

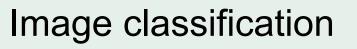
Practical Deep Learning: A quick glance Image classification and object detection

Francisco Pérez Hernández <u>fperezhernandez@ugr.es</u> University of Granada

- Image classification
 - A brief summary
 - Galaxy classification
- Object detection
 - Introduction
 - State-of-the-art meta-architectures
 - Practical example of detection
- Practical: Classification of galaxies

- Image classification
 - A brief summary
 - Galaxy classification


- Object detection
 - Introduction
 - State-of-the-art meta-architectures
 - Practical example of detection
- Practical: Classification of galaxies



Data Science and Computational Intelligence

Convolution layers are the eyes of a CNN \rightarrow Extract features

How CNNs extract features?

Each kernel extract some features \rightarrow Convolution

block2 conv1

INSTITUTO DE ASTROFÍSICA DE

ANDALUCÍA

More depth \rightarrow More abstraction

block1 conv1

DaSCI

Instituto Andaluz de Investigación en

Data Science and Computational Intelligence

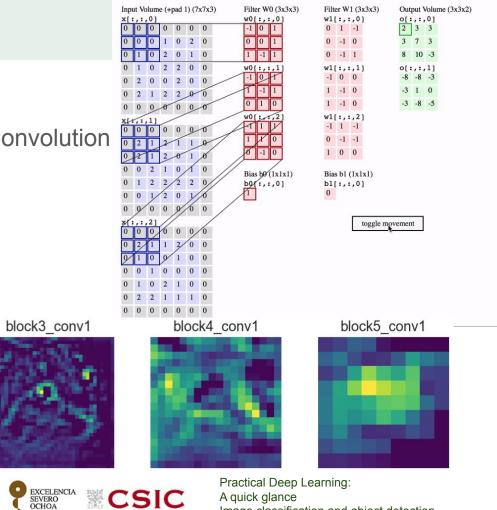
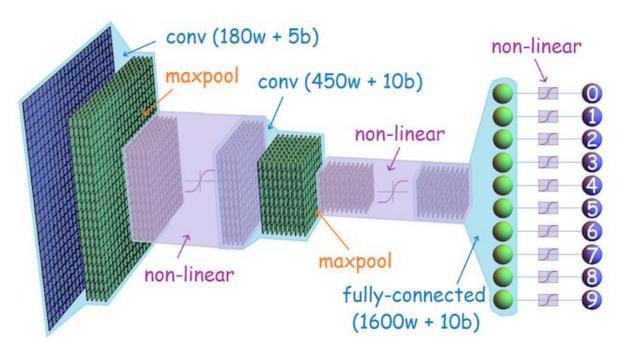
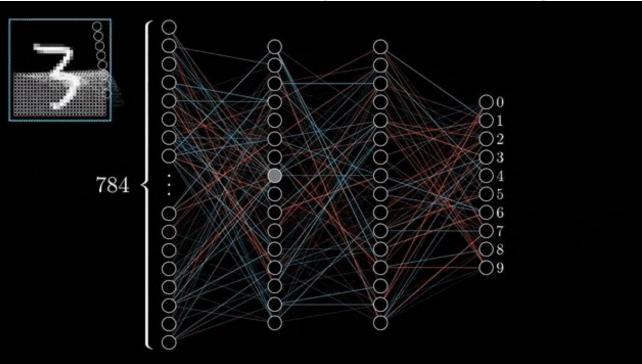



Image classification and object detection

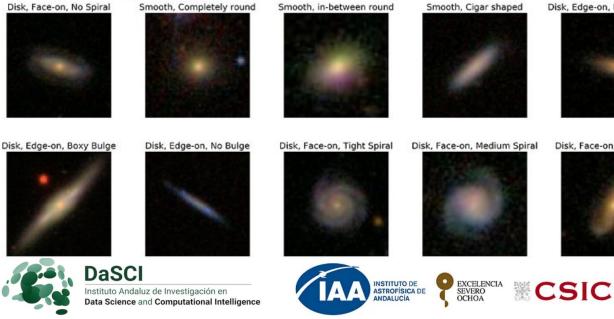
Architecture of CNNs:

- Feature extraction
- Dimension reduction


State-of-the-art models

Feature extraction is the input of the dense layer classification stage

Practical Deep Learning: A quick glance Image classification and object detection

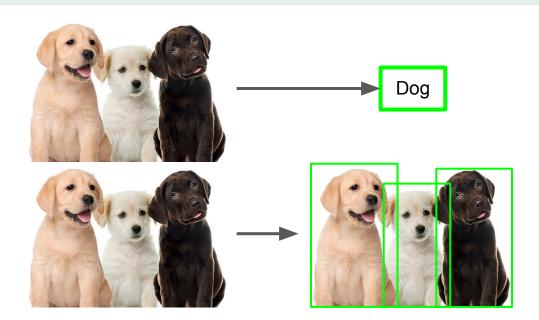

7

Galaxy10 toy dataset

(astroNN web)

Galaxy10 dataset (21785 images) Class 0 (3461 images): Disk, Face-on, No Spiral Class 1 (6997 images): Smooth, Completely round Class 2 (6292 images): Smooth, in-between round Class 3 (394 images): Smooth, Cigar shaped Class 4 (1534 images): Disk, Edge-on, Rounded Bulge Class 5 (17 images): Disk, Edge-on, Boxy Bulge Class 6 (589 images): Disk, Edge-on, No Bulge Class 7 (1121 images): Disk, Face-on, Tight Spiral Class 8 (906 images): Disk, Face-on, Medium Spiral Class 9 (519 images): Disk, Face-on, Loose Spiral

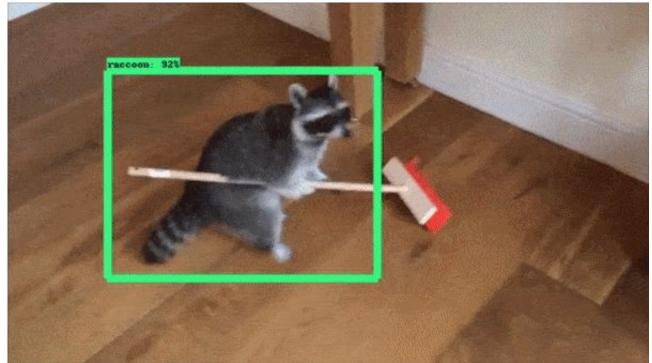
Example images of each class from Galaxy10 dataset



Disk, Edge-on, Rounded Bulge

Disk, Face-on, Loose Spiral

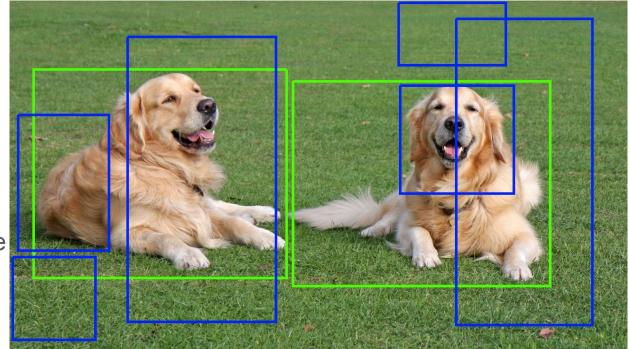
- Image classification
 - A brief summary
 - Galaxy classification
- Object detection
 - Introduction
 - State-of-the-art meta-architectures
 - Practical example of detection



• Practical: Classification of galaxies

Provide the object (class) and location (bounding box/region)

Instituto Andaluz de Investigación en Data Science and Computational Intelligence

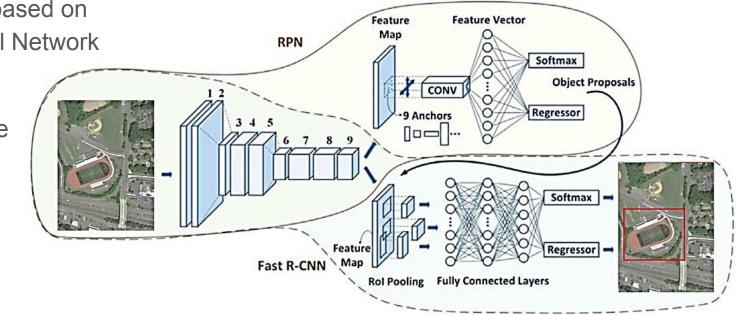


Object detection models:

Simultaneously learn

- Region proposal
- Object classification

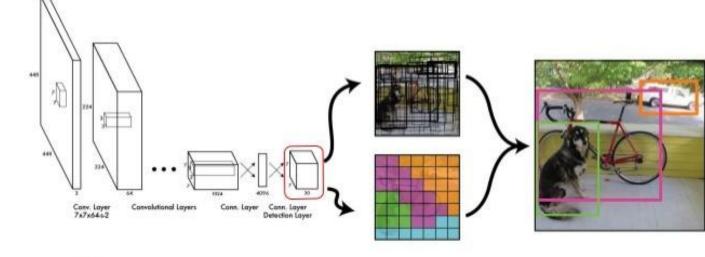
Output a set of candidates regions-class and confidence



Faster R-CNN architecture:

Region proposal based on a Region Proposal Network

- Slower
- More accurate
- Small objects



SSD or YOLO

Region proposal based on grid YOLO: You Only Look Once

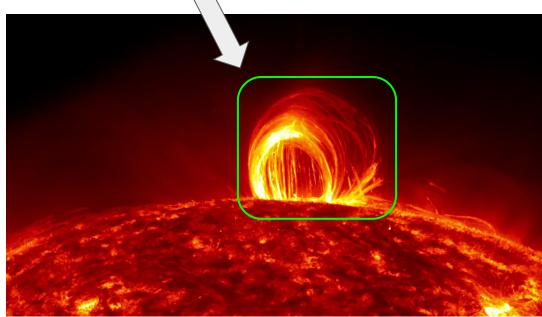
- Faster
- Less accurate
- No good with small objects

CSIC

Detect fiery looping rain on the Sun

<u>Video</u>

A recurrent pattern in a structured signal can be learned


- RGB images
- Texture, color, shape

Experiment configuration

<u>Download</u>

(X, Y, W, H)

Location Color properties Dimension Movement

. . .

Detection annotation

- Image information
- Objects
 - Class
 - Region

```
<folder>train</folder>
<filename>FieryLoopingRainSun-187.jpg</filename>
<path>/home/alcasla/Escritorio/Astro/Solar-FieryLoop/train/FieryLoopingRainSun-187.jpg</path>
    <database>Unknown</database>
    <width>1280</width>
    <height>720</height>
<segmented>0</segmented>
    <name>fiery loopw</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
        <xmin>699</xmin>
        <ymin>376</ymin>
        <xmax>820</xmax>
        <ymax>471</ymax>
```

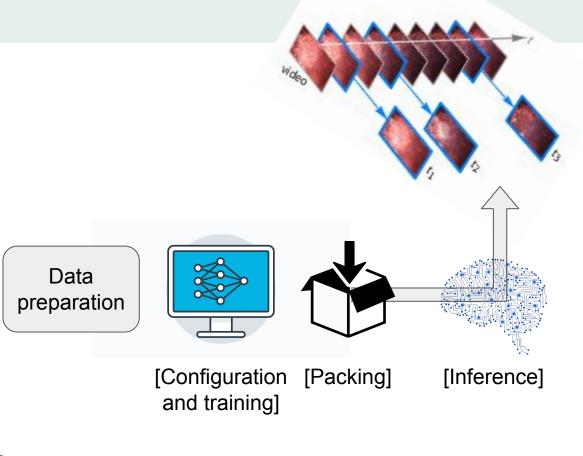


Labellmg

Repository

github.com/tzutalin/labelImg

Installer file


tzutalin.github.io/labellmg/

FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
187.jpg	192.jpg	197.jpg	199.jpg	204.jpg
FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
209.jpg	212.jpg	217.jpg	222.jpg	224.jpg
FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
229.jpg	234.jpg	237.jpg	242.jpg	247.jpg
3		9	0	
FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
	192.xml	197.xml	199.xml	204.xml
FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
FieryLoopi ngRainSun- 187.xml	FieryLoopi ngRainSun-	FieryLoopi ngRainSun-	FieryLoopi ngRainSun-	FieryLoopi ngRainSun-
FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi	FieryLoopi
ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-	ngRainSun-
187.xml	192.xml	197.xml	199.xml	204.xml

Instituto Andaluz de Investigación en Data Science and Computational Intelligence INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA EXCELENCIA SEVERO OCHOA

CSIC

Object detection framework

github.com/tensorflow/models/tree/master /research/object_detection

Software configuration

github.com/spsrc/somachine2021

Build conda environment using .yml file

Model Zoo

We provide a large collection of models that are trained on several datasets in the Model Zoo.

Guides

- Configuring an object detection pipeline
- Preparing inputs
- Defining your own model architecture
- · Bringing in your own dataset
- · Supported object detection evaluation protocols
- TPU compatible detection pipelines
- Training and evaluation guide (CPU, GPU, or TPU)

Extras:

- · Exporting a trained model for inference
- · Exporting a trained model for TPU inference
- · Inference and evaluation on the Open Images dataset
- Run an instance segmentation model
- Run the evaluation for the Open Images Challenge 2018/2019
- Running object detection on mobile devices with TensorFlow Lite
- · Context R-CNN documentation for data preparation, training, and export

- Image classification
 - A brief summary
 - Galaxy classification
- Object detection
 - Introduction
 - State-of-the-art meta-architectures
 - Practical example of detection
- Practical: Classification of galaxies

