# Simple Sentiment Analysis¶

This notebook shows how to analyze a collection of passages like Tweets for sentiment.

This is based on Neal Caron's An introduction to text analysis with Python, Part 1.

This Notebook shows how to analyze one tweet.

### Setting up our data¶

Here we will define the data to test our positive and negative dictionaries.

In [6]:
theTweet = "No food is good food. Ha. I'm on a diet and the food is awful and lame."
positive_words=['awesome','good','nice','super','fun','delightful']

In [7]:
type(positive_words)

Out[7]:
list

### Tokenizing the text¶

Now we will tokenize the text.

In [8]:
import re
theTokens = re.findall(r'\b\w[\w-]*\b', theTweet.lower())
print(theTokens[:10])

['no', 'food', 'is', 'good', 'food', 'ha', 'i', 'm', 'on', 'a']


### Calculating postive words¶

Now we will count the number of positive words.

In [14]:
numPosWords = 0
for banana in theTokens:
if banana in positive_words:
numPosWords += 1
print(numPosWords)

1


### Calculating negative words¶

Now we will count the number of negative words.

In [10]:
numNegWords = 0
for word in theTokens:
if word in negative_words:
numNegWords += 1
print(numNegWords)

2

In [18]:
v1 = "0"
v2 = 0
v3 = str(v2)
v1 == v3

Out[18]:
True

### Calculating percentages¶

Now we calculate the percentages of postive and negative.

In [11]:
numWords = len(theTokens)
percntPos = numPosWords / numWords
percntNeg = numNegWords / numWords
print("Positive: " + "{:.0%}".format(percntPos) + "  Negative: " + "{:.0%}".format(percntNeg))

Positive: 6%  Negative: 11%


### Deciding if it is postive or negative¶

We are going assume that a simple majority will define if the Tweet is positive or negative.

In [12]:
if numPosWords > numNegWords:
print("Positive " + str(numPosWords) + ":" + str(numNegWords))
elif numNegWords > numPosWords:
print("Negative " + str(numPosWords) + ":" + str(numNegWords))
elif numNegWords == numPosWords:
print("Neither " + str(numPosWords) + ":" + str(numNegWords))

print()

Negative 1:2



## Next Steps¶

Let's try another utility example, this time looking at more Complex Sentiment Analysis.

CC BY-SA From The Art of Literary Text Analysis by StÃ©fan Sinclair & Geoffrey Rockwell. Edited and revised by Melissa Mony.
Created August 8, 2014 (Jupyter 4.2.1)

In [ ]: