Paciello (2014), Bianchi, Ilut, and Schneider (2018), Bhan-

dari, Borovička, and Ho (2019), Baqaee (2019), Ilut, Valchev, and Vincent (2020), Masolo

and Monti (2020), and Ilut and Saijo (2021). Empirically, my contribution is to provide

new evidence which is consistent with ambiguity aversion in firms’ decision making. This is

also in line with recent work by Bachmann, Carstensen, Lautenbacher, and Schneider (2020)

who survey German firm executives and show that Knightian uncertainty is pervasive among

them. In terms of the model, Michelacci and Paciello (2020) also introduce ambiguity about

the credibility of forward guidance. However, they focus on the idea that creditors and

debtors have different worst-case scenarios about the expected interest rate. While this

might be the case, such a channel cannot explain my empirical findings as I control for the

debt structure of the firms in my analysis.

Lastly, my paper relates to recent papers which study the role of firm heterogeneity in

the transmission of monetary policy to investment (e.g., Jeenas, 2018; Cloyne et al., 2018;

Lakdawala and Moreland, 2019; Crouzet and Mehrotra, 2020; Ottonello and Winberry, 2020;

Howes, 2021). This paper differs from previous work at least in two dimensions. First, I focus
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on forward guidance in my analysis while previous papers focus on conventional monetary

policy.2 Second, I study the role of firm uncertainty, a firm characteristic which has not been

studied in the literature on monetary policy transmission so far. As mentioned above, my

empirical findings cannot be explained by the mechanisms suggested by the aforementioned

papers. That being said, the results do necessarily contradict previous work either.

Roadmap The rest of the paper is structured as follows. Section 2 and Section 3 detail the

construction of the forward guidance shock and the firm-level data, respectively. Section 4

presents the empirical analysis and reports the main findings. Section 5 outlines the struc-

tural model. Section 6 describes the model calibration, as well as the quantitative results.

Lastly, Section 7 concludes.

2 Identifying Forward Guidance Shocks

In this section, I describe the construction of the quarterly forward guidance shocks which

I employ throughout my main analysis in Section 4. The construction follows two steps.

First, I use 30-minute changes in interest rate futures around FOMC meetings to construct

an unexpected tilting of the yield curve which leaves the federal funds rate unaffected.

Second, I aggregate these high-frequency shocks to a quarterly measure. Here, I purge out

the correlation between the high-frequency shocks and macroeconomic news released prior

in the quarter to account for the potential omitted variable problem pointed out by Bauer

and Swanson (2020).

2.1 Construction of High-frequency Shocks

To construct my high-frequency shocks, I employ intraday data on interest rate futures from

Thomson Reuters Tick History. The sample period ranges from January 1996 to December

2019. Following Kuttner (2001) and Gürkaynak, Sack, and Swanson (2005), I use Federal

funds rate and Eurodollar futures to cover surprises in the yield curve within one and half

years. For longer horizons, I employ Treasury futures following Gürkaynak, Kısacıkoğlu,

and Wright (2018). Appendix A provides an overview of the employed data and details the

construction of the interest rate surprises.

I obtain dates and times of the FOMC press releases from Bloomberg. I also cross-check

2Lakdawala and Moreland (2019) use a joint measure of conventional and unconventional monetary policy in
their analysis.
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them with information from the Federal Reserve website,3 as well as data from Gürkaynak,

Sack, and Swanson (2005), Nakamura and Steinsson (2018a), and Jarociński and Karadi

(2020). My sample contains both scheduled and unscheduled FOMC announcements. Fol-

lowing Gürkaynak, Sack, and Swanson (2005) and subsequent papers, I exclude the unsched-

uled 9/11 FOMC meeting on September 17, 2001. I also drop the unscheduled meeting on

April 18, 2001 and the QE1 announcement on March 18, 2009 as both announcements are

stark outliers in my dataset of 30-minute changes.4 Dropping the latter announcement also

mitigates concerns that my forward guidance shock is driven by QE announcements since

QE1 is normally found to have the largest effects (Krishnamurthy and Vissing-Jorgensen,

2011). I come back to this point below. Overall, this leaves me with 201 FOMC announce-

ments ranging from January 1996 until December 2019.

For each FOMC meeting, I construct changes in the interest rate futures in a 30-minute

window around each announcement starting 10 minutes prior and ending 20 minutes after

the announcement time. Following Gürkaynak, Sack, and Swanson (2005), I then extract

two factors using principal components and rotate both factors such that one factor does not

load on the surprise in the Federal funds rate. I refer to this factor as the high-frequency

forward guidance shock. Appendix A.5 provides details on the factor estimation. Figure 1

shows how the resulting forward guidance shocks maps to the 30-minute changes in the yield

curve.

Figure 1: Loadings of Forward Guidance Shock on Yield Curve
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Notes: This figure illustrates the mapping of the estimated high-frequency forward guidance shock to 30-minute
changes in yields around FOMC announcements. The effects of a one standard deviation shock are shown. The yield
changes are constructed from futures contracts.

3https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm.
4Campbell et al. (2012) also drop the QE1 announcement for the same reason.

5



In Appendix A.6, I compare my high-frequency measures with other measures from pre-

vious papers. For the overlapping sample period, my measure is highly correlated with the

“path factor” by Gürkaynak, Sack, and Swanson (2005). Importantly, it is also highly corre-

lated with the forward guidance shock by Swanson (2021) who separately identifies a forward

guidance and QE factor. This evidence is consistent with the idea that my shock captures

predominantly forward guidance rather than QE.

2.2 Quarterly Aggregation

Since my firm-level data is only available at the quarterly frequency, I need to construct a

quarterly shock measure from the high-frequency one. In principle, one could simply add

up the high-frequency shocks within a quarter if they are entirely unpredictable. However,

as previous papers point out (Miranda-Agrippino, 2016; Cieslak, 2018; Bauer and Swanson,

2020), these high-frequency shocks are (ex post) predictable by past macroeconomic infor-

mation. Importantly, as shown by Bauer and Swanson (2020), the high-frequency shocks are

correlated with prior macroeconomic news releases within the same quarter. This correlation

potentially leads to an omitted variable bias once we study the response of macroeconomic

variables to the shock, where controlling for past macroeconomic information in a quarterly

setting cannot address this issue.

Figure 2: Omitted Variable Bias in Quarterly Aggregation of Forward Guidance Shock
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Quarter t+1

FOMC 

Meeting 1
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Economic News

FOMC 

Meeting 2

Quarterly 

Variable 𝑥𝑡

Economic News

Notes: This figure shows the regular timing of FOMC meetings within a quarter. It also illustrates the potential bias
introduced by economic news releases prior to FOMC meetings which comes from a potential correlation between the
high-frequency monetary policy surprises and these releases. See text for potential explanations for this correlation.

Figure 2 illustrates the problem. In a given quarter, public macroeconomic releases prior

to the FOMC meeting can potentially lead to ex-post correlation with the high-frequency

surprises for the reasons mentioned above. At the same time, these macroeconomic releases
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also (mechanically) affect the quarterly values of the aggregate variables. As a consequence,

an omitted variable bias arises when we estimate the effect of the high-frequency surprises on

aggregate variables since the induced correlation of the macroeconomic releases are attributed

to the FOMC announcement.

To resolve this issue, I follow the recommendation by Miranda-Agrippino and Ricco (2021)

and Bauer and Swanson (2020), and “project out” the (ex post) correlation by regressing

the high-frequency shocks on macroeconomic news releases within the quarter and prior to

the release (as illustrated by Figure 2). I then use the residual of this regression and sum it

to a quarterly series. See Appendix B for details of the regression and construction. Figure

3 shows the resulting quarterly time series of the forward guidance shock.

Figure 3: Time Series of Quarterly Forward Guidance Shock
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Notes: This figure displays the time series of the quarterly forward guidance shock over the sample period. Gray
bars indicate NBER recession periods.

There are two things to note here: First, the exact cause of the predictability is not im-

portant for econometrically addressing the omitted variable problem.5 Second, this approach

controls for publicly available information at the time of the monetary policy release. Hence,

it does not, in principle, rule out effects through private information of the central bank.

Before moving on to the next section, I lastly want to add that throughout the paper,

5Cieslak (2018) argues in a favor of a violation of the full information rational expectations (FIRE) assumption,
whereas Miranda-Agrippino (2016) favors a risk premium interpretation.
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I interpret my shock series as direct observations of the structural forward guidance shock.

Even if my shock measure were imperfectly correlated with the true structural forward

guidance shock, i.e. includes measurement error, the local projections analyses throughout

my paper would be still consistent. The only consequence would be the interpretation

of the impulse response as a “relative” rather than an “absolute” one. In the former case,

impulse responses are normalized in terms of the contemporaneous response of an endogenous

variable, whereas the latter case, impulse responses are in terms of the response to a unit

change of the true structural shock (Paul, 2020).

2.3 Impulse Responses of Macro Aggregates

Before turning to the firm-level data, I first investigate the effect of a positive forward guid-

ance shock on aggregate variables. To do so, I estimate the dynamic response of macroeco-

nomic variables to my quarterly shock measure using Jordà’s (2005) local projection method.

Specifically, I estimate for each horizon h and for each variable y the following specification:

yt+h − yt−1 = α(h) + β(h)εFGt +
∑4

j=1δ
(h)
j Xt−j + νt+h, (1)

where h = 0, 1, ..., 20, yt is the outcome variable of interest, εFGt is the forward guidance

shock, and Xt is a vector of control variables. The vector of controls includes real GDP

(100× log), real investment (100× log), and the GDP deflator (100× log). Further, I include

both the 10-year Treasury rate and the Federal Funds Rate to parsimoniously capture the

yield curve following Eberly, Stock, and Wright (2019). Lastly, I include Moody’s Baa

corporate bond rate to measure financial conditions (Caldara and Herbst, 2019).

Local projections impose no restrictions on the dynamic effects across horizons. Com-

bined with a small sample size as is the case here, this can lead to highly irregular impulse

responses (Ramey, 2016). To mitigate this concern, I estimate a smoothed version of (1)

using the methodology by Barnichon and Brownlees (2019). In brief, the smoothing re-

sults from shrinking the local projection estimates towards a B-spline via a generalized

ridge estimation.6 Figure 4 shows the smoothed estimates of specification (1). I construct

heteroskedasticity- and autocorrelation-robust (HAR) confidence bands following the rec-

ommendation by Lazarus, Lewis, Stock, and Watson (2018). Specifically, I use Newey-West

standard errors with a truncation parameter of 13 and fixed-b critical values from Kiefer and

6For details see Eilers and Marx (1996) or Barnichon and Brownlees (2019). Following Barnichon and Brownlees
(2019), I use B-splines of order one. Further, I employ a relatively small shrinkage parameter of 20 leaving the impulse
responses relatively close the local projection estimates.
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Vogelsang (2005).7

Figure 4: Response of Macroeconomic Aggregates to Forward Guidance Shock
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Notes: This figure shows impulse responses of macroeconomic aggregates to a positive, one standard deviation forward
guidance shock. The estimates are obtained from the local projection specification (1) following the methodology by
Barnichon and Brownlees (2019). Dark and light bands show 68 percent and 90 percent confidence bands, respectively.
The confidence bands are calculated following the recommendations by Lazarus et al. (2018).

Multiple things are noteworthy about the impulse responses in Figure 4. First, the

positive forward guidance shock has the expected effect on the yield curve as the 10-year

rate increases on impact, whereas the federal funds rate is only responding with a lag of

multiple quarters. Further, the shock leads to a decline in real activity (real investment

and GDP), a decline in prices (GDP Deflator), and a tightening of financial conditions (Baa

Corporate Bond Rate). Overall, the average effect of a positive forward guidance shock is on

average contractionary. My findings are roughly consistent with Bundick and Smith (2020)

7Following Lazarus et al. (2018), the truncation parameter S is chosen such that S = d1.3T 1/2e with T = 92
being the (maximum) sample size.
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who also study the dynamic effects of forward guidance.

3 Firm-Level Data

For the construction of my firm-level panel, I employ the CRSP/Compustat Merged dataset

which I further link to data by OptionMetrics. All data is obtained from the Wharton

Research Data Services (WRDS). The sample period is from 1996Q1 to 2019Q4. The final

panel contains 125,251 firm-quarter observations, i.e. on average 1305 firm observations per

quarter. Appendix C provides details on the construction of the dataset. Before moving on

to provide more details on the firm-level investment and uncertainty behavior in my sample,

let me point out two key features of the constructed dataset which make it unique for my

purposes: First, it has a relatively long time series dimension due to the early existence and

the quarterly frequency. This allows me to study monetary policy in the first place.

Second, the constructed dataset does not only allow me to track firms’ investment behav-

ior and their business uncertainty, but also construct a wide range of other key characteristics.

In total, I have for each firm-quarter observation the following 13 characteristics: age, divi-

dends, earnings before interest, taxes, depreciation, and amortization (EBITDA), leverage,

liquidity, long-term debt dependence, price-to-cost margin, net receivables to sales, real cap-

ital stock, real sales growth, size, Tobin’s Q, and uncertainty. Appendix Table C1 provides

an overview of the variables. The vast number of firm characteristics allows me to isolate

the role of uncertainty in the transmission. This is important since measures of uncertainty

are usually correlated with measures of financial stress, both in the aggregate and at the

micro level (Stock and Watson, 2012; Bloom, 2014; Caldara, Fuentes-Albero, Gilchrist, and

Zakraǰsek, 2016). To the extent that this is true on the firm-level, I need to allow the trans-

mission to vary by other firm characteristics. The primary disadvantage of this dataset is

that it only contains publicly listed U.S. firms and hence only includes a subset of the firm

distribution.

Investment Throughout this analysis, I use the change in firm i’s real capital stock to mea-

sure the real investment response. As in Jeenas (2018), I prefer this specification compared

to directly estimating the investment rate response since investment is notoriously volatile,

even for U.S. publicly traded firms (Clementi and Palazzo, 2019). This volatility makes

it potentially difficult to precisely estimate any systematic difference in responses in the

cross-section, and in particular over longer horizons. Following a large literature, the capital

stock is measured as the book value of the tangible capital stock and constructed using the
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perpetual inventory method. Following the timing convention in the data, ki,t denotes firm

i’s book value of the firm’s tangible capital stock at the end of quarter t. The series is de-

flated using the implied price index of gross value added in the U.S. nonfarm business sector

(BEA-NIPA Table 1.3.4 Line 3). I provide further details on the capital stock construction

in Appendix C.1. Figure 5 shows the impulse response of the aggregate capital stock series

to a forward guidance shock, where I re-estimated specification (1) substituting the capital

stock for the real investment variable. The strong impact response might be a bit surprising.

However, Clementi and Palazzo (2019) find no evidence of investment irreversibility for U.S.

publicly traded firms consistent with a stronger effect on impact.

Figure 5: Response of Compustat Capital Stock to Forward Guidance Shock
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Notes: This figure shows the impulse response of the aggregated real capital stock variable constructed from Com-

pustat to a one standard deviation forward guidance shock. The estimates are obtained from the local projection

specification (1) following the methodology by Barnichon and Brownlees (2019). Dark and light bands show 68

percent and 90 percent confidence bands, respectively. The confidence bands are calculated following the recommen-

dations by Lazarus et al. (2018).

Uncertainty To construct my baseline measure of firm-level uncertainty, I use firm i’s

daily 30-day option-implied volatility of its stock price and calculate the quarterly average.

The data on implied volatility comes from OptionMetrics.8 Figure 6 shows the distribution

of firms’ implied volatility for two quarters in my sample, one during an expansion period

(2017Q1) and one during a recession period (2008Q4). The figure illustrates two points:

First, the distributions are consistent with previous research documenting that the average

level of uncertainty as well as the dispersion are countercyclical. Second, the figure illustrates

that there is a substantial amount of variation in the cross-section which I exploit in the

8For example, Alfaro, Bloom, and Lin (2018) also construct a firm-level uncertainty measure based on data from
OptionMetrics.
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main empirical analysis in the next section.

Figure 6: Distribution of Firm-level Uncertainty
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Notes: This figures shows the firm distribution of uncertainty (30-day option-implied volatility) in my sample in 2008

Q4 (red) and 2017 Q1 (blue). Note that implied volatility is measured in percentage p.a., e.g. 0.5 refers to a 50%

expected yearly volatility.

Throughout the rest of the paper, I denote firm i’s uncertainty in quarter t by uci,t

which is the logarithm of the quarterly 30-day implied volatility (100 × log). Taking the

logarithm not only eases the interpretation but also accounts for potential problems in the

upcoming regression specifications arising from the skewedness of the distribution (as shown

in Figure 6). Appendix C.1 provides all details on the construction of the baseline uncertainty

measure, as well as alternative measures which I later employ in my empirical robustness.

4 Firm-Level Uncertainty and Transmission of Forward Guidance

4.1 Motivation

Before I move to the estimation of the firms’ differential capital response with respect to

uncertainty, I briefly motivate the empirical analysis in this subsection. The key motivation

for focusing on heterogeneity in firms’ responses to forward guidance is to inform an under-

lying mechanism. As discussed in Nakamura and Steinsson (2018b), estimated differential

effects of an identified structural shock can be informative for distinguishing between different
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classes of models. However, with respect to uncertainty one must be cautious about the right

specification to estimate the response heterogeneity. In essence, one can treat uncertainty

as risk or ambiguity (Knightian uncertainty). In the former case, probabilities are known,

and an agent’s subjective probability can be represented by an unique distribution. In the

latter case, probabilities are unknown, and an agent’s subjective probability is represented

as an interval of probabilities.

Most of the literature in macroeconomics treats uncertainty as risk. For example, the

option value (“wait-and-see”) channel of uncertainty (Bernanke, 1983; McDonald and Siegel,

1986; Bloom, 2009), or the risk premium channel (Christiano, Motto, and Rostagno, 2014;

Gilchrist, Sim, and Zakraǰsek, 2014) are mechanisms in line with this interpretation. The

common prediction is that uncertainty should affect the agent’s responsiveness to a shock.

Hence, the differential effect γ needs to be estimated from a specification of the form of

ki = β εFG + γ
(
εFG × uci

)
,

where ki is firm’s i capital, εFG is the forward guidance shock, uci is firm’s i uncertainty, β

and γ are the main and interaction effect. As shown in the previous section, the forward

guidance shock has on average a contractionary effect, i.e. β < 0. Hence, γ > 0 is consistent

with an attenuating channel of uncertainty, and γ < 0 is consistent with an amplifying

channel of uncertainty.

A smaller share of papers in macroeconomics treats uncertainty as ambiguity. Following

the Ellsberg (1961) paradox, the literature assumes agents to be ambiguity averse which

is either modeled as multiple-priors preferences (Gilboa and Schmeidler, 1989; Epstein and

Schneider, 2003) or through robust control theory (Hansen and Sargent, 2001, 2010). The

common prediction is that uncertainty should lead agents to respond to a shock “as if”

they are more pessimistic. Hence, the differential effect γ needs to be estimated from a

specification of the form of

ki = β εFG + γ
(
|εFG| × uci

)
,

where |εFG| is now the absolute value of the forward guidance shock. Here, γ < 0 would

be consistent with the pessimism effect under the natural assumption that contractionary

forward guidance is seen as bad news. Figure 7 summarizes the discussion in this subsection

graphically. With that motivation in hand, I can now turn to the empirical specification I

estimate in the next subsection.
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Figure 7: Firm-Level Uncertainty and Transmission of Forward Guidance

Risk

𝑘𝑖 = 𝛽𝜀𝐹𝐺 + 𝛾(𝜀𝐹𝐺 × 𝑢𝑐𝑖) 𝑘𝑖 = 𝛽𝜀𝐹𝐺 + 𝛾(|𝜀𝐹𝐺| × 𝑢𝑐𝑖)

How can firm uncertainty 
affect transmission?

Specification

Under 𝛽 < 0:
• 𝛾 > 0 ⇒ attenuation
• 𝛾 < 0 ⇒ amplification

Under 𝛽 < 0:
• 𝛾 < 0 ⇒ as if more pessimistic

Effect on Transmission

Specification

Effect on Transmission

Ambiguity

Notes: This figure illustrates the appropriate empirical specification when uncertainty captures either risk or ambi-

guity (Knightian uncertainty). See the main text for more details. Notation: ki is firm i’s capital, εFG is the forward

guidance shock, uci is firm i’s uncertainty, β and γ are the main and interaction effect.

4.2 Estimation of Response Heterogeneity

I now estimate the heterogeneity in the firms’ responsiveness to forward guidance with respect

to their uncertainty. To do so, I employ a panel version of the local projection approach

by Jordà (2005) which allows me to assess the dynamic heterogeneity following a forward

guidance shock. Following the discussion, I estimate two versions, one with the regular shock

and one with its absolute value. Precisely, I run the following specification

∆hlog(ki,t+h) =α
(h)
i + α

(h)
n,t + α

(h)
i,fq + γ

(h)
ζ (ζt × uci,t−1) + Γ

(h)
ζ (ζt × Zi,t−1)

+ θ(h)uci,t−1 + Φ(h)Zi,t−1 + νi,t+h, ζt ∈
{
εFGt ,

∣∣εFGt ∣∣} , (2)

where h = 0, 1, ..., 20 indexes the quarters after the shock. The dependent variable is the h-

period ahead cumulative growth of the capital stock, ∆hlog(ki,t+h) ≡ log (ki,t+h)−log (ki,t−1).

εFGt denotes the quarterly forward guidance shock, and uci,t denotes the uncertainty measure

which is normalized such that it is in standard deviations relative to the mean. Further, Zi,t
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denotes a vector of firm controls which includes: age, dividends, EBITDA, leverage, liquidity,

long-term debt dependence, price-to-cost margin, net receivables to sales, real capital stock,

real sales growth, size, Tobin’s Q. I also include multiple fixed effects: αi denotes the firm

i’s fixed effect, αi,fq firm i’s fiscal quarter fixed effect, and an,t the industry-time fixed effect

of industry n.9 The coefficient of interest is γ
(h)
ζ which is on the interaction term of forward

guidance shock and uncertainty.

Two aspects of specification (2) are worthwhile pointing out which both mitigate concerns

that γ
(h)
ζ reflects rather a correlation than a causal channel: First, the specification does not

only control for various firm characteristics, but also allows the effect of forward guidance to

vary by each variable which is captured by Γ
(h)
ζ . This is important to mitigate concerns that

the findings are driven by other firm characteristics which are correlated with uncertainty.

Second, I introduce an industry-time fixed effect an,t which picks up aggregate effects.

That means that the estimates are based on within-industry variation in the cross-section.

Hence, an,t makes sure that estimates of γ
(h)
ζ are not driven by industry differences nor

aggregate influences such as the time-varying firm composition of the unbalanced panel.10

Figure 8 shows the results from estimating both versions of specification (2), i.e. γ
(h)
FG

and γ
(h)
|FG| for h = 0, 1, ..., 20 quarters. Both panels show the heterogeneity with respect to

a one standard deviation forward guidance shock. Further, I normalize uci,t such that γ
(h)
ζ

corresponds to a one standard deviation increase in firm-level uncertainty relative to the

mean. In the left panel, the point estimates are positive meaning that more uncertain firms

are less responsive. However, the response is relatively small, and, except for quarter one

and two, insignificant at the 10 percent level at all horizons. Indeed, the joint F-test with

the null hypothesis of no effect for the first 20 quarters cannot be rejected at the 10 percent

level.
9I consider the following five industries in my sample: (1) agriculture, minining, and construction; (2) manufac-

turing; (3) transportation and communications; (4) trade; (5) services. Following prior literature, I exclude firms in
the finance, insurance, and real estate, as well in utilities. Appendix C.1 provides details on the industry classification.

10For example, Andrade, Coibion, Gautier, and Gorodnichenko (2021) provide recent evidence that the industry
plays crucial role for firm’s decision making.
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Figure 8: Heterogeneity in Responses of Capital Conditional on Uncertainty
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Notes: This figures displays the dynamics of the interaction coefficients between firm-level uncertainty and the forward

guidance shock from estimating both versions of specification (2). The left panel shows estimates for the forward

guidance shock, i.e. γ
(h)
FG, whereas the right panel shows estimates for the absolute value of the forward guidance

shock, i.e. γ
(h)

|FG|. The displayed estimates correspond to a one standard deviation forward guidance shock and a one

standard deviation increase in firm-level uncertainty relative to the mean. Dark and light bands show 68 percent and

90 percent confidence bands, respectively. Standard errors are clustered at quarter and firm level.

The right panel shows that the absolute value plays a more prominent role. More uncer-

tain firms reduce their capital stock more regardless of the direction of the forward guidance

shock, i.e. they act as if they are more pessimistic. The point estimates are statistically

significant at multiple horizons and the joint F-test shows significance at the 1-percent level.

Further, the magnitude of impulse response is economically sizable with a peak effect of 1.4

percent 20 quarters after the shock. To put this into perspective, moving from the 10th to

the 90th percentile in the sample distribution corresponds to a 3.65 percent change in the

capital stock 20 quarters after the shock. Considering that the 20-quarter median growth

rate for capital stock in the sample is around 16.66 percent, the heterogeneity is not only

statistically significant but is also economically sizable.

One question which arises from Figure 8 is how these two panels can be reconciled with

one another. To answer that, I also estimate (2) separating positive and negative shocks. As

Appendix Figure D1 shows, the heterogeneity for positive and negative shocks is in line with

Figure D1, i.e. regardless of the direction of the shock, more uncertain firms adjust their

capital more downward. The figure also shows that the response is stronger for expansionary

shocks which explains the findings in the left panel of Figure 8. That being said, the difference
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in magnitudes is not statistically significant (as shown by the F-test below Figure D1).

In Appendix D, I also show that the main finding in Figure 8 — more uncertain firms

adjust their capital as if they are more pessimistic following a forward guidance shock — is

robust to a range of additional exercises. Specifically, I show in Figure D2 that it is robust

to two different measures of uncertainty (realized volatility and 182-day implied volatility),

as well as ending the sample in 2007 prior to the Great Recession and ZLB. Figure D5

displays that the result is also robust to estimating a version with the main effect and no

industry-time fixed effect.

Lastly, I investigate if this heterogeneity exists following a shock to the federal funds rate

as well. To do so, I re-estimate the absolute value version of specification (2) with the federal

funds rate shock, which is constructed based on the other principal component of the factor

estimation described in Section 2. See Appendix A for more details. Figure 9 illustrates the

results of this estimation and compares it with the one for the forward guidance shock. As

the figure shows, the point estimates for the federal funds rate are statistically insignificant

at all horizons as is the joint F-test. As shown in Appendix Figure D3, this finding also

holds if I estimate both specifications for the pre-ZLB period.

Figure 9: Comparison of Forward Guidance Shock with Federal Funds Rate Shock
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Notes: This figure displays the dynamics of the interaction coefficients between firm-level uncertainty and the federal

funds rate and forward guidance shock from estimating the absolute value version of specification (2). The right

panel shows estimates for the absolute value of the forward guidance shock, i.e. γ
(h)

|FG|, whereas the left panel shows

estimates for the absolute value of the federal funds rate shock, i.e. γ
(h)

|FFR|. The displayed estimates correspond to

a one standard deviation shock and a one standard deviation increase in firm-level uncertainty relative to the mean.

Dark and light bands show 68 percent and 90 percent confidence bands, respectively. Standard errors are clustered

at quarter and firm level.
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5 Two-Sector New Keynesian Model

5.1 Overview

This section outlines the key ingredients of the structural model which I use to interpret

the empirical findings. The model is a medium-scale New Keynesian DSGE model with

two sectors, a high- and low-uncertainty sector (henceforth H- and L-sector) of size n and

1 − n, respectively. The H-sector is populated with a continuum of firms which are owned

by the high-uncertainty household (henceforth H-household) who rents out the capital and

provides the labor to the firms in the sector. The same applies to the L-sector. Both

households consume a common consumption basket made out of both sector’s consumption

good. Figure 10 provides a graphical overview of the model.

Figure 10: Basic Skeleton of Two-Sector New Keynesian Model
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Notes: This figure illustrates the basic skeleton of the structural two-sector New Keynesian Model. It shows the
model’s agents, interactions, and frictions.

The model includes various frictions which are standard in the literature such wage
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and price stickiness, habit formation, investment adjustment costs, and variable capital

utilization. These frictions are identical across sectors, and included to have more realistic

model dynamics. The two sectors differ in how they interpret the forward guidance policies

by the central bank, and are meant to be a parsimonious way to capture the heterogeneity

observed in the empirical analysis. Overall, the skeleton of the model is borrowed from a

bond economy version of a two-country currency model (e.g., Nakamura and Steinsson, 2014;

Bhattarai, Lee, and Park, 2015).

Below, I describe the forward guidance shock in Subsection 5.2, and the belief heterogene-

ity across sectors in Subsection 5.3. After that, I talk about the bond market in Subsection

5.4. Lastly, I flesh out the structure of the rest of the model in Subsection 5.5 and describe

how I solve the model in Subsection 5.6. Appendix E provides all details on the model

environment and the equilibrium conditions.

5.2 Forward Guidance

The central bank sets the nominal interest Rt according to the following Taylor rule

Rt

R
=

(
Πt

Π

)θΠ (Yt
Y

)θY
eθt , (3)

where Rt is the nominal interest rate, and Πt is aggregate inflation, and Yt is aggregate

output. R, Π and Y are the corresponding steady states. Deviations from the rule are

denoted by θt.
11 Log-linearizing (3) around the steady state yields

R̂t = θΠΠ̂t + θY Ŷt + θt. (4)

The policy deviation θt follows a news structure as in Laséen and Svensson (2011)

θt =
15∑
i=0

εiR,t−i, (5)

with εiR,t ∼ N (0, σ2
R). The specification implies that the central bank can communicate

deviations of up to four years, i.e. 15 quarters. As I show below, this length is needed such

that I can mimic the forward guidance shock in the data.

In the model, forward guidance is a central bank announcement of a specific path of future

11Note that the paper’s focus is the transmission of monetary policy. Hence, I can specify the Taylor rule in terms
of output rather than the output gap (output - natural output) since the natural level of output is unaffected.
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policy deviations, where as in Campbell et al. (2019), the central bank cannot perfectly

communicate this path. In particular, the forward guidance shock εFGt is defined as a set of

signals:

εFGt =
[
s0
t s1

t ... s15
t

]
,

where ∃j such that sjt 6= 0 and j ≥ 1. While future deviations are unobserved, i.e. for j ≥ 1

sjt = εjR,t + ηt,

with ηt ∼ N
(
0, σ2

η

)
, the current policy rate (and policy deviation) is always perfectly ob-

served, i.e.

s0
t = ε0

R,t.

Hence, conventional monetary policy is simply ε0
R,t in this model, and behaves in a standard

manner.

5.3 Heterogeneous Beliefs

The L-household knows the informativeness of each forward guidance signal sjt , i.e. the

true parameter ση. In contrast, the H-household only knows that it lies it some interval

(admissible set), i.e. ση ∈ [σ, σ]. Further, the H-household cannot learn the true parameter

from observing the L-household. The H-household is also ambiguity averse leading her to

act according to her worst-case belief within the admissible set.

The H-household has a max-min-preference as axiomatized in Gilboa and Schmeidler

(1989) and Epstein and Schneider (2003). Her optimization problem can be characterized

as follows

max
{...}

min
ση∈[σ,σ]

EH
0

∞∑
t=0

βt

[(
Ch
t − ξCh

t−1

)1−σ

1− σ
− %(LHt)

1+χ

1 + χ

]
(6)

s.t. PtC
h
t + PHtIHt +

1

Rt

BHt ≤MRSHtLHt +Rk,HtuHtK̄Ht−1 − PHta(uHt)K̄Ht−1

+DIV p
Ht +DIV w

Ht +BHt−1

K̄Ht ≤
(
1− 0.5κ (IHt/IHt−1 − 1)2) IHt + (1− δ) K̄Ht−1,

where EH
t [·] denotes the H-household’s expectation conditional on information at time t,

LHt is the labor supplied to the H-sector, PHt is the nominal price of the final good in the
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H-sector, IHt is the investment in the H-sector, BHt is the bond holding of the H-household,

MRSHt is the nominal remuneration for the supply of labor, Rk,Ht is the nominal rental

rate on capital services in the H-sector, uHt is the utilization rate which is chosen by the

household, K̄Ht is the physical capital stock, a(uHt) the utilization cost, and DIV p
Ht and

DIV w
Lt are nominal profits from the firms and unions in the H-sector, respectively.

Further, Ch
t is the H-household’s consumption of the composite good defined as

Ch
t =

[
n

1
η (CHt)

η−1
η + (1− n)

1
η (CLt)

η−1
η

] η
η−1

with the corresponding aggregate price index

Pt =
[
n (Pt)

1−η + (1− n) (PLt)
1−η] 1

η−1 .

Both households consume the same composite good, i.e. there is no “home bias” in con-

sumption. Eventually, all prices are expressed in real terms with the composite good being

the numeraire.

Importantly, the ambiguity is only with respect to ση, and hence only affects the house-

hold’s updating rule following the forward guidance signals. Following Ilut and Schneider

(2014), I guess the worst-case belief which solves the minimization over the admissible set.

Under the assumption that the H-household has a distaste for contractionary deviations

compared to expansionary ones, a natural guess is that she behaves “as if” the forward

guidance signal is maximal informative for a contractionary signal and minimal informative

for an expansionary one.12 Hence, following a forward guidance signal St, the H-household

updates her expectations as follows

EH
t [θt] = θt and EH

t [θt+j] = ψ∗(sjt) s
j
t + EH

t−1[θt+j] ,

where the Kalman gain ψ∗(sjt) depends on the signal, and is given by

ψ∗(sjt) = ψ1(sjt ≥ 0) + ψ1(sjt < 0).

Here, ψ = σ2
θ (σ2

θ + σ2) and ψ = σ2
θ/ (σ2

θ + σ2) describe the upper and lower bounds of the

Kalman gain based on the admissible set.

In contrast to the H-household, the L-household has standard preferences, and solves the

12Although the distaste for contractionary devations is generally hard to prove, one can simply add a term g
(
θ0
t

)
to the utility which ensures that ∂

∑∞
t=0 β

tu
(
Cht , LHt

)
/∂θ0

t < 0.
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following optimization problem:

max
{...}

EL
0

∞∑
t=0

βt

[(
C l
t − ξC l

t−1

)1−σ

1− σ
− %(LLt)

1+χ

1 + χ

]
(7)

s.t. PtC
l
t + PLtILt +

1

Rt

BLt ≤MRSLtLLt +Rk,LtuLtK̄Lt−1 − PLta(uLt)K̄Lt−1

+DIV p
Lt +DIV w

Lt +BLt−1

K̄Lt ≤
(
1− 0.5κ (ILt/ILt−1 − 1)2) ILt + (1− δ) K̄Lt−1,

where EL
t [·] denotes the L-household’s expectations conditional on information at time t,

and the other variables are similarly defined as for the H-household. Following a forward

guidance signal St, the L-household updates her expectations as follows

EL
t [θt] = θt and EL

t [θt] = ψ sjt + EL
t−1[θt+j]

with the Kalman gain ψ = σ2
θ/
(
σ2
θ + σ2

η

)
. Figure 11 illustrates the heterogeneity in the

signal extraction across sectors.

Figure 11: Incorporation of Forward Guidance Signal across Sectors
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Notes: This figure shows the information incorporation of a one unit forward guidance signal sjt in the model. The

red and blue line show the expectation of policy deviation θt+j for the high- and low-uncertainty sector, respectively.

The Kalman gains are denoted by ψ, ψ, and ψ.
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To keep the heterogeneity in expectations tractable, I assume that other than the param-

eter ση and the expected path of interest rates, everything else is common knowledge, i.e.

the households “agree to disagree”. Precisely, I assume that

Et [Xt+j] = EL
t [Xt+j] = EH

t [Xt+j] for Xt+j 6= {Rt+j, θt+j} , (8)

where Et [·] denotes the common expectations operator. Further, both households disagree

on expected policy deviations

Et[θt+j] = EL
t [θt+j] and Et

[
θ∗t+j

]
= EH

t [θt+j] , (9)

and thus on the expected path of interest rates.

Et [Rt+j] = EL
t [Rt+j] and Et

[
R∗t+j

]
= EH

t [Rt+j] , (10)

where θ∗t+j and R∗t+j denote the policy deviation and interest rate under H-household’s worst-

case updating rule. From the linearized Taylor rule (4), one sees that the disagreement in

the interest rate comes entirely from the disagreement in the policy deviations, i.e.

Et

[
R̂∗t+j

]
= θΠEt

[
Π̂t+j

]
+ θYEt

[
Ŷt+j

]
+ Et

[
θ∗t+j

]
Et

[
R̂∗t+j

]
− Et

[
R̂t+j

]
= Et

[
θ∗t+j

]
− Et [θt+j] .

Note that the current interest rate is always perfectly observable, i.e. R∗t = Rt.

Using the common expectation operator as defined in (8)–(10), we can write both house-

holds problems (6) and (7) as

max
{Cht ,BHt,LHt,K̄Ht,IHt,uHt}

E0

∞∑
t=0

βt

[(
Ch
t − ξCh

t−1

)1−σ

1− σ
− %(LHt)

1+χ

1 + χ

]
(11)

s.t. PtC
h
t + PHtIHt +

1

R∗t
BHt ≤MRSHtLHt +Rk,HtuHtK̄Ht−1 − PHta(uHt)K̄Ht−1

+DIV p
Ht +DIV w

Ht +Bt−1

K̄Ht ≤
(
1− 0.5κ (IHt/IHt−1 − 1)2) IHt + (1− δ) K̄Ht−1,
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and

max
{...}

E0

∞∑
t=0

βt

[(
C l
t − ξC l

t−1

)1−σ

1− σ
− %(LLt)

1+χ

1 + χ

]
(12)

s.t. PtC
l
t + PLtILt +

1

Rt

BLt ≤MRSLtLLt +Rk,LtuLtK̄Lt−1 − PLta(uLt)K̄Lt−1

+DIV p
Lt +DIV w

Lt +BLt−1

K̄Lt ≤
(
1− 0.5κ (ILt/ILt−1 − 1)2) ILt + (1− δ) K̄Lt−1,

which can both be solved by standard methods which I discuss in more detail in Subsection 5.6.

Appendix E provides all details on the solution. Note that problems (11) and (12) are only

equivalent up to a first-order to (6) and (7), respectively. However, this will not matter since

the model is eventually solved with a first-order perturbation method.

5.4 Bond Market

To price the yield curve, I assume that there exits a representative investor who trades long-

term bonds of maturity τ at price Q
(τ)
t . Each bond price is assumed to be the wealth-weighted

average of two bond prices in counterfactual economies, each of which only contains one of

the two sectors, i.e. n = 1 and n = 0. This assumption is consistent with various papers

in finance who show that in heterogeneous asset pricing models equilibrium prices can be

defined in such a manner (e.g., Detemple and Murthy, 1994; Jouini and Napp, 2007; Xiong

and Yan, 2010; Bhamra and Uppal, 2014). Broadly speaking, the idea is that an agent’s

wealth indicates the impact she has on the marginal pricing of the bond.

To be precise, the price of a bond with maturity τ is given by

Q
(τ)
t = wsHtQ

(τ)
HHt + wsLtQ

(τ)
LLt, (13)

where wsHt and wsLt are the wealth shares of the H-household and L-household, respectively.

Q
(τ)
HHt and Q

(τ)
LLt denote bond prices in the counterfactual economies n = 1 and n = 0. The

yield of maturity τ is then defined to be

R
(τ)
t =

(
Q

(τ)
t

)− 1
τ

for τ ∈ {1, .., 40} . (14)

The bond prices in each counterfactual econonomy are defined as in e.g. Rudebusch and
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Swanson (2012):

Q
(τ)
HHt = Et

[
ΛHHt,t+1 (ΠHHt+1)−1Q

(τ−1)
HHt+1

]
for τ ∈ {1, .., 40} , (15)

and Q
(0)
HHt ≡ 1,

Q
(τ)
LLt = Et

[
ΛLLt,t+1 (ΠLLt+1)−1Q

(τ−1)
LLt+1

]
for τ ∈ {1, .., 40} , (16)

and Q
(0)
LLt ≡ 1,

where ΛHHt,t+1 and ΛLLt,t+1 are the real stochastic discount factors, and ΠHHt+1 and ΠLLt+1

are the aggregate inflation indexes.

Further, the wealth shares wsHt and wsLt are defined as

wsHt =
nweaHt

nweaHt + (1− n)weaLt
, (17)

and

wsHt =
(1− n) weaLt

nweaHt + (1− n)weaLt
, (18)

where each household’s real wealth is given by

weaHt = K̄Ht + bHt, (19)

weaLt = K̄Lt + bLt. (20)

Lastly, note that if I were to let both households directly trade long-term bonds, I would

need to introduce a transfer from the L-household to the H-household which makes sure that

the L-household’s profits, which arise due to her superior information, are offset such that

her wealth does not keep growing. Since there is no information asymmetry with respect

to the short rate, this problem does not arise in the current version of the model, where

households trade the one-period bond.

5.5 Rest of Model

The rest of model is standard and follows the previous literature. The model has two

labor markets, one for each sector, which are separated from each other. Except for the

discounting factor, which comes from the household, both labor markets are identical. Each

labor market setup follows Sims and Wu (2021) which allows for a representative household.
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In each sector, there is a continuum of labor unions which buy labor from the household.

The labor unions differentiate the labor, set wages subject to a Calvo pricing scheme, and

sell the labor in a monopolistically competitive market to a labor packer. The labor packer

uses a CES technology to create final labor which is then available for production.

The model has to two production sides, one for each sector, which are separated from each

other. Except for the discounting factor, which comes from the household, both production

sides are identical. For each sector, there is a continuum of intermediate good firms. They

rent capital and labor from the capital market, which is perfectly competitive, and the

labor market, which is described in the previous paragraph. Each firm sets prices subject

to a Calvo pricing scheme, and sells its goods in a monopolistically competitive market to

the final good producer. The final good producer uses a CES technology to aggregate the

intermediate goods to the final good in a perfectly competitive market. Each sector’s final

good can then be used by the households.

5.6 Solution Method

Due to the model’s noisy information structure, I employ the equivalence result by Chahrour

and Jurado (2018) in order to solve it. Chahrour and Jurado (2018) show that for a “noise

representation” as described in this section, there exists an observationally equivalent “news

representation” in which agents perfectly observe all future policy deviations. In practice, I

solve the model under full information (news representation), and then mimic the updating

structure as outlined in this section (noise representation) with the news shocks. Since the

ambiguity induced non-linearity of the model arises in the updating structure, I can solve the

model by a first-order perturbation around the non-stochastic steady state. Lastly, models

such as the one outlined in here are usually non-stationary. To get around this issue, I

impose a tiny bond holding cost (Schmitt-Grohé and Uribe, 2003).

6 Quantitative Analysis of Forward Guidance

6.1 Parameterization

In order to quantitatively employ the model, I calibrate it which is done in two steps. First,

I set one group of parameters to fixed values taken from prior papers. Second, I employ a

moment matching procedure to choose the rest of the parameters such that the model is

able to match empirical moments in the transmission of forward guidance.
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Fixed Parameters The set of fixed parameters is shown in Table 1. As in the empirical

analysis, the time frequency is quarterly in the model. Hence, the discount factor β and the

depreciation rate δ are set to standard values of 0.995 and 0.025, respectively. Further, the

capital share is α = 0.33 which is also a conventional value. For the baseline case, the size of

the H-sector n is chosen to be 0.5 which can be seen as a “normalization” since in the model,

shifting the sector proportions is to some extent observationally equivalent to changing the

amount of heterogeneity across sectors. However, this choice of n leaves equal space in both

directions which is important when I shift n in Subsection 6.2 to mimic expansions and

recessions. The elasticity of substitution between sectors η is set to 2 as in Nakamura and

Steinsson (2014) who also model the U.S. economy as a two-sector framework.13

Table 1: Fixed Parameters in Baseline Model

Parameter Value Description Source

β 0.995 Discount factor Standard

δ 0.025 Depreciation rate Standard

α 0.33 Capital share Standard

n 0.5 Size of H-sector “Normalization”

η 2 Elast. of substitution across sectors Nakamura and Steinsson (2014)

θΠ 1.8 Taylor rule, inflation response Campbell et al. (2019)

θY 0.4 Taylor rule, output response Campbell et al. (2019)

Notes: This table shows the parameters which are fixed in the calibration along with their values, description, and
the source from which the values are taken from. See text for more details.

Forward Guidance Shock In order to perform the moment matching, I need a model

counterpart of the empirical forward guidance shock. To do so, I calibrate the forward

guidance shock in the model as a sequence of signals which lead to a yield curve shift on

impact consistent with the one in the empirical part. Precisely, a forward guidance shock is

defined as a series of signals

εFGt =
[
s0
t s1

t ... s15
t

]
such that the impact response of yields with maturities of up to four years is consistent with

the empirical counterpart:

IR0(R
(τ)
t ) = βτ for τ = 1, 4, 8, 12, 16,

13Nakamura and Steinsson (2014) refer to “region” instead of “sector” in their paper.

27



where IR0(R
(τ)
t ) is the impulse response in the model to a forward guidance shock at hori-

zon 0, i.e. on impact, of the τ -quarters yield R
(τ)
t , and βτ is the empirical effect of the

forward shock on daily changes in Treasury yields of maturity τ quarters around FOMC

announcements. To obtain the empirical estimates, I employ the 3-month, 1-, 2-, 3-, and

4-year Treasury yields.

Figure 12 visualizes the fitting of the yield curve response on impact to its empirical

counterpart. The red circles show the point estimates from the empirical analyses together

with the 95 percent confidence intervals. The black dotted line is the yield curve in the

model where yields with no empirical counterpart are linearly interpolated.

Figure 12: Implied Yield Curve Shift of Forward Guidance Shock
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Notes: This figure displays the contemporaneous effect on the yield curve which characterizes the forward guidance

shock in the model (black line). The red circles show the point estimates of empirical forward guidance shock which

the model is fitted to. The red bars are the 95 percent confidence intervals. The point estimates and confidence bands

are obtained from a event study regression of daily changes in Treasury yields on the shock. Heteroskedasticity-robust

standard errors are employed.

Fitted Parameters With the forward guidance shock at hand, I now turn to the calibration

of the remaining parameters in the model. Based on prior estimates, I define a reasonable

range of values for each parameter which together span a parameter space. I then run a pro-

cedure which searches within this space the set of parameters that minimizes the distance

of the following two moments: the cross-sectional heterogeneity in the capital response to

forward guidance and the asymmetric effect on output. Table 2 shows the results of the mo-

ment matching procedure. In the following, I talk about the construction of these moments,

the results of Table 2, and the resulting parameter values.
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Table 2: Empirical Targets

Moment Data (%) Model (%)
Target CI

Cross-sectional Heterogeneity
Expansionary Forward Guidance -180 [-326 -26] -92
Contractionary Forward Guidance 180 [ 26 326] 59

Asymmetric Effect -57 [-147 31] -10

Notes: This table displays the targeted moments in the calibration of the parameters. Cross-sectional
Heterogeneity refers to the capital response of the high-uncertainty sector relative to the low-uncertainty
one following a forward guidance shock. Asymmetric Effect denotes the output response to a contrac-
tionary forward guidance shock relative to expansionary one. In the Data column, Target refers to the
targeted moment in the data based on the point estimate, whereas CI stand for the moments based on
68 percent confidence intervals. See text for details on the construction.

Based on the empirical analysis, the model should be able to match the empirical het-

erogeneity in the capital response following a forward guidance shock. To do so, I construct

the cross-sectional heterogeneity both in the model and data as a summary statistic of the

heterogeneity in the capital responses. In the model, it is constructed as the capital response

of the high-uncertainty relative to the low-uncertainty sector as a percentage of the total

capital’s average response. Precisely, it is constructed as

hetModel =
1

16

16∑
h=1

IRh(KH)− IRh(KL)

IR(K)
, (21)

where IRh(X) is defined as variable X’s response τ -quarters after a forward guidance shock,

and the average response is defined as IR(X) = 1
16

∑16
h=1 IRh(X). Note that total capital is

calculated as the population weighted average of each sector’s capital.

The construction of the moment is chosen such that there is a one-to-one empirical

counterpart. In essence, I run a version of the main local projection specification (2) where

I drop the industry-time fixed effect and include the forward guidance shock. This allows

me to recover the main effect β(h) of the shock, as well as the heterogeneity with respect to

uncertainty, γ(h). For details see specification (D1) in Appendix D. With these estimates at

hand, I can construct the empirical counterpart of (21) as the predicted value

hetData =
1

16

16∑
h=1

uc75
25 × γ(h)

β̄
, (22)
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where β̄ = 1
16

∑16
h=1 β

(h), and uc75
25 = 1.4 is number of standard deviations needed from the

25th to 75th percentile. In Table 2, I also report a confidence interval for hetData which is

based on the 68 percent confidence bands of γ(h).

The second moment of interest is the asymmetry in the effect of a contractionary and an

expansionary forward guidance shock. The model displays an asymmetry between expan-

sionary and contractionary forward guidance since the former requires stronger underlying

policy deviations. This asymmetry arises since the average Kalman gain for an expansionary

signal is lower than for a contractionary one.14 Hence, an increase in H-sector’s ambiguity,

i.e. a widening of the set [ψ ψ], increases the cross-sectional heterogeneity while it also

induces an increased asymmetry.

The model’s prediction of an asymmetric transmission is what I take to the data. To do

so, I construct the asymmetric effect for variable X in the model as

asyModel =
1

16

16∑
h=1

IR+
h (X)− IR−h (X)

IR(X)
, (23)

where IR+
h (X) and IR−h (X) denote variable X’s response τ -quarters after a contractionary

and expansionary forward guidance shock, respectively. Further, IR(X) is constructed as

IR(X) = 1
16

∑16
h=1 0.5

(
IR+

h (X) + IR−h (X)
)
. In the moment matching procedure, I only

focus on the asymmetric effect on output as a summary statistic of the real transmission in

the model. This is the model moment shown in Table 2.

I obtain the empirical counterpart of (23) from a local projection specification similar to

(1) where allow now for differential effects of contractionary (β
(h)
+ ) and expansionary (β

(h)
− )

shocks. For details see specification (D2) in Appendix D. With these estimates at hand, I

can construct

asyData =
1

16

16∑
h=1

β
(h)
+ − β

(h)
−

β̄±
(24)

where β̄± = 1
16

∑16
h=1 0.5

(
β

(h)
+ + β

(h)
−

)
. In Table 2, I also report a confidence interval

for asyData which is constructed based on the 68 confidence bands of β
(h)
+ and β

(h)
− , i.e.

1
16

∑16
h=1

β
(h)
+,16−β

(h)
−,84

β̄±
, and 1

16

∑16
h=1

β
(h)
+,84−β

(h)
−,16

β̄±
.

In the moment matching procedure, I also impose the constraint that each sector’s capital

response is in the direction of the average capital response. In principle, the model is able

to generate impulse response such that both sectors respond in opposite directions following

14The average Kalman gains are defined as psiexp = nψ + (1− n)ψ and psicon = nψ + (1− n)ψ.
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a forward guidance shock. Since I do not find evidence for such responses in my empirical

analysis, I impose the restriction.

Lastly, I turn to the parameter space chosen for moment matching, as well as the optimal

point. Table 3 lists the parameters calibrated in the moment matching. For each parameter,

the range of values comes from the previous literature on dynamic stochastic general equi-

librium (DSGE) models, where I particularly draw from papers which focus on monetary

transmission such as Christiano, Trabandt, and Walentin (2010), Campbell et al. (2019),

and Bundick and Smith (2020). Appendix Table E1 shows the parameter values of these

papers together with my chosen range. For the non-standard Kalman gain of the L-sector ψ,

the range from 0.4 to 0.6 is loosely based on prior evidence by Coibion and Gorodnichenko

(2015) who calculate an implied Kalman gain of 0.46 for inflation expectations. The Kalman

gain ambiguity of the H-sector ψ∆, which pins down ψ = ψ − ψ∆ and ψ = ψ + ψ∆, is set

such that ψ and ψ are within the range of 0 and 1 for all possible values of ψ.

Table 3: Calibrated Parameters in Baseline Model

Parameter Value Range Optimal Value Description

χ [0.1 1] 0.411 Inverse Frisch elast.

ξ [0.6 0.8] 0.746 Consumption habit

κ [2 14] 3.810 Investment adjustment costs

ϕ [0.01 0.5] 0.297 Elast. of capital utilization

ωp [0.7 0.9] 0.884 Price stickiness probability

ωw [0.7 0.9] 0.881 Wage stickiness probability

εp [3 11] 5.795 Elast. of substitution w.r.t. goods

εw [3 11] 5.684 Elast. of substitution w.r.t. labor

ψ [0.4 0.6] 0.496 Kalman gain of L-Sector

ψ∆ [0.2 0.4] 0.264 Kalman gain ambiguity of H-Sector

Notes: This table reports the parameters which are chosen by the moment matching exercise de-
scribed above. Besides the parameters, the tables displays the range of values which are considered
in the minimization procedure along with the optimal value and the parameter description.

6.2 Transmission of Forward Guidance

Belief Heterogeneity I now turn to the transmission of the forward guidance shock in the

model. I start by showing the information transmission and belief heterogeneity following a

shock in Figure 13. Precisely, it displays for both an expansionary and a contractionary for-

ward guidance shock the respective yield curve movement on impact, as well as the expected

policy deviations Etθt+j and Etθ
∗
t+j and the realized surprises θt+j−Etθt+j, and θ∗t+j−Etθ∗t+j
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following each shock. As expected, households in the H-sector update their beliefs less fol-

lowing an expansionary shock and more following a contractionary shock. As a consequence,

the H-sector is more surprised following the shock.

Further, Figure 13 displays the asymmetry between expansionary and contractionary

forward guidance. As explained above, expansionary forward guidance requires stronger

policy deviations to achieve the same yield curve shift due to a lower average Kalman gain.

Lastly, note that since the yield curve is only pegged up to four years, the interest rate

follows the Taylor rule from four years out, i.e. there are no policy deviations.

Figure 13: Belief Heterogeneity in Response to Forward Guidance Shock
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Notes: This figure displays the model’s impulse responses to an expansionary forward guidance shock (top row)

and contractionary forward guidance shock (bottom row). The left and middle column show the contemporaneous

responses of the yield curve and the expected policy deviations of each sector, respectively. The right column shows

each sector’s unexpected policy deviations following a shock. The red and blue lines show the responses of the high-

and low-uncertainty sector.

Heterogeneity in Capital Responses I now turn now to the heterogeneity across sectors

and how it relates to the heterogeneity estimated in the empirical analysis. For comparison,

I focus on the capital stock. Figure 14 shows the response of each sector’s capital stock, as

well as of the total, population-weighted capital stock to a forward guidance shock in the

model. The heterogeneity can match the empirical evidence which is somewhat expected
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considering that a summary statistic based on the capital responses is targeted in the model

calibration. The high-uncertainty sector is less responsive to an expansionary shock, and

more responsive to a contractionary one. The relationship between both sectors reverses

after 12-quarters. This arises since the L-sector is more surprised by the actual realizations

of the policy deviations. This leads to an offsetting effect which eventually dominates after

a certain time.

Figure 14: Heterogeneity in Capital Response to Forward Guidance Shock

0 4 8 12 16

Quarters

0

0.2

0.4

P
e

rc
e

n
t

Expansionary FG

Total

H-Sector

L-Sector

0 4 8 12 16

Quarters

-0.4

-0.2

0

P
e

rc
e

n
t

Contractionary FG

Notes: This figure displays the impulse responses of capital in the model for an expansionary forward guidance

shock (left) and a contractionary forward guidance shock (right). The black line depicts the response of the total,

population-weighted capital stock. The blue and red line show the capital responses of the low- and high-uncertainty

sector, respectively.

Aggregate Responses Figure 15 shows the impulse responses of various aggregate variables

for an expansionary and contractionary shock, where the responses to the former are sign

flipped for comparison. Qualitatively, the responses are as expected and consistent with the

empirical evidence. Quantitatively, there is an asymmetric effect as discussed throughout the

section between expansionary and contractionary forward guidance, with the former leading

to stronger transmission. This asymmetry is small for real activity variables and prices, and

larger for interest rates. That being said, for each variable the model asymmetry is within

the confidence bands from the empirical analysis which are reported in Appendix Figure D6.
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Figure 15: Impulse Responses to Forward Guidance Shock
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Notes: This figure displays impulse responses to a contractionary forward guidance shock (black) and an expansionary

forward guidance shock (green, circled), where the responses to the latter are flipped for comparison.

6.3 State-Dependent Effect

In the last part, I turn to the quantification of the state-dependent effect of forward guidance

in the model. The transmission of forward guidance depends on the sizes of both sectors in

the model. Since recessions are accompanied with an increase in uncertain firms in the data

(as shown in Figure 6 in Section 3), I model recessions as an upward shift in the size of the

H-sector, n.

To quantify the size of the state-dependence, I need to calibrate the average size of the

H-sector in recessions and expansions, denoted with nExp and nRec, respectively. To do so,

I use the distribution of my quarterly uncertainty measure uci as constructed in Section 3.

As mentioned earlier, the baseline value of n = 0.50 can be thought of as a normalization

which provides sufficient room to move n in both directions.
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The construction of nExp and nRec is done as follows. For the full sample, I take the

25th and 75th percentiles (denoted by uci,25 and uci,75) as the representative values of the

L- and H-sector. Using the NBER business cycle dates, I can create two distributions of

uci conditional on expansions and recessions, with means uci,Exp and uci,Rec, respectively.

By comparing uci,Exp with uci,25, I can calculate how much n needs to move in expansions,

i.e. nExp = min (n (1− uci,Exp/uci,25) , 0). Similarly, I can construct nRec by using nRec =

max (n (1 + uci,Rec/uci,75) , 1). This yields nExp = 0.435 and nRec = 1.00. Table 4 details the

construction.

Table 4: Calibration of Sector Sizes in Expansion and Recession

Data Model

Mean 25th 75th Size of H-Sector

Full Sample 0 −0.707 0.690 0.50

Expansion −0.092 0.435 = min(0.50× (1− 0.092/0.707), 0)

Recession 0.696 1.00 = max(0.50× (1 + 0.696/0.690), 1)

Notes: This table illustrates the calibration of the sector sizes for expansions and recessions.
The right panel shows the baseline size of the H-sector, as well as the construction of the
sizes during expansions and recessions. These are based on the values in the left panel which
reports the mean, 25th, and 75th percentile of the uncertainty variable uci (as constructed
in Section 3) for the full sample. It also reports the means conditional on expansions and
recessions during the sample. The units are standard deviations from the full sample mean.
Expansion and recession quarters are taken from the NBER business cycle dating committee.

With nExp and nRec at hand, I can now study the state-dependent transmission of forward

guidance in the model which I implement as follows. The central bank announces the same

forward guidance policy, i.e. a set of policy deviations, as under the baseline calibration.

With this policy at hand, I solve the model again for nExp and nRec, i.e. the central bank is

not aware that the size of the H-sector changed.

Figure 16 shows the output response to a forward guidance shock under the expansion and

recession scenario. The left panel shows that expansionary forward guidance is on average

33 percent and 32 percent less effective in recessions for the first four and eight quarters,

respectively. The right panel shows that contractionary forward guidance is more effective in

recessions, the state-dependence here is smaller. This comes from the fact that expansionary

forward guidance consists of larger policy deviations as depicted in Figure 13.

Overall, the model shows that the implied state-dependency can be substantial, especially

for expansionary forward guidance. Lastly, it should be noted the model underestimated the

heterogeneity (as shown in Figure 14), which likely leads to an underestimate in the state-

dependency as well.

35



Figure 16: State-Dependent Response of Output to Forward Guidance Shock
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Notes: This figure shows the impulse response of output to a forward guidance shock for expansions and recessions.
The effectiveness is calculated as the percentage change from the impulse response in the expansion to the recession,
averaged over the first four and eight quarters, respectively.

7 Conclusion

This paper provides new empirical evidence on the transmission of forward guidance and the

role of firms’ uncertainty. I find a substantial role of firm’s uncertainty in the transmission.

More uncertain firms respond as if they are more pessimistic. To rationalize my evidence, I

build a New Keynesian model with a high-uncertainty and a low-uncertainty sector. The H-

sector’s ambiguity about the informativeness of forward guidance combined with its aversion

to ambiguity allows me to match the empirical heterogeneity. One key implication of the

model is that expansionary forward guidance is less effective in recessions due to the increased

share of uncertain agents.
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A Construction of High-Frequency Shocks

A.1 Data Overview

I employ intraday data on interest rate futures comes from Thomson Reuters Tick History. The
sample period ranges from January 1996 and to December 2019. Table A1 provides an overview of
the employed data. For each futures contract, I have a minute-by-minute series which includes the
price of the first and last trade for a given minute. In the following, I detail the construction of the
interest rate surprises from the futures contracts. Following previous papers, I use Federal Federal
Funds futures contracts to capture interest rate expectations within two quarters, Eurodollars fu-
tures to capture expectations up to from two to five quarters, and Treasury futures for expectations
out to 15-years.

Table A1: Overview of Intraday Interest Rate Futures Data

Name Symbols RICs Sample

Federal Funds Rate Futures ff1–ff4 FFc1–FFc4 1/1996–12/2019
first 4 contracts (monthly)

Eurodollar Futures ed2–ed4 EDcm2–EDcm4 1/1996–12/2019
second through fourth contract (quarterly)

2-Year Treasury Futures t21,t22 TUc1,TUc2 1/1996–12/2019

5-Year Treasury Futures t51,t52 FVc1,FVc2 1/1996–12/2019

10-Year Treasury Futures t101,t102 TYc1,TYc2 1/1996–12/2019

30-Year Treasury Futures t301,t302 USc1,USc2 1/1996–12/2019

Notes: This table provides an overview of the intraday data from Thomson Reuters Tick History. Symbol
stands for the ticker symbol which I use throughout the paper to refer to the financial instrument. RIC
refers to the Reuters Instrument Code, which uniquely identifies each instrument. The letters c and cm
stand for continuous futures contracts.

A.2 Federal Funds Futures

For given expiry month, a federal funds rate futures contract pays out, on the last day of the expiry

month, 100 minus the average (effective) federal funds rate over the expiry month. Precisely, let pff
j

ζ

be the price at time ζ of the (j − 1) month ahead federal funds futures contract. Then, the expected

average federal funds rate of the (j − 1) month ahead at time ζ is calculated as ff jζ = 100− pff
j

ζ .

A.2.1 Federal Funds Rate Surprise — Current Meeting

I calculate the federal funds rate meeting surprise mp1τ as

mp1τ =
m0

m0 − d0

(
ff1

τ+∆+ − ff1
τ−∆−

)
, (A1)

where ff1
τ−∆− and ff1

τ+∆+ are the current month’s implied federal funds rates from the last trade
that occurred more than 10 minutes before the FOMC announcement and the first trade that
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occurred more than 20 minutes after the FOMC announcement, respectively. Further, m0 is the
total number of days in the month of announcement t, and d0 is the day of announcement t. See
Gürkaynak (2005) for a derivation of (A1).

Construction

1. For each ζ, calculate the implied federal funds rate, i.e. ff1
ζ = 100− pff

ζ

τ .

2. Calculate m0
m0−d0

(
ff1

τ+∆+ − ff1
τ−∆−

)
for each FOMC announcement t.

3. If m0− d0 + 1 ≤ 7, i.e. the announcement occurs in the last seven days of the month, use the
change in the price of next month’s fed funds futures contract, i.e. mp1τ = ff2

τ −ff2
τ−∆. This

avoids multiplying by large m0
m0−d0

. For example, for the FOMC announcement on January
29, 2014, we have d0 = 29, m0 = 31, and hence 31− 29 + 1 = 3 < 7.

4. I set mp1τ = 0, if there is no response in the federal funds rate futures price within 24 hours
after the announcement.

A.2.2 Federal Funds Rate Surprise — Next Meeting

I calculate the revision in expectations at FOMC meeting τ about the federal funds rate change at
FOMC meeting t+ 1 as

mp2τ =
m1

m1 − d1

[(
ff

j(1)
τ+∆+ − ff

j(1)
τ−∆−

)
− d1

m1
mp1τ

]
(A2)

where ff
j(1)
τ−∆− and ff

j(1)
τ+∆+ are the implied rate of the federal funds rate futures contract for

the month of the next scheduled FOMC meeting from the last trade that occurred more than 10
minutes before the FOMC announcement and the first trade that occurred more than 20 minutes
after the FOMC announcement, respectively. Further, m1 is the total number of days in the month
of announcement t + 1, and d0 is the day of announcement t + 1. Usually, j (1) = {3, 4}. With a
little bit of an abuse of notation, t+ 1 refers here to the next scheduled FOMC meeting at the time
of announcement t. Hence, ex-post there might be an unscheduled meeting in between those. See
Gürkaynak (2005) for a derivation of (A2).

Construction

1. For a given FOMC announcement t, find month of next scheduled FOMC meeting, i.e. j (1).

2. Calculate m1
m1−d1

[(
ff

j(1)
τ+∆+ − ff

j(1)
τ−∆−

)
− d1

m1
mp1τ

]
for each announcement.

3. If m1− d1 + 1 ≤ 7, i.e. the announcement occurs in the last seven days of the month, use the

change in the price of next month’s fed funds futures contract, i.e. mp2τ = ff
j(1)+1
τ+∆+ −ff

j(1)+1
τ−∆− .

A.3 Eurodollar Futures

Eurodollar futures are quarterly contracts which pay out 100 minus the 3-month US dollar BBA
LIBOR interest rate at the time of expiration. The last trading day is the second London bank
business day (typically the Monday) before the third Wednesday of the last month of the expiry
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quarter. Let ped
j

ζ be the price at ζ of the jth nearest quarterly Eurodollar futures contract (March,

June, September, December), then the expiration date of ped
j

ζ is between j and j − 1 quarters in

the future at any given point in time. Further, the implied rate is given by edjζ = 100 − pedjζ . For
a given FOMC announcement t, I calculate the difference in the implied rate of contract j

∆edjτ = edj
τ+∆+ − edjτ−∆− , (A3)

where edj
τ−∆− and edj

τ+∆+ are the implied rate of the jth nearest quarterly Eurodollar futures
contract from the last trade that occurred more than 10 minutes before the FOMC announcement
and the first trade that occurred more than 20 minutes after the FOMC announcement, respectively.

Construction

1. For each ζ, calculate the implied rate, i.e. edjζ = 100− pedjζ .

2. For a given FOMC announcement t, calculate the difference in the implied rate of contract
j, ∆edjτ = edj

τ+∆+ − edjτ−∆− ,.

A.4 Treasury Futures

Treasury futures are quarterly contracts which obligate the seller to deliver a Treasury bond within
a range of maturities to the buyer at the time of expiration. Let pt2

j

ζ be the price at ζ of the jth
nearest quarterly 2-year Treasury futures contract (March, June, September, December), then I
calculate the implied yield surprise around FOMC announcement τ by dividing the price change
by approximate maturity of the underlying Treasury bond and flipping the sign, i.e.

∆t2τ = −
(
pt2

1

τ+∆+ − pt2
1

τ−∆−

)
/2. (A4)

If the announcement τ is in the month of expiration (March, June, September, December), then

I employ the next closest contract, i.e. ∆t2τ = −
(
pt2

2

τ+∆+ − pt2
2

τ−∆−

)
/2, due to its higher liquidity

Gorodnichenko and Ray (2017). Similarly, I calculate the implied yield changes from 5-year, 10-
year, and 30-year Futures, i.e.

∆t5τ = −
(
pt5

1

τ+∆+ − pt5
1

τ−∆−

)
/4,

∆t10τ = −
(
pt101

τ+∆+ − pt101

τ−∆−

)
/7,

∆t30τ = −
(
pt301

τ+∆+ − pt301

τ−∆−

)
/15,

where I use the approximate maturities as in Gürkaynak, Kısacıkoğlu, and Wright (2018).

A.5 Factor Estimation

Following Gürkaynak, Sack, and Swanson (2005), I now estimate unobserved shocks (factors) which
systematically move the yield curve around FOMC announcements. To do so, I first stack up the
30-minute changes of the interest rate futures around FOMC announcements. Let T be the number
of FOMC announcements and n be the number of interest rate futures I use, then X denotes the
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T × n matrix of 30-minute changes in interest rates where each row corresponds to a FOMC
announcement and each column to a interest rate. Here, I have T = 201 FOMC announcements
and n = 9 30-changes interest surprises where each row of X is defined as

Xτ =
[
mp1τ , mp2τ , ∆ed2

τ , ∆ed3
τ , ∆ed4

τ , ∆t2τ , ∆t5τ , ∆t10τ , ∆t30τ
]′
.

Then this data matrix X can be thought of as the following the factor model

X
(T ×n)

= F
(T ×k)

Λ
(k×n)

+ ε
(T ×n)

, (A5)

where F is a T × k matrix of common latent factors, Λ is the T × k matrix of factor loadings, and
ε is the T × n matrix of idiosyncratic variation in X. Following Gürkaynak, Sack, and Swanson
(2005) and subsequent literature, I will estimate two factors, i.e. k = 2, by principal components
and then I rotate both factors such that the second factor has no effect on the current federal funds
rate. I call this factor the forward guidance shock, and the other shock the federal funds rate shock.
Figure shows how both shocks map into 30-changes in the yield curve (mp2, ed omitted here).

Figure A1: Loading of High-Frequency Shocks on Yield Curve
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Notes: This figure illustrates the mapping of the estimated high-frequency forward guidance shock to 30-minute
changes in yields around FOMC announcements. The effects of a one standard deviation shock are shown.

A.6 Comparison to Other Shocks in Literature

I now compare my estimated shocks with previous estimates in the literature. Table A2 shows
the results of this exercise. In the first row, one can see that Federal Funds Rate shock is highly
correlated with mp1 surprise, as well as the estimates by Gürkaynak, Sack, and Swanson (2005) and
Swanson (2021). The second row shows that the forward guidance shock is also highly correlated
with ones Gürkaynak, Sack, and Swanson (2005) and Swanson (2021). Further, it is little correlated
with the LSAP shock by Swanson (2021) which confirms that my shock is not picking quantitative
easing.
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Table A2: Correlation with Other Shocks in Literature

mp1 Target (GSS 05) FFR Shock (S 21) Path (GSS 05) FG Shock (S 21) LSAP Shock (S 21)

FFR Shock 0.90 0.95 0.91
(201) (74) (194)

FG Shock 0.92 0.92 -0.14
(74) (194) (194)

Notes: This figure shows the correlations of the two estimated high-frequency shocks with similar estimated shocks
by Gürkaynak, Sack, and Swanson (2005) (GSS 05), and Swanson (2021) (S 20).
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B Quarterly Aggregation and Controlling for Macroeconomic News

As discussed in Section 2, I follow the recommendation by Miranda-Agrippino and Ricco (2021)
and Bauer and Swanson (2020), and “project out” the (ex post) correlation of the high-frequency
forward guidance shocks and macroeconomic news by estimating the following specification

εFGτ = α+ β newsτ + ε̃FGτ , (B1)

where εFGτ is the high-frequency forward guidance shocks for FOMC announcement τ , and newsτ
is a vector of major macroeconomic news surprises released since the start of the quarter until the
time of the FOMC announcement τ (as illustrated by Figure 2). I construct the surprises of the
macroeconomic releases (e.g. nonfarm payrolls) employing the actual release and survey data from
the Bloomberg Economic Calendar. See, for example, Boehm and Kroner (2020) for details on the
data and construction. The selection of macro releases is motivated by previous papers (Faust,
Rogers, Wang, and Wright, 2007; Rigobon and Sack, 2008; Gürkaynak, Kısacıkoğlu, and Wright,
2018). For a given macroeconomic series, I sum up all release surprises from the start of the quarter
until the time of FOMC meeting τ .

Table B1 shows the results of equation (B1). Assuming that the correlation is a violation of
the FIRE assumption, and that the Fed’s interest rule has a positive coefficient on real activity
and inflation, a positive (negative) regression coefficient means that Fed is more (less) responsive
to the news release than expected by the private sector.15 Except for GDP releases, the private
sector usually underestimates the response of the Fed to macroeconomic information consistent
with Cieslak (2018) and Bauer and Swanson (2020).

Lastly, I sum up the residuals to obtain my quarterly shocks measure, i.e.

εFGt =
∑
τ∈t

ε̃FGτ .

15For Initial Jobless Claims and the Unemployment Rate, the interest rule coefficient is presumably negative.
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Table B1: Response of High-Frequency FG Shock to Macroeconomic News

FG Shock (basis points)

Capacity Utilization -0.19
(0.26)

CB Consumer Confidence 0.89***
(0.27)

Core CPI 0.09
(0.22)

Core PCE Price Index 0.52**
(0.26)

Core PPI -0.46
(0.30)

Durable Goods Orders 0.50
(0.31)

GDP -0.56**
(0.28)

Housing Starts 0.49
(0.39)

Initial Jobless Claims -0.05
(0.12)

ISM Chicago PMI 0.69**
(0.35)

ISM Mfg Index -0.22
(0.31)

New Home Sales -0.40
(0.26)

Nonfarm Payrolls -0.27
(0.22)

Retail Sales (ex Auto) 0.67**
(0.32)

UM Consumer Sentiment 0.38*
(0.23)

Unemployment Rate -0.25
(0.19)

Constant 0.06
(0.30)

R2 0.18
Observations 201

Notes: This figure shows the estimation results of equation (B1). Heteroskedasticity-robust standard
errors reported in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
Abbreviations: Mfg — Manufacturing; CB — Chicago Board; ISM — Institute for Supply Management;
PMI — Purchasing Managers Index; UM — University of Michigan.
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C Construction of Firm-Level Panel

C.1 Construction of Variables

In this subsection, I provide details on the construction of the firm-level variables. Below, I de-
scribe the construction of the main variables of interest (firms’ capital stock and uncertainty), the
employed deflator, and the industry classification. Table C1 gives an overview of all employed firm-
level variables in my analysis, their construction, and references to related papers which also use
this measure. All data is obtained from the WRDS. Note that and colored terms refer to variables
in the respective dataset.

Conversion to real variables All nominal variables are deflated using X = 100 × X/GV A
where GV A is the implied price index of gross value added in the U.S. nonfarm business sector
(BEA-NIPA Table 1.3.4 Line 3). Note that for ratios in the same period, it does not matter.

Real Capital Stock and Investment Following a large literature (see, for example, Whited,
1992; Gomes, 2001; Ottonello and Winberry, 2020), I use Compustat data and the perpetual
inventory method to construct firm i’s real capital stock. For each firm i, I do the following steps:

1. Deflate PPEGTQi,t (Property, Plant and Equipment (Gross)) and PPENTQi,t (Property,
Plant and Equipment (Net))

2. Find first entry of PPEGTQi,1 and set

ki,1 = PPEGTQi,1

3. Linearly interpolate PPENTQi,t if PPENTQi,t−1 and PPENTQi,t+1 non-missing

4. Create capital stock:

ki,t+1 = ki,t + PPENTQi,t+1 − PPENTQi,t

and if PPENTQi,t missing, calculate

ki,t+1 = ki,t−1 + PPENTQi,t+1 − PPENTQi,t−1

and if PPENTQi,t−1 missing, calculate

ki,t+1 = ki,t−2 + PPENTQi,t+1 − PPENTQi,t−2

and ... .

� Implementation:

(a) Find smallest l such that ki,t−l + PPENTQi,t+1 − PPENTQi,t−l exists.

(b) Set ki,t+1 = ki,t−l + PPENTQi,t+1 − PPENTQi,t−l.

To ensure that my constructed series is reasonable and qualitatively able to mimic the investment
behavior in the economy, I compare its average behavior with the one of the aggregate investment
variable from NIPA. Precisely, Figure C1 shows the cyclical component of the average firm-level
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investment (QoQ growth of capital stock) from Compustat and nonresidential private fixed invest-
ment from NIPA.

Figure C1: Aggregate Investment: Compustat vs. NIPA
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Notes: This figures plots the QoQ growth rates of the aggregate real capital stock from Compustat and the log of
real nonresidential private fixed investment from NIPA (BEA-NIPA Table 5.3.3. Line 2). The former is calculated
as the average of ∆ log ki,t across firms. The figure shows the cyclical component using the HP filter with smoothing
parameter λ = 1600.

Uncertainty Firm’s i baseline uncertainty in t is defined as

uci,t = 100× log (ivoli,t) , (C1)

and quarterly implied volatility ivoli,t is constructed as

ivoli,t =
1

Ni,t

Ni,t∑
n=1

ivol
(30),
i,n (C2)

where ivol
(30)
i,n is the 30-day option-implied volatility of its stock price on trading day n, Ni,t is the

number of trading days in quarter t for which ivol
(30)
i,n is available (daily average of put and call

option impl volatility with days = 30 from OptionMetrics).
Similarly to the baseline measure, I also construct an alternative uncertainty measure based on

X-day option-implied volatility. For further horizons out, the number of available data is substan-
tially lower. Lastly, I also create a uncertainty measure based on firm’s i realized stock volatility

ucRVi,t = 100× log (rvoli,t) , (C3)

and realized volatility rvoli,t is constructed as

rvoli,t =
√
Ni,t × σReturn

i,t , (C4)

where Ni,t is the number of trading days in quarter t for which firm i’s stock return is available
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and σReturn
i,t is the standard deviation of firm i’s ex-dividend daily stock return over quarter t (retx

in CRSP).
Regardless of the measure, I exclude quarters if data is available for less than 20 trading days

(this is done measure by measure). This ensures that each quarterly average is not driven by
individual days.

Industry Classification Following Gorodnichenko and Weber (2016), I classify industries in the
following way:

1. Agriculture, mining, and construction: sic < 1800

2. Manufacturing: 2000 ≤ sic < 4000

3. Transportation and Communications: 4000 ≤ sic < 4900)

4. Trade: 5000 ≤ sic < 6000

5. Services: 7000 ≤ sic

Following Jeenas (2018) and Clementi and Palazzo (2019), I exclude firms in the finance, insurance,
and real estate (6000 ≤ sic < 6800), and in the utilities (4900 ≤ sic < 5000) industry. Further, the
Services industry consists not entirely of firms in the service industry (7000 ≤ sic < 9000). A tiny
fraction (2,927 out of 66,877) are unclassified firms (9900 ≤ sic). There are no firms in the public
administration (9000 ≤ sic < 9900) industry in the sample.
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Table C1: Overview of Firm-level Variables

Variable Construction Sources References

Age Quarters since firm’s stock traded = quarter (t)− quarter (BEGDATi) CRSP Cloyne et al. (2018)

Dividends 1 (DV PQi,t > 0) Compustat Ottonello and Winberry (2020)

EBITDA 100×
SALEQi,t−COGSQi,t−XSGAQ∗

i,t

GVAt
Compustat, BEA Cloyne et al. (2018)

Leverage
total debti,t

total assetsi,t
=

DLCQi,t+DLTTQi,t

ATQi,t
Compustat Ottonello and Winberry (2020);

Jeenas (2018)

Liquidity
cash and short-term investmentsi,t

total assetsi,t
=

CHEQi,t

ATQi,t
Compustat Jeenas (2018)

Long-term
Debt Dependence

long-term debt (maturity> 1year)
total debt

=
DLTTQi,t+DD1Q∗

i,t

DLCQi,t+DLTTQi,t
Compustat Foley-Fisher, Ramcharan, and Yu

(2016)

Price-to-cost Margin
net salesi,t−costs of goods soldi,t

net salesi,t
=

SALEQi,t−COGSQi,t

SALEQi,t
Compustat Gorodnichenko and Weber (2016)

Net Receivables
to Sales

total receivablesi,t−total trade payablesi,t
net salesi,t

=
RECTQi,t−APQi,t

SALEQi,t
Compustat Gorodnichenko and Weber (2016)

Real Capital Stock See text Compustat See text

Real Sales Growth 100×∆ log
(

100× SALEQi,t

GVAt

)
Compustat, BEA Jeenas (2018)

Size book value of assets = log (ATQi,t) Compustat Ottonello and Winberry (2020)

Tobin’s Q
market value of assetsi,t

book value of assetsi,t

=
ATQi,t + PRCCQi,t × CSHOQi,t − CEQi,t + TXDITCQ∗i,t

ATQi,t

Compustat Ottonello and Winberry (2020);
Cloyne et al. (2018)

Uncertainty See text OptionMetrics See text

Notes: This table provides an overview of all firm-level variables in the panel dataset including their precise construction, the used data sources, and selected papers
which the construction is based on. Capitalized and blue marked terms stand for the original name of the variable in the corresponding dataset. * means that the
construction takes the respective dataset variable only into account if it is available, otherwise it is treated as if it is zero. This is done to avoid to many missing
observations which reduce the total number of observations in the analysis.
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C.2 Sample Construction

CRSP/Compustat Merged Note that only firm to primary links are throughout the analysis,
i.e. LINKPRIM = P or LINKPRIM = C. Following the previous literature, I exclude the
firm-quarter observation if (in order of operation):

1. The firm is not incorporated in the United States, i.e. FIC 6= USA

2. The firm is in finance, insurance, and real estate sectors (sic ∈ [6000, 6999]), utilities (sic ∈
[4900, 4999])

3. A firm characteristic is missing in the data, i.e. Age, Capital Stock, Dividends, Leverage,
Long-term Debt Dependence, Price-to-cost Margin, Receivables-minus-payables to Sales, Real
Sales Growth, Size, Tobin’s Q

4. The firm has a capital stock of zero (very few observations), needed for the log-specification

5. The observation is before 1996Q1 or after 2019Q4.

6. Acquisitions are larger than 5% percent of assets, i.e. AQCQi,t/ATQi,t > 0.05 where AQCQi,t
is constructed from AQCYi,t.

7. Similar to Ottonello and Winberry (2020), I account for extreme values by dropping firm-
quarter observations if

(a) Investment, i.e. log ∆ (ki,t+1), is in the top or bottom 0.5 percent of the distribution.

(b) Quarterly real sales growth is larger than 100% or smaller than -100%.

(c) Leverage is higher than 10.

OptionMetrics

1. I exclude the firm-quarter observations if (in order of operation):

(a) the firm’s implied volatility impl volatility is observed, for the horizon of interest (days =
30 for baseline), for less than 20 trading days in a quarter (Note that an average month
has around 21 trading days).

2. I calculate the uncertainty measure following equations (C1) and (C2) above.

CRSP

1. I exclude the firm-quarter observations if (in order of operation):

(a) the firm’s ex-dividend daily stock return retx is observed for less than 20 trading days
in a quarter.

2. I calculate the uncertainty measure following equations (C3) and (C4) above.

Merging the Datasets I merge the CRSP/Compustat Merged with OptionMetrics and CRSP
data by using the permanent security identifier PERMNO, and the Compustat-CRSP and the
OptionMetrics-CRSP linking tables from WRDS. For firm-quarter observations with multiple se-
curity identifiers, I follow the Compustat-CRSP linking table to identify the primary security iden-
tifier. After the datasets are merged, I drop all firms with less less than 20 quarters observed to
obtain precisely estimated firm fixed effects in my analysis (Cloyne et al., 2018).
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A Note on the Operating Lease Accounting in 2019 Starting in 2019, Compustat changes
its accounting of PPENTQ (See Ma (2020) for details). This change leads to a spike in the
quarterly change from 2018Q4 to 2019Q1. Although I do not have access at this point to the
newest data Compustat release which allows me to account for this, it is not problematic with
respect to the analysis run in the main text. Since the accounting change is uncorrelated with
monetary policy and uncertainty, it just leads to less precise estimates. In line with that intuition,
I show in Appendix Figure D4 that my main result is robust to the exclusion of 2019.
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D Additional Results

Figure D1: Heterogeneity in Responses of Capital — Positive & Negative Shocks
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Joint F- tests for pos. & neg. shocks:

H
0
: 

FG
+ = 

FG
-   | p-value = 0.002

H
0
: 

FG
+ = -

FG
-  | p-value = 0.209

Cond. on 

 neg. shock

Notes: This figure displays the dynamics of the interaction coefficients between firm-level uncertainty and the forward
guidance shock from estimating different versions of specification (2). The top row shows the results of Figure 8,
again. The bottom row shows the interaction terms from estimating separately positive and negative shocks, i.e.
γ

(h)

FG+ and γ
(h)

FG− from

∆hlog(ki,t+h) =α
(h)
i + α

(h)
n,t + α

(h)
i,fq +

∑
ζt∈

{
εFG+
t ,εFG−

t

} γ
(h)
ζ (ζt × uci,t−1) + Γ

(h)
ζ (ζt × Zi,t−1)

+ θ(h)uci,t−1 + Φ(h)Zi,t−1 + νi,t+h, ζt ∈
{
εFGt ,

∣∣∣εFGt ∣∣∣} ,
where εFG

+

t = max
{
εFGt , 0

}
and εFG

−
t = min

{
εFGt , 0

}
. To be precise, −γ(h)

FG− is shown so that the response
corresponds to one conditional on a negative shock. The displayed estimates corresponds to a one standard deviation
forward guidance shock and a one standard deviation increase in firm-level uncertainty relative to the mean. Dark
and light bands show 68 percent and 90 percent confidence bands, respectively. Standard errors are clustered at
quarter and firm level.
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Figure D2: Heterogeneity in Responses of Capital — Robustness
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Notes: This figure provides multiple robustness checks with respect to the absolute value version of specification
(2). The top left-hand panel shows the baseline estimates from Figure 8. The top right-hand panel shows the same
estimates when ending the sample in 2007Q4. The bottom two panels show estimates for two alternative measures of
uncertainty — 182-day implied volatility on the left and realized volatility on the right. Appendix C provides details
on the construction of each measure. The displayed estimates corresponds to a one standard deviation forward
guidance shock and a one standard deviation increase in firm-level uncertainty relative to the mean. Dark and light
bands show 68 percent and 90 percent confidence bands, respectively. Standard errors are clustered at quarter and
firm level.
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Figure D3: Comparison of Forward Guidance Shock with Federal Funds Rate Shock — preZLB
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Notes: This figure displays the dynamics of the interaction coefficients between firm-level uncertainty and the federal
funds rate and forward guidance shock from estimating the absolute value version of specification (2) for the pre-ZLB
period, i.e. ending the sample in 2007. The left panel shows estimates for the absolute value of the forward guidance
shock, i.e. γ

(h)

|FG|, whereas the right panel shows estimates for the absolute value of the federal funds rate shock, i.e.

γ
(h)

|FFR|. The displayed estimates corresponds to a one standard deviation shock and a one standard deviation increase
in firm-level uncertainty relative to the mean. Dark and light bands show 68 percent and 90 percent confidence bands,
respectively. Standard errors are clustered at quarter and firm level.
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Figure D4: Heterogeneity in Responses of Capital — pre-2019
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Notes: This figure displays the dynamics of the interaction coefficients between firm-level uncertainty and the forward
guidance shock from estimating the absolute value version of specification (2). The left panel shows estimates for

the absolute value of the forward guidance shock, i.e. γ
(h)

|FG| for the baseline version, whereas the right panel shows
estimates for the absolute value of the forward guidance shock where last year in the sample 2019 has been excluded,
i.e. γ

(h)

|FG|. The displayed estimates corresponds to a one standard deviation shock and a one standard deviation
increase in firm-level uncertainty relative to the mean. Dark and light bands show 68 percent and 90 percent
confidence bands, respectively. Standard errors are clustered at quarter and firm level.
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Figure D5: Heterogeneity in Responses of Capital — With Main Effect
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Notes: This figure displays the dynamic effect of the forward guidance shock, and the dynamics of the interaction
coefficients between firm-level uncertainty and the forward guidance shock from estimating the following specification
from

∆hlog(ki,t+h) =α
(h)
i + α(h)

cq + α
(h)
i,fq + β(h)εFGt + γ(h)

(∣∣∣εFGt ∣∣∣× uci,t−1

)
+ Γ(h)

(∣∣∣εFGt ∣∣∣× Zi,t−1

)
+ θ(h)uci,t−1 + Φ(h)Zi,t−1 + νi,t+h,

(D1)

where α
(h)
cq is a calendar quarter fixed effect, and the rest of the variables is defined as in specification (2). The displayed

estimates corresponds to a one standard deviation forward guidance shock and a one standard deviation increase in
firm-level uncertainty relative to the mean. Dark and light bands show 68 percent and 90 percent confidence bands,
respectively. Driscoll-Kraay standard errors are employed. The cross-sectional heterogeneity values are calculated

as 1
16

∑16
h=1

(
uc75

25 × γ̃(h)
)
/β̄, where β̄ = 1

16

∑16
h=1 β

(h), and uc75
25 = 1.4 is the amount of standard deviations needed

from the 25th to 75th percentile. The middle value is calculated from the point estimate γ(h), whereas the left and

right values are constructed from the boundaries of the 68 percent confidence band, i.e. γ̃(h) ∈
{
γ

(h)
16 , γ

(h), γ
(h)
84

}
.
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Figure D6: Response of Macro Aggregates to expansionary and contractionary FG shock
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Notes: This figure shows impulse responses of macroeconomic aggregates to a negative and positive, one standard deviation FG shock. The estimates are obtained
from the following local projection specification

yt+h − yt−1 = α(h) + β
(h)
+ εFG

+

t + β
(h)
− εFG

−
t +

∑4
j=1δ

(h)
j Xt−j + νt+h, (D2)

following the methodology by Barnichon and Brownlees (2019). Dark and light bands show 68 percent and 90 percent confidence bands, respectively. The confidence

bands are calculated following the recommendations by Lazarus et al. (2018). The three values under asymmetric effect are calculated as 1
16

∑16
h=1

β
(h)
+,16−β

(h)
−,84

β̄±
,

1
16

∑16
h=1

β
(h)
+ −β(h)

−
β̄±

, and 1
16

∑16
h=1

β
(h)
+,84−β

(h)
−,16

β̄±
, where β̄± = 1

16

∑16
h=1 0.5

(
β

(h)
+ + β

(h)
−

)
.
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E Model Appendix

In this appendix, I describe the model framework, the steady state, as well as the set of log-linearized
equations which characterizes the equilibrium. Note the Appendix is based on the main text which
is particularly important to understand the households’ setups. Note that sector-specific variables
are denoted in per capita, i.e. per person in a given sector.

E.1 Monetary Policy

The central bank sets the nominal interest Rt according to following generalized Taylor rule

Rt
R

=

(
Πt

Π

)θΠ (Yt
Y

)θY
eθt , (E1)

where R is the steady state of the nominal interest rate, and Πt/Π and Yt/Y denote deviations
from the steady state for inflation and output, respectively. Note that the paper’s focus is the
transmission of monetary policy. Hence, I can specify the Taylor rule in terms of output rather
than the output gap (output - natural output) since the natural level of output is unaffected. The
policy deviation θt follows a news structure as in Laséen and Svensson (2011)

θt =
15∑
i=0

εiR,t−i, (E2)

with εiR,t ∼ N
(
0, σ2

R

)
. The specification implies that the central bank can communicate deviations

of up to four years, i.e. sixteen quarters.

Forward Guidance I define “forward guidance” as a central bank announcement of a specific
path of the interest rate over the next quarters, where as in Campbell et al. (2019), the central
bank cannot perfectly communicate this path. In particular, forward guidance is defined as a set
of signals

St =
[
s0
t s1

t ... s15
t

]
,

with ∃j such that sjt 6= 0 and j ≥ 1. Here, the current deviation (or rate) is perfectly observed, i.e.

s0
t = ε0

R,t,

and future deviations are unobserved, i.e. for j ≥ 1

sjt = εjR,t + ηt,

with ηt ∼ N
(
0, σ2

η

)
. Note that conventional monetary policy is simply ε0

R,t in this model.
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E.2 Households

E.2.1 Consumption and Leisure Decision

High-Uncertainty Sector As explained Section 5.3, the H-household’s optimization problem
can be written as

max
{Cht ,BHt,LHt,K̄Ht,IHt,uHt}

E0

∞∑
t=0

βt

[(
Cht − ξCht−1

)1−σ
1− σ

− %(LHt)
1+χ

1 + χ

]

s.t. PtC
h
t + PHtIHt +

1

R∗t
BHt ≤MRSHtLHt +Rk,HtuHtK̄Ht−1 − PHta(uHt)K̄Ht−1

+DIV p
Ht +DIV w

Ht +BHt−1

(
βtλHt

)
K̄Ht ≤

(
1− κ

2

(
IHt
IHt−1

− 1

)2
)
IHt + (1− δ) K̄Ht−1

(
βtµHt

)
,

where PHt is the nominal price of the final good in sector H, IHt is the investment in sector H,
Bt is bond holding of household-H, MRSHt is the nominal remuneration for the supply of labor,
Rk,Ht real rental rate on capital services in sector H, uHt is the utilization rate, K̄Ht is the physical
capital stock, DIV p

Ht , DIV w
Ht .

The Langrangian can be then written as

L =E0

∞∑
t=0

βt

{[(
Cht − ξCht−1

)1−σ
1− σ

− %(LHt)
1+χ

1 + χ

]

+ λHt

[
MRSHtLHt +Rk,HtuHtK̄Ht−1 − PHta(uHt)K̄Ht−1

+ DIV p
Ht +DIV w

Ht +Bt−1 − PtCht − PHtIHt −
1

R∗t
BHt

]
+µHt

[(
1− κ

2

(
IHt
IHt−1

− 1

)2
)
IHt + (1− δ) K̄Ht−1 − K̄Ht

]}
.
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The first order conditions are then

Cht :
(
Cht − ξCht−1

)−σ
− ξβEt

[(
Cht+1 − ξCht

)−σ]
= PtλHt

BHt :
1

R∗t
λHt = βEt [λHt+1]

LHt : % (LHt)
χ = MRSHtλHt

K̄Ht : µHt = βEt[λHt+1 (Rk,Ht+1uHt+1 − PHt+1a (uHt+1)) + (1− δ)µHt+1]

IHt : λHtPHt = µHt

(
1− κ

2

(
IHt
IHt−1

− 1

)2

− κ
(

IHt
IHt−1

− 1

)
IHt
IHt−1

)

+ βEt

[
µHt+1κ

(
IHt+1

IHt
− 1

)(
IHt+1

IHt

)2
]

uHt : Rk,Ht = PHta
′(uHt)

βtλHt : ...

βtµHt : ....

Let ΛHt,t+1 = β(λHt+1/λHt)Πt+1 be the real stochastic discount factor, ΞHt = µHt/(λHtPt)
Tobin’s q, mrsHt = mrsHt/Pt the real remuneration for the supply of labor, rk,Ht = Rk,Ht/Pt
the real rental rate on capital services, pHt = PHt/Pt the relative price of the final good in sector
H. Then we can write the following system of equations characterizing the consumption leisure
decision

% (LHt)
χ = mrsHt

(
(JHt)

−σ − ξβEt
[
(JHt+1)−σ

])
(E3)

JHt = Cht − ξCht−1 (E4)

1 = R∗tEt

[
ΛHt,t+1 (Πt+1)−1

]
(E5)

ΛHt,t+1 = βEt

[
(JHt+1)−σ − ξβ (JHt+2)−σ

(JHt)
−σ − ξβ (JHt+1)−σ

]
(E6)

ΞHt = Et[ΛHt,t+1 (rk,Ht+1uHt+1 − pHt+1a (uHt+1) + ΞHt+1 (1− δ))] (E7)

pHt = ΞHt

(
1− κ

2

(
IHt
IHt−1

− 1

)2

− κ
(

IHt
IHt−1

− 1

)
IHt
IHt−1

)

+ βEt

[
ΛHt,t+1ΞHt+1κ

(
IHt+1

IHt
− 1

)(
IHt+1

IHt

)2
]

(E8)

rk,Ht = pHta
′(uHt) (E9)

K̄Ht =

(
1− κ

2

(
IHt
IHt−1

− 1

)2
)
IHt + (1− δ) K̄Ht−1. (E10)

Note that the budget constraint will be used in the aggregation section.
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Low-Uncertainty Sector Similarly, system of equations for the L-household is given by

% (LLt)
χ = mrsLt

(
(JLt)

−σ − ξβ (JHt+1)−σ
)

(E11)

JLt = C lt − ξC lt−1 (E12)

1 = RtEt

[
ΛLt,t+1 (Πt+1)−1

]
(E13)

ΛLt,t+1 = βEt

[
(JLt+1)−σ − ξβ (JLt+2)−σ

(JLt)
−σ − ξβ (JLt+1)−σ

]
(E14)

ΞLt = Et[ΛLt,t+1 (rk,Lt+1uLt+1 − pLt+1a(uLt+1) + ΞLt+1 (1− δ))] (E15)

pLt = ΞLt

(
1− κ

2

(
ILt
ILt−1

− 1

)2

− κ
(

ILt
ILt−1

− 1

)
ILt
ILt−1

)

+ Et

[
ΛLt,t+1ΞLt+1κ

(
ILt+1

ILt
− 1

)(
ILt+1

ILt

)2
]

(E16)

rk,Lt = pLta
′(uLt) (E17)

K̄Lt =

[
1− κ

2

(
ILt
ILt−1

− 1

)2
]
ILt + (1− δ) K̄Lt−1 (E18)

E.2.2 Consumption Basket

High-Uncertainty Sector Given the consumption Cht in the composite good, the H-household
minimizes the cost of attaining this level, i.e.

min
{ChHt,ChLt}

PHtC
h
Ht + PLtC

h
Lt

s.t. Cht =

[
n

1
η

(
ChHt

) η−1
η

+ (1− n)
1
η

(
ChLt

) η−1
η

] η
η−1

(Pt) ,

where Pt is defined as

Pt =
[
n(PHt)

1−η + (1− n) (PLt)
1−η] 1

η−1 .

The first order conditions are given by

ChHt : ChHt = n

(
PHt
Pt

)−η
Cht

ChLt : ChLt = (1− n)

(
PLt
Pt

)−η
Cht ,

which leads to the following sector-specific demands

ChHt = n (pHt)
−η Cht (E19)
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ChLt = (1− n) (pLt)
−η Cht (E20)

Low-Uncertainty Sector Similarly, the demand equations for the L-household are given by

C lHt = n (pHt)
−η C lt (E21)

C lLt = (1− n) (pLt)
−η C lt (E22)

E.3 Labor Market

E.3.1 Labor Packer

High-Uncertainty Sector The labor packer minimizes the total cost subject to the con-
straint of meeting the total demand for labor in the production. The labor demand in the H-sector
is given by nLdHt, where LdHt denotes the per capita demand:

min
{LHt(i)}

∫ 1

0
WHt(i)LHt(i)di

s.t. nLdHt ≤
[∫ 1

0
(LHt(i))

εw−1
εw di

] εw
εw−1

(WHt) ,

where the wage WHt is given

WHt =

(∫ 1

0
WHt(i)

1−εwdi

) 1
1−εw

From the first order condition, we can derive the demand for each differentiated LHt(i),

LHt(i) : LHt(i) =

(
WHt(i)

WHt

)−εw
nLdHt.

Low-Uncertainty Sector Similarly, we can derive

LLt(i) : LLt(i) =

(
WLt(i)

WLt

)−εw
(1− n)LdLt/

E.3.2 Labor Unions

High-Uncertainty Sector Labor union i repackes labor from the household one-for-one for
resale. Union i’s nominal profit is given by

DIV w
H,t (i) = WHt(i)LHt(i)−MRSHtLHt (i)

and dividing by Pt yields real profits

divwH,t (i) =
WHt(i)

Pt
LHt(i)−mrsHtLHt (i)
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Unions are subject to Calvo wage-setting, where in each period, a firm can adjust its price with a
fixed probability of 1− ωw:

WHt (i) =

{
W r
Ht (i) if WHt (i) chosen optimally

WHt−1 (i) otherwise
.

Then, wage of union i in period t+ s when it was last able to adjust the wage in period t is given
by

WHt+s|t (i) = W r
Ht (i) .

Finally, the profit maximization is given by

max
{W r

Ht(i)}
Et

∞∑
s=0

(ωw)sΛHt,t+s

(
W r
Ht (i)

Pt+s
−mrsHt+s

)
LHt+s|t(i)

s.t. LHt+s|t(i) =

(
W r
Ht(i)

WHt+s

)−εw
nLdHt+s

Lagrangian: Plugging the constraint into the objective function, we can write

L = Et

∞∑
s=0

(ωw)sΛHt,t+s

[(
W r
Ht (i)

Pt+s
−mrsHt+s

)(
W r
Ht(i)

WHt+s

)−εw
nLdHt+s

]

= nEt

∞∑
s=0

(ωw)sΛHt,t+s

[
(W r

Ht (i))1−εw P−1
t+sW

εw
Ht+sL

d
Ht+s

−mrsHt+s
(
W r
Ht(i)

WHt+s

)−εw
LdHt+s

]

The first-order conditions is given by

W r
Ht : 0 = nEt

∞∑
s=0

(ωw)sΛHt,t+s

[
(1− εw)W r

Ht (i)−εw P−1
t+sW

εw
Ht+sL

d
Ht+s

+εwmrsHt+sW
r
Ht(i)

−εw−1W εw
Ht+sL

d
Ht+s

]
,

The optimal reset wage is given by

W r
Ht =

εw
εw − 1

Et
∑∞

s=0(ωw)sΛHt,t+s
[
mrsHt+sP

εw
t+sw

εw
Ht+sL

d
Ht+s

]
Et
∑∞

s=0(ωw)sΛHt,t+s
[
P εw−1
t+s wεwHt+sL

d
Ht+s

]
which can written recursively as

W r
Ht =

εw
εw − 1

F1,Ht

F2,Ht
,

where
F1,Ht = mrsHtP

εw
t wεwHtL

d
Ht + ωwEt [ΛHt,t+1F1,Ht+1] ,

F2,Ht = wεwHtP
εw−1
t+s LdHt + ωwEt [ΛHt,t+1F2,Ht+1] .
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Defining f1,Ht = F1,Ht/ (PHt)
εw and f2,Ht = F2,Ht/ (PHt)

εw−1, the optimal reset wage is given by

wrHt =
εw

εw − 1

f1,Ht

f2,Ht
pHt (E23)

where
f1,Ht = mrsHt (pHt)

−εw (wHt)
εw LdHt + ωwEt [ΛHt,t+1 (ΠHt+1)εw f1,Ht+1] (E24)

f2,Ht = (pHt)
1−εw (wHt)

εw LdHt + ωwEt

[
ΛHt,t+1 (ΠHt+1)εw−1 f2,Ht+1

]
. (E25)

Low-Uncertainty Sector

wrLt =
εw

εw − 1

f1,Lt

f2,Lt
pLt (E26)

f1,Lt = mrsLt (pLt)
−εw (wLt)

εw LdLt + ωwEt [ΛLt,t+1 (ΠLt+1)εw f1,Lt+1] (E27)

f2,Lt = (pLt)
εw−1 (wLt)

εw LdLt + ωwEt

[
ΛLt,t+1 (ΠLt+1)εw−1 f2,Lt+1

]
. (E28)

E.4 Production

E.4.1 Final Good Producer

High-Uncertainty Sector The final good producer minimizes the total cost subject to the
constraint of meeting the demand for the product:

min
{YHt(j)}

∫ 1

0
PHt(j)YHt(j)dj

s.t. YHt ≤
[∫ 1

0
(YHt(j))

εp−1

εp dj

] εp
εp−1

(PHt) .

where

PHt =

(∫ 1

0
PHt(j)

1−εpdj

) 1
1−εp

The first order condition w.r.t YHt(j) yields the following demand curve:

YHt(j) =

(
PHt(j)

PHt

)−εp
nYHt.

Low-Uncertainty Sector

YLt(j) =

(
PLt(j)

PLt

)−εp
(1− n)YLt.

E.4.2 Intermediate Goods Producers

Except for different SDFs, the firms in the high- and low-uncertainty sector an identical environ-
ment.
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Cost Minimization

High-Uncertainty Sector The intermediate goods firm j′s cost minimization is given by:

min
{LHt(j),KHt(j)}

WHtLHt (j) +Rk,HtKHt (j)

s.t. YHt (j) ≤ KHt (j)α LHt (j)1−α (MCHt(j)) .

Lagrangian:

L = −WHtLHt (j)−Rk,HtKHt (j) +MCHt(j)
(
KHt (j)α LHt (j)1−α − YHt (j)

)
The first order conditions are given by

KHt (j) : Rk,Ht = αMCHt(j)

(
KHt (j)

LHt (j)

)α−1

LHt (j) : WHt = (1− α)MCHt(j)

(
KHt (j)

LHt (j)

)α
MCHt(j) : YHt (j) = KHt (j)α LHt (j)1−α

We can rewrite them as

WHt

Rk,Ht
=

1− α
α

KHt (j)

LHt (j)

wHt
rk,Ht

=
1− α
α

KHt (j)

LHt (j)

mcHt(j) =
wHt

(1− α)
(
KHt(j)
LHt(j)

)α
Lastly, the j’s can be dropped since all intermediate goods producers are facing the same wage and
capital return

wHt
rk,Ht

=
1− α
α

KHt

LHt
, (E29)

mcHt =
wHt

(1− α)
(
KHt
LHt

)α . (E30)

Low-Uncertainty Sector
wLt
Rk,Lt

=
1− α
α

KLt

LLt
(E31)

mcLt =
wLt

(1− α)
(
KLt
LLt

)α (E32)

Price Setting
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High-Uncertainty Sector Firm j’s nominal profits is given by

DIV p
Ht (j) = PHt (j)YHt (j)−WHtLHt (j)−Rk,HtKHt (j) ,

and dividing by Pt yields real profits

divpHt (j) = pHt (j)YHt (j)− wHtLHt (j)− rk,HtKHt (j) .

Using the optimality conditions from the cost minimization, we have

wHtLHt (j) + rk,HtKHt (j) = (1− α)mcHt(j)KHt (j)α LHt (j)1−α + αmcHt(j)KHt (j)α LHt (j)1−α

=mcHtYHt (j) ,

and hence we can write the profit function as

divpHt (j) = pHt (j)YHt (j)−mcHtYHt (j)

=

(
PHt (j)

Pt
−mcHt

)
YHt (j) .

Firms are subject to Calvo price-setting, where in each period, a firm can adjust its price with a
fixed probability of 1− ωp:

PHt (j) =

{
P rHt (j) if PHt (j) chosen optimally
PHt−1 (j) otherwise

.

Then, price of firm in period t+ s which was able to adjust price in period t is given by

PHt+s (j) = P rHt (j) .

Finally, the profit maximization is given by

max
P rHt(j)

Et

∞∑
s=0

ωspΛHt,t+s

[(
P rHt (j)

PHt+s
−mcHt+s

)
YHt+s|t (j)

]
s.t. YHt+s|t (j) =

(
P rHt(j)

PHt+s

)−εp
nYHt+s.

Lagrangian: Plugging the constraint into the objective function, we can write

L =Et

∞∑
s=0

(ωp)
sΛHt,t+s

[(
P rHt (j)

PHt+s
−mcHt+s

)(
P rHt(j)

PHt+s

)−εp
nYHt+s

]

=nEt

∞∑
s=0

(ωp)
sΛHt,t+s

[(
P rHt (j)

PHt+s

)1−εp
YHt+s −mcHt+s

(
P rHt(j)

PHt+s

)−εp
YHt+s

]
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FOC:

0 =nEt

∞∑
s=0

(ωp)
sΛHt,t+s

[
(1− εp) (P rHt (j))−εp (PHt+s)

−(1−εp) YHt+s

+ εpmcHt+s (P rHt(j))
−εp−1 (PHt+s)

εp YHt+s

]

The optimal reset price is given by

P rHt =
εp

εp − 1

Et
∑∞

s=0(ωp)
sΛHt,t+s [mcHt+s (PHt+s)

εp YHt+s]

Et
∑∞

s=0(ωp)sΛHt,t+s

[
(PHt+s)

εp−1 YHt+s

]
which be rewritten recursively as

P rHt =
εp

εp − 1

X1,Ht

X2,Ht
,

where
X1,Ht = mcHt (PHt)

εp YHt + ωpEt [ΛHt,t+1X1,Ht+1] ,

X2,Ht = (PHt)
εp−1 YHt + ωpEt [ΛHt,t+1X2,Ht+1] .

System of equations: Defining x1,Ht =
X1,Ht

P
εp
Ht

and x2,Ht =
X2,Ht

P
εp−1

Ht

, we rewrite this as

prHt =
εp

εp − 1

x1,Ht

x2,Ht
pHt, (E33)

x1,Ht = mcHtYHt + ωpEt [ΛHt,t+1 (ΠHt+1)εp x1,Ht+1] (E34)

x2,Ht = YHt + ωpEt

[
ΛHt,t+1 (ΠHt+1)εp−1 x2,Ht+1

]
(E35)

Low-Uncertainty Sector System of equations:

prLt =
εp

εp − 1

x1,Lt

x2,Lt
pLt (E36)

x1,Lt = mcLtYLt + ωpEt [ΛLt,t+1 (ΠLt+1)εp x1,Lt+1] (E37)

x2,Lt = YLt + ωpEt

[
ΛLt,t+1 (ΠLt+1)εp−1 x2,Lt+1

]
(E38)

E.5 Bond Market

As explained in Section 5.4, the price of a bond with maturity τ is given by

Q
(τ)
t = wsHtQ

(τ)
HHt + wsLtQ

(τ)
LLt. (E39)
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where Q
(τ)
HHt denotes the price under counterfactual economy with n = 1 and is given by

Q
(τ)
HHt = Et

[
ΛHHt,t+1 (ΠHHt+1)−1Q

(τ−1)
HHt+1

]
for τ ∈ {1, .., 40} , (E40)

and Q
(0)
HHt ≡ 1.

and Q
(τ)
LLt denotes the price for n = 0 and given by

Q
(τ)
LLt = Et

[
ΛLLt,t+1 (ΠLLt+1)−1Q

(τ−1)
LLt+1

]
for τ ∈ {1, .., 40} , (E41)

and Q
(0)
LLt ≡ 1.

Further, the wealth shares wsHt and wsLt are given by

wsHt =
nweaHt

nweaHt + (1− n)weaLt
, (E42)

and

wsHt =
(1− n) weaLt

nweaHt + (1− n)weaLt
, (E43)

where each household’s real wealth is given by

weaHt = K̄Ht + bHt, (E44)

weaLt = K̄Lt + bLt. (E45)

Lastly, the yield of maturity τ is defined to be

R
(τ)
t =

(
Q

(τ)
t

)− 1
τ

for τ ∈ {1, .., 40} . (E46)

E.6 Aggregation and Market Clearing

E.6.1 Labor Markets

High-Uncertainty Sector

� Market clearing: labor packer (demand) - unions/households (supply):∫ 1

0

(
WHt(i)

WHt

)−εw
nLdHtdi = nLHt

LdHtv
w
Ht = LHt, (E47)

where vwHt measures the wage dispersion:

vwHt =

∫ 1

0

(
WHt(i)

WHt

)−εw
di

vwHt = (1− ωw)

(
wrHt
wHt

)−εw
+ ωwΠεw

t

(
wHt−1

wHt

)−εw
vwHt−1 (E48)
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� Market clearing: labor Packer (supply) - intermediate goods producers (demand):

LdHt =
1

n

∫ 1

0
LHt (j) dj.

� Aggregation of dividends:

divwHt =
1

n

∫ 1

0
divwHt (i) di

=
1

n

∫ 1

0

WHt(i)

Pt
LHt(i)di−mrsHt

1

n
LHt (i) di

=
1

n

∫ 1

0

WHt(i)

Pt

(
WHt(i)

WHt

)−εw
nLdHtdi−mrsHtLHt

= LdHtP
−1
t W εw

Ht

∫ 1

0
WHt(i)

1−εwdi−mrsHtLHt

= wHtL
d
Ht −mrsHtLHt,

where I used
∫ 1

0 WHt(i)
1−εwdi = W 1−εw

Ht .

Low-Uncertainty Sector

� Market Clearing: labor packer (demand) - unions/household (supply):

LdLtv
w
Lt = LLt, (E49)

where vwHt measures the wage dispersion:

vwLt = vwLt = (1− ωw)

(
wrLt
wLt

)−εw
+ ωwΠεw

t

(
wLt−1

wLt

)−εw
vwLt−1 (E50)

� Market clearing: labor packer (supply) - intermediate goods producers (demand):

LdLt =
1

1− n

∫ 1

0
LLt (j) dj

� Aggregation of dividends:
divwLt = wLtL

d
Lt −mrsLtLLt

E.6.2 Capital Markets

High-Uncertainty Sector

� Effective and physical capital:
KHt = uHtK̄Ht (E51)
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� Market clearing: household (supply) - intermediate goods producers (Demand):

KHt =
1

n

∫ 1

0
KHt (j) dj

Low-Uncertainty Sector

� Effective and physical capital:
KLt = uLtK̄Lt (E52)

� Market Clearing: household (supply) - intermediate goods producers (Demand):

KLt =
1

1− n

∫ 1

0
KHt (j) dj

E.6.3 Goods Markets

High-Uncertainty Sector

� Aggregation of production function:

1

n

∫ 1

0
Y

(d)
Ht (j)dj =

1

n

∫ 1

0
Y

(s)
Ht (j) dj

1

n

∫ 1

0

(
PHt(j)

PHt

)−εp
nYHtdj =

1

n

∫ 1

0
KHt (j)α LHt (j)1−α dj

=

(
KHt

LHt

)α 1

n

∫ 1

0
LHt (j) dj

YHtv
p
Ht = (KHt)

α
(
LdHt

)1−α
, (E53)

where vpHt measures the price dispersion:

vpHt =

∫ 1

0

(
PHt (j)

PHt

)−εp
dj

vpHt = (1− ωp)
(
P rHt
PHt

)−εp
+ ωp

(
PHt−1

PHt

)−εp
vpHt−1

vpHt = (1− ωp)
(
prHt
pHt

)−εp
+ ωp (Πt)

εp

(
pHt−1

pHt

)−εp
vpHt−1 (E54)

� Market clearing: firms (supply) - households (demand):

nYHt = nChHt + (1− n)C lHt + nIHt (E55)
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� Aggregation of intermediate goods producers’ dividends:

divpHt =
1

n

∫ 1

0
divpHt (j) dj

=
1

n

∫ 1

0
pHt (j)YHt (j) dj − wHt

1

n

∫ 1

0
LHt (j) dj − rk,Ht

1

n

∫ 1

0
KHt (j) dj

=
PHt
Pt

YHt

∫ 1

0

(
PHt(j)

PHt

)1−εp
dj − wHtLdHt − rk,HtKHt

= pHtYHt − wHtLdHt − rk,HtKHt,

where I used
∫ 1

0

(
PHt(j)
PHt

)1−εp
dj = P

−(1−εp)
Ht

∫ 1
0 (PHt(j))

1−εp dj = P
−(1−εp)
Ht P

(1−εp)
Ht = 1.

Low-Uncertainty Sector

� Aggregation of production function:

YLtv
p
Lt = (KLt)

α
(
LdLt

)1−α
(E56)

where vpLt measures the price dispersion:

vpLt =

∫ 1

0

(
PLt (j)

PLt

)−εp
dj

vpLt = (1− ωp)
(
prLt
pLt

)−εp
+ ωp (Πt)

εp

(
pLt−1

pLt

)−εp
vpLt−1 (E57)

� Market clearing: firms (supply) - households (demand):

(1− n)YLt = nChLt + (1− n)C lLt + (1− n) ILt (E58)

� Aggregation of intermediate goods producers’ dividends:

divpLt =
1

1− n

∫ 1

0
divpLt (j) dj

=
1

1− n

∫ 1

0
pLt (j)YLt (j) dj − wLt

1

1− n

∫ 1

0
LLt (j) dj −Rk,Lt

1

1− n

∫ 1

0
KLt (j) dj

=
PLt
Pt

YLt

∫ 1

0

(
PLt(j)

PLt

)1−εp
dj − wLtLdLt −Rk,LtKLt

= pLtYLt − wLtLdLt −Rk,LtKLt
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E.6.4 Prices and Wages

� Law of motion for producer prices:

PHt =

(∫ 1

0
PHt(j)

1−εpdj

) 1
1−εp

(PHt)
1−εp = (1− ωp) (P rHt)

1−εp + ωp (PHt−1)1−εp

(pHt)
1−εp = (1− ωp) (prHt)

1−εp + ωp
(
Π−1
t pHt−1

)1−εp
, (E59)

similary:

(pLt)
1−εp = (1− ωp) (prLt)

1−εp + ωp
(
Π−1
t pLt−1

)1−εp
(E60)

� Law of motion for wages:

WHt =

(∫ 1

0
WHt(i)

1−εwdi

) 1
1−εw

(WHt)
1−εw = (1− ωw) (W r

Ht)
1−εw + ωw (WHt−1)1−εw

(wHt)
1−εw = (1− ωw) (wrHt)

1−εw + ωw
(
Π−1
t wHt−1

)1−εw
(E61)

similary:

(wLt)
1−εw = (1− ωw) (wrLt)

1−εw + ωw
(
Π−1
t wLt−1

)1−εw
(E62)

� Relation between producer prices:

Pt =
[
P 1−η
Ht + (1− n)P 1−η

Lt

] 1
η−1

1 =
[
np1−η

Ht + (1− n)p1−η
Lt

] 1
η−1

(E63)

� Producer price inflation:

ΠHt =
PHt
PHt−1

ΠHt =
pHt
pHt−1

Πt (E64)

Similarly,

ΠLt =
PLt
PLt−1

ΠLt =
pLt
pLt−1

Πt
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� Consumer price inflations:

Pt =
[
nP 1−η

Ht + (1− n)P 1−η
Lt

] 1
η−1

Πt =
[
n (ΠHtpHt−1)1−η + φL (ΠLtpLt−1)1−η

] 1
η−1

(E65)

E.6.5 Aggregate Budget Constraint

High-Uncertainty Sector

� Plug
divpHt = pHtYHt − wHtLdHt − rk,HtKHt,

divwHt = wHtL
d
Ht −mrsHtLHt

KHt = uHtK̄Ht

into

PtCt + PHtIHt +
1

R∗t
BHt =MRSHtLHt + rk,HtuHtK̄Ht−1 − PHta (uHt) K̄Ht−1

+DIV p
Ht +DIV w

Ht +BHt−1

which yields then:

1

R∗t
bt = (Πt)

−1 bt−1 + pHtYHt − Cht − pHtIHt − pHta (uHt) K̄Ht−1 (E66)

E.7 Steady State

� Recall the following parameter choices:

uk = 1 and a(uk) = 0

� We assume zero-inflation, cross-sector symmetric (no borrowing) steady state, i.e.

Π = 1 (E67)

and
bH = 0.

� Set % such that
LHt = LLt = 1 (E68)

� Equation (E64) becomes

ΠH =
pH
pH

Π

ΠH = 1 (E69)
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and

ΠL =
pL
pL

Π

ΠL = 1 (E70)

� Equation (E65) becomes

Π =
[
n (ΠHpH)1−η + φL (ΠLpL)1−η

] 1
η−1

1 =
[
n (pH)1−η + (1− n) (pL)1−η

] 1
η−1

1− (1− n) (pL)1−η = n (pH)1−η

1− (1− n) (pL)1−η = (1− (1− n)) (pH)1−η

implying that
pL = pH = 1. (E71)

� Equation (E59) yields

(pH)1−εp = (1− ωp) (prH)1−εp + ωp
(
Π−1pH

)1−εp
1 = (1− ωp) (prH)1−εp + ωp

1− ωp = (1− ωp) (prH)1−εp

prH = 1 (E72)

and from (E60), we get
prL = 1 (E73)

� Equation (E61) becomes

(wH)1−εw = (1− ωw) (wrH)1−εw + ωw
(
Π−1wH

)1−εw
(1− ωw) (wH)1−εw = (1− ωw) (wrH)1−εw

wH = wrH (E74)

and similarly from (E62)
wL = wrL (E75)

� Equation (E48) becomes

vwH = (1− φw)

(
wrH
wH

)−εw
+ φwΠεw

(
wH
wH

)−εw
vwH

vwH = (1− φw) + φwv
w
H

vwH = 1 (E76)

and similarly
vwL = 1 (E77)
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� Equation (E54) becomes

vpH = (1− φp)
(
prH
pH

)−εp
+ φp (Π)εp

(
pH
pH

)−εp
vpH

(1− φp) vpH = (1− φp)
vpH = 1 (E78)

� Equations (E19–E22) yield

ChH = nCh and ChL = (1− n)Ch (E79)

C lH = nC l and C lL = (1− n)C l (E80)

� Equation (E66) yields

1

R
bH = (Π)−1 bH + pHYH − Ch − pHIH − pHa (uH) K̄H

bH =
1

β − 1

(
YH − Ch − IH

)
For bH = 0 to hold, we need

YH − Ch − IH = 0.

from equation (E55), we know that

YH = nCh +
(1− n)

n
nC l + IH ,

and hence

Ch = nCh +
(1− n)

n
nC l

(1− n)Ch =
(1− n)

n
nC l

n

1− n
(1− n)Ch = nC l

Ch = C l.

� Equations (E33–E38) yield

x1,H = mcHYH + ωp [ΛH (ΠH)εp x1,H ]

x1,H =
mcHYH

1− ωpΛH

x2,H = YH + ωp

[
ΛH (ΠH)εp−1 x2,H

]
x2,H =

YH
1− ωpΛH
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prH =
εp

εp − 1

x1,H

x2,H
pH

x1,H

x2,H
=

εp − 1

εp

mcH = mcL =
εp − 1

εp
(E81)

� Equations (E23–E25) yield

f1,H = mrsH (pH)−εw (wH)εw LdH + ωwΛH (ΠH)εw f1,H

=
mrsH (wH)εw LdH

1− ωwΛH
(E82)

=
mrsH (wH)εw

1− ωwβ
(E83)

f2,H =
(wH)εw LdH
1− ωwΛH

=
(wH)εw LdH
1− ωwΛH

(E84)

wrH =
εw

εw − 1

f1,H

f2,H
pH

mrsH =
εw − 1

εw
wH (E85)

� Equations (E29) and (E30)

wH
rk,H

=
1− α
α

KH

LH
,

wH =
1− α
α

KHrk,H (E86)

mcH =
wH

(1− α)
(
KH
LH

)α
mcH =

1−α
α KHrk,H

(1− α) (KH)α

KH =

(
αmcH
rk,H

) 1
1−α

(E87)

Due to the symmetry, we know that

wL = wH and KL = KH (E88)
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� Equations (E51) and (E52)

KH = uHK̄H

KH = K̄H (E89)

and
KL = K̄L (E90)

� Equations (E3–E18) yield
ΛH = ΛL = β (E91)

JH = JL = (1− ξ)Ch

1

R
= ΛH (E92)

pH = ΞH

(
1− κ

2

(
IH
IH
− 1

)2

− κ
(
IH
IH
− 1

)
IH
IH

)
+ β

[
ΛHΞHκ

(
IH
IH
− 1

)(
IH
IH

)2
]

ΞH = ΞL = 1 (E93)

ΞH = [ΛH (rk,HuH − pHa (uH) + ΞH (1− δ))]

rk,H = rk,L =
1

ΛH
− (1− δ) (E94)

a′ (uH) = a′ (uL) = rk,H (E95)

K̄H =

(
1− κ

2

(
IH
IH
− 1

)2
)
IH + (1− δ) K̄H

K̄H = IH + (1− δ) K̄H

IH = IL = δKH (E96)

� Equations (E53) and (E64E56) yield

YHv
p
H = (KH)α

(
LdH

)1−α

YH = YL = (KH)α (E97)

� Equations (E39–E45)

Q(τ) = wsHQ
(τ)
HH + wsLQ

(τ)
LL (E98)

Q
(τ)
HH = Et

[
ΛH (ΠH)−1Q

(τ−1)
HH

]
for τ ∈ {1, .., 40} , (E99)

and Q
(0)
HH ≡ 1.
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Q
(τ)
LL = Et

[
ΛL (ΠL)−1Q

(τ−1)
LL

]
for τ ∈ {1, .., 40} , (E100)

and Q
(0)
LL ≡ 1.

wsH =
nweaH

nweaH + (1− n)weaL
= n (E101)

wsL =
(1− n)weaL

nweaH + (1− n)weaL
= 1− n (E102)

weaH = weaL = K̄H + bH , (E103)

� For LH = LL = 1, we need
% = mrsH (1− ξβ) (J)−σ

E.8 Log-linearized Equilibrium

Log-linear deviations from steady state are defined as follows

X̂t ≡
Xt −X
X

,

where Xt is an arbitrary variable. Note that the wage and price dispersions vanish, i.e.

v̂pHt = 0 and v̂pLt = 0

and
v̂wHt = 0 and v̂wLt = 0.

As consequence, equations (E47) and (E49) become

L̂dHt = L̂Ht and L̂dLt = L̂Lt.

Overall, the following 60 variables characterize the equilibrium

Ĉht , Ĉ
h
Ht, Ĉ

h
Lt, ĴHt, L̂Ht, ÎHt, K̂Ht,

̂̄KHt, ûHt, Λ̂Ht,t+1, Ξ̂Ht, m̂rsHt,

Ĉ lt, Ĉ
l
Ht, Ĉ

l
Lt, ĴLt, L̂Lt, ÎLt, K̂Lt,

̂̄KLt, ûLt, Λ̂Lt,t+1, Ξ̂Lt, m̂rsLt

m̂cHt, r̂k,Ht, ŵHt, m̂cLt, r̂k,Lt, ŵLt, R̂t, R̂
∗
t

x̂1,Ht, x̂2,Ht, ŶHt, p̂
r
Ht, p̂Ht, f̂1,Ht, f̂2,Ht, ŵ

r
Ht

x̂1,Lt, x̂2,Lt, ŶLt, p̂
r
Lt, p̂Lt, f̂1,Lt, f̂2,Lt, ŵ

r
Lt

Π̂t, Π̂Ht, Π̂Lt, Ŷt, bHt, bLt

Q̂
(τ)
t , R̂

(τ)
t , ŵeaHt, ŵeaLt, ŵsHt, ŵsLt,
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where the process for θt and θ∗t are as defined in Subsection and are taken as given. Further, the

variables from the counterfactual economicies such as Q̂
(τ)
HHt, Q̂

(τ)
LLt, Λ̂HHt,t+1, Π̂HHt+1, Λ̂LLt,t+1,

Π̂LLt+1 are taken as given here. These are pinned down by two very similar sets of equations which
are solved simulateanously. The following 60 equations characterize the log-linearized equilibrium
of the model.

E.8.1 Household (20 equations)

ĈhHt = −ηp̂Ht + Ĉht (E104)

ĈhLt = −ηp̂Lt + Ĉht (E105)

Ĉ lHt = −ηp̂Ht + Ĉ lt (E106)

Ĉ lLt = −ηp̂Lt + Ĉ lt (E107)

χL̂Ht = m̂rsHt −
σ

1− ξβ

(
ĴHt − ξβEt

[
ĴHt+1

])
(E108)

ĴHt =
1

1− ξ

(
Ĉht − ξĈht−1

)
(E109)

0 = R̂∗t + Et

[
Λ̂Ht,t+1

]
− Et

[
Π̂t+1

]
(E110)

Et

[
Λ̂Ht,t+1

]
= − σ

1− ξβ

((
Et

[
ĴHt+1

]
− ξβEt

[
ĴHt+2

])
−
(
ĴHt − ξβEt

[
ĴHt+1

]))
(E111)

Ξ̂Ht = Et

[
Λ̂Ht,t+1

]
+ (1− β (1− δ))Et [r̂k,Ht+1] + β (1− δ)Et

[
Ξ̂Ht+1

]
(E112)

p̂Ht = Ξ̂Ht + κβEt

[
ÎHt+1

]
− κ (1 + β) ÎHt + κÎHt−1 (E113)

R̂k,Ht = p̂Ht + ϑûHt (E114)̂̄KHt = δÎHt + (1− δ) ̂̄KHt−1 (E115)

χL̂Lt = m̂rsLt −
σ

1− ξβ

(
ĴLt − ξβEt

[
ĴLt+1

])
(E116)

ĴLt =
1

1− ξ

(
Ĉ lt − ξĈ lt−1

)
(E117)

0 = R̂t + Et

[
Λ̂Lt,t+1

]
− Et

[
Π̂t+1

]
(E118)

Et

[
Λ̂Lt,t+1

]
= − σ

1− ξβ

((
Et

[
ĴLt+1

]
− ξβEt

[
ĴLt+2

])
−
(
ĴLt − ξβEt

[
ĴLt+1

]))
(E119)

Ξ̂Lt = Et

[
Λ̂Lt,t+1

]
+ (1− β (1− δ))Et [r̂k,Lt+1] + β (1− δ)Et

[
Ξ̂Lt+1

]
(E120)

p̂Lt = Ξ̂Lt + κβEt

[
ÎLt+1

]
− κ (1 + β) ÎLt + κÎLt−1 (E121)

R̂k,Lt = p̂Lt + ϑûLt (E122)̂̄KLt = δÎLt + (1− δ) ̂̄KLt−1 (E123)

83



E.8.2 Labor Market (6 equations)

ŵrHt = f̂1,Ht − f̂2,Ht + p̂Ht (E124)

f̂1,Ht = (1− ωwβ)
(
m̂rsHt − εwp̂Ht + εwŵHt + L̂Ht

)
+ωwβ

[
Et

[
Λ̂Ht,t+1

]
+ εwEt

[
Π̂Ht+1

]
+ Et

[
f̂1,Ht+1

]]
(E125)

f̂2,Ht = (1− ωwβ)
(

(1− εw) p̂Ht + εwŵHt + L̂Ht

)
+ωwβ

(
Et

[
Λ̂Ht,t+1

]
+ (εw − 1)Et

[
Π̂Ht+1

]
+ Et

[
f̂2,Ht+1

])
. (E126)

ŵrLt = f̂1,Lt − f̂2,Lt + p̂Lt (E127)

f̂1,Lt = (1− ωwβ)
(
m̂rsLt − εwp̂Lt + εwŵLt + L̂Lt

)
+ωwβ

[
Et

[
Λ̂Lt,t+1

]
+ εwEt

[
Π̂Lt+1

]
+ Et

[
f̂1,Lt+1

]]
(E128)

f̂2,Ht = (1− ωwβ)
(

(εw − 1) p̂Lt + εwŵLt + L̂Lt

)
+ωwβ

(
Et

[
Λ̂Lt,t+1

]
+ (εw − 1)Et

[
Π̂Lt+1

]
+ Et

[
f̂2,Lt+1

])
. (E129)

E.8.3 Production (10 equations)

ŵHt − R̂k,Ht = K̂Ht − L̂Ht (E130)

m̂cHt = ŵHt − α
(
K̂Ht − L̂Ht

)
(E131)

ŵLt − R̂k,Lt = K̂Lt − L̂Lt (E132)

m̂cLt = ŵLt − α
(
K̂Lt − L̂Lt

)
(E133)

p̂rHt = x̂1,Ht − x̂2,Ht − p̂Ht (E134)

x̂1,Ht = (1− ωpβ)
(
m̂cHt + ŶHt

)
+ ωpβ

[
Et

[
Λ̂Ht,t+1

]
+ εpEt

[
Π̂Ht+1

]
+ Et [x̂1,Ht+1]

]
(E135)

x̂2,Ht = (1− ωpβ) ŶHt + ωpβ
[
Et

[
Λ̂Ht,t+1

]
+ (εp − 1)Et

[
Π̂Ht+1

]
+ Et [x̂2,Ht+1]

]
(E136)

p̂rLt = x̂1,Lt − x̂2,Lt − p̂Lt (E137)

x̂1,Lt = (1− ωpβ)
(
m̂cLt + ŶLt

)
+ ωpβ

[
Et

[
Λ̂Lt,t+1

]
+ εpEt

[
Π̂Lt+1

]
+ Et [x̂1,Lt+1]

]
(E138)

x̂2,Lt = (1− ωpβ) ŶLt + ωpβ
[
Et

[
Λ̂Lt,t+1

]
+ (εp − 1)Et

[
Π̂Lt+1

]
+ Et [x̂2,Lt+1]

]
(E139)
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E.8.4 Monetary Policy (3 equations)

R̂t = θΠΠ̂t + θY Ŷt + θt (E140)

R̂∗t = θΠΠ̂t + θY Ŷt + θ∗t (E141)

Ŷt = nŶHt + (1− n) ŶLt (E142)

E.8.5 Bond Market (6 equations)

Q̂
(τ)
t = wsH

(
ŵsHt + Q̂

(τ)
HHt

)
+ wsL

(
ŵsLt + Q̂

(τ)
LLt

)
, (E143)

where Q̂
(τ)
HHt and Q̂

(τ)
LLt are taken as given

Q̂
(τ)
HHt = Et

[
Λ̂HHt,t+1

]
− Et

[
Π̂HHt+1

]
+ Et

[
Q̂

(τ−1)
HHt+1

]
for τ ∈ {1, .., 40} ,

and Q̂
(0)
HHt ≡ 0.

Q̂
(τ)
LLt = Et

[
Λ̂LLt,t+1

]
− Et

[
Π̂LLt+1

]
+ Et

[
Q̂

(τ−1)
LLt+1

]
for τ ∈ {1, .., 40} ,

and Q̂
(0)
LLt ≡ 0.

weaHŵeaHt = K̄H
̂̄KHt + bHt (E144)

weaLŵeaLt = K̄L
̂̄KLt + bLt (E145)

ŵsHt = wsL (ŵHt − ŵLt) (E146)

ŵsLt = wsH (ŵLt − ŵHt) (E147)

R̂
(τ)
t = −1

τ
Q̂

(τ)
t for τ ∈ {1, .., 40} . (E148)

E.8.6 Aggregation and Market Clearing (15 equations)

K̂Ht = ûHt + ̂̄KHt−1 (E149)

K̂Lt = ûLt + ̂̄KLt−1 (E150)

ŶHt = αK̂Ht + (1− α) L̂Ht (E151)

YH ŶHt = ChHĈ
h
Ht +

(
1− n
n

)
C lHĈ

l
Ht + IH ÎHt (E152)

ŶLt = αK̂Lt + (1− α) L̂Lt (E153)

YLŶLt =
n

1− n
ChLĈ

h
Lt + C lLĈ

l
Lt + ILÎLt (E154)

p̂Ht = (1− ωp) p̂rHt + ωp

(
−Π̂t + p̂Ht−1

)
(E155)

p̂Lt = (1− ωp) p̂rLt + ωp

(
−Π̂t + p̂Lt−1

)
(E156)
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ŵHt = (1− ωw) ŵrHt + ωw

(
−Π̂t + ŵHt−1

)
(E157)

ŵLt = (1− ωw) ŵrLt + ωw

(
−Π̂t + ŵLt−1

)
(E158)

0 = np̂Ht + (1− n) p̂Lt (E159)

Π̂Ht = p̂Ht − p̂Ht−1 + Π̂t (E160)

Π̂t = nΠ̂Ht + (1− n) Π̂Lt (E161)

βbHt = bHt−1 + YH

(
p̂Ht + ŶHt

)
− ChĈht − IH

(
p̂Ht + ÎHt

)
−Rk,HKH ûHt (E162)

bLt = − n

1− n
bHt (E163)

E.8.7 Digression: Elimination of wage- and price-dispersion

� Linearizing (E59) leads to

p̂Ht = (1− ωp) p̂rHt + ωp

(
−Π̂t + p̂Ht−1

)
p̂rHt =

1

1− ωp

(
p̂Ht − ωp

(
−Π̂t + p̂Ht−1

))
which then is used for the linearization of (E54)

vpH v̂
p
Ht = −εp (1− ωp)

(
prH
pH

)
(p̂rHt − p̂H)

+ωp (Π)εp
(
pH
pH

)−εp
vpH

(
εpΠ̂t − εpp̂Ht−1 + p̂Ht + vpHt−1

)
= −εp (1− ωp) (p̂rHt − p̂Ht)

+ωp

(
εpΠ̂t − εpp̂Ht−1 + p̂Ht + vpHt−1

)
= −εpωp

(
p̂Ht + Π̂t − p̂Ht−1

)
−εpωp

(
−p̂Ht − Π̂t + p̂Ht−1

)
+ ωpv

p
Ht−1

v̂pHt = ωpv
p
Ht−1

We are approximating around steady state with vpH = 1. Hence, we are starting from ṽpH0 = 0
and hence we have

v̂pHt = 0.

and similarly
v̂pLt = 0.
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� Equation (E61) becomes

(1− εw) ŵHt = (1− ωw) (1− εw) (ŵrHt) + ωw (1− εw)
(
−Π̂t + ŵHt−1

)
ŵHt = (1− ωw) ŵrHt + ωw

(
−Π̂t + ŵHt−1

)
ŵrHt =

1

1− ωw

(
ŵHt − ωw

(
−Π̂t + ŵHt−1

))
then is used for the linearization of (E48)

vwHt = (1− ωw)

(
wrHt
wHt

)−εw
+ ωwΠεw

t

(
wHt−1

wHt

)−εw
vwHt−1

v̂wHt = −εw (1− ωw) (ŵrHt − ŵHt)

+ωw

(
εwΠ̂t − εw (ŵHt−1 − ŵHt) + v̂wHt−1

)
v̂wHt = −εwωw

(
ŵHt + Π̂t − ŵHt−1

)
+εwωw

(
ŵHt + Π̂t − ŵHt−1

)
+ ωwv̂

w
Ht−1

v̂wHt = ωwv̂
w
Ht−1

and hence by similar reasoning as above, we have

v̂wHt = 0 and v̂wLt = 0.

E.9 Fitted Parameters

Table E1: Fitted Parameters — Previous Papers

Parameter CTW 2010 CFFM 2019 BS 2020 SW 2021 Value Range Description

χ 0.12∗ 0.589∗ 0.5 1 [0.1 1] Inverse Frisch elast.

ξ 0.77∗ 0.78∗ 0.613∗ 0.7 [0.6 0.8] Consumption habit

κ 14.30∗ 5.354∗ 2.336∗ 2 [2 14] Investment adjustment costs

ϕ 0.30∗ 0.474∗ 0.01∗ 0.33 [0.01 0.5] Elast. of capital utilization

ωp 0.62∗ 0.831∗ 0.886∗ 0.75 [0.7 0.9] Price stickiness probability

ωw 0.75 0.914∗ − 0.75 [0.7 0.9] Wage stickiness probability

εp
1.2

1.2−1 = 6∗ 1.5
1.5−1 = 3 6 11 [3 11] Elast. of substitution w.r.t. goods

εw
1.01

1.01−1 = 101 1.5
1.5−1 = 3 − 11 [3 11] Elast. of substitution w.r.t. labor

Notes: This table reports the values from previous papers for the fitted parameters, i.e. the ones which are determined
in the moment matching calibration. The values are coming from Christiano, Trabandt, and Walentin (2010) (CTW
2010), Campbell et al. (2019) (CFFM 2019), Bundick and Smith (2020) (BS 2020), and Sims and Wu (2021) (SW
2021). The table also reports the value range over which the moment matching procedure searches over. ∗ denotes
that the taken parameter value is estimated in the corresponding paper. For CTW 2010, the posterior mean is
reported, and for CFFM 2019 and BS 2020 the posterior mode is reported.
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