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Abstract

We study individual earnings dynamics over the life cycle using panel data on
millions of U.S. workers. Using nonparametric methods, we first show that the
distribution of earnings changes exhibits substantial deviations from lognormality,
such as negative skewness and very high kurtosis. Further, the extent of these non-
normalities varies significantly with age and earnings level, peaking around age 50
and between the 70th and 90th percentiles of the earnings distribution. Second,
we estimate nonparametric impulse response functions and find important asym-
metries: positive changes for high-income individuals are quite transitory, whereas
negative ones are very persistent; the opposite is true for low-income individuals.
Third, we turn to long-run outcomes and find substantial heterogeneity in the cu-
mulative growth rates of earnings and total years individuals spend nonemployed
between ages 25 and 55. Finally, by targeting these rich sets of moments, we esti-
mate stochastic processes for earnings, that range from the simple to the complex.
Our preferred specification features normal mixture innovations to both persistent
and transitory components, and includes long-term nonemployment shocks with a
realization probability that varies with age and earnings.
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1 Introduction
The goal of this paper is to characterize the most salient properties of individual

earnings dynamics over the life cycle, focusing on nonnormalities and nonlinearities.
First, by studying its higher-order moments (specifically, skewness and kurtosis), we
investigate the distribution of earnings changes, and whether it can be well approximated
by a normal distribution. Second, we explore mean reversion patterns of earnings changes
that may differ between positive and negative changes as well as by size. Finally, we
study how these properties vary over the life cycle and across the earnings distribution.

The extent and nature of these nonnormalities and nonlinearities are difficult to pre-
dict beforehand, and strong parametric assumptions can mask those features, making
it difficult to uncover them. With these considerations in mind, we first employ a fully
nonparametric approach and take “high-resolution pictures” of individuals’ earnings his-
tories. To this end, we use administrative panel data from the U.S. Social Security
Administration (SSA) covering a long time span from 1978 to 2013, with a substantial
sample size (10% random sample of males aged 25–60).1 Next, using the facts uncovered
in this descriptive analysis, we estimate nonlinear and non-Gaussian earnings processes.

Our descriptive analysis covers (i) the properties of the distributions of earnings
changes, (ii) the extent of mean reversion during the 10 years following earnings changes,
and (iii) workers’ long-term outcomes covering their entire working lives such as cumu-
lative earnings growth and the incidence of nonemployment.

Starting with the distribution of earnings changes, we find that it is left- (negatively)
skewed, and this left-skewness becomes more severe as individuals get older, or their
earnings increase (or both). For example, workers aged 45–55 and earning about $100,000
per year (in 2010 dollars) face a five-year log earnings change distribution with a lower
tail (the gap between the 50th and 10th percentiles) 2.5 times longer than the upper
tail (50th to 90th percentiles). In contrast, low-income young workers face an almost
symmetric distribution. The rise in left-skewness over the life cycle is entirely due to
a reduction in opportunities for large gains from ages 25 to 45 and to the increasing
likelihood of a sharp fall in earnings after age 45.

In addition, earnings growth displays a very high kurtosis relative to a Gaussian
density (Figure 1). There are far more people in the data with very small and extreme

1In this paper, we focus on men for comparability with earlier work. Our analysis for women found
qualitatively similar patterns. These results are reported in an online appendix on the authors’ websites.
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Figure 1 – Histograms of One- and Five-Year Log Earnings Changes
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Notes: This figure plots the empirical densities of one- and five-year earnings changes superimposed on Gaussian densities
with the same standard deviation. The data are for all workers in the base sample defined in Section 2 and t = 1997.

earnings changes and fewer people with middling ones. For example, 31% of the annual
earnings changes are less than 5%, compared to only 8% under the Gaussian distribution.
Also, a typical worker sees a change larger than three standard deviations with a 2.4%
chance, which is about one-ninth as likely under a normal distribution. Importantly, the
average kurtosis masks significant heterogeneity. For example, five-year earnings growth
of males aged 45–55 and earning $100,000 has a kurtosis of 18, compared to 5 for younger
workers earning $10,000 (and 3 for a Gaussian distribution).

What are the sources of nonnormalities? While a full-blown investigation is beyond
the scope of this paper, we shed some light on the question by using data from the Panel
Study of Income Dynamics (PSID), which contains information not available in the SSA
data. We find that hourly wage changes exhibit little left-skewness but an excess kurtosis
with a magnitude and life-cycle variation similar to earnings changes. Furthermore, we
find that wage changes are at least as important as hours changes, even in the tails of
the distribution. For example, a group of workers with an earnings decline of around 165
log points experience an average wage decline of 101 log points. Furthermore, workers
experiencing these extreme changes are likely to have gone through nonemployment, job
or occupation changes, or experienced health shocks, suggesting that the tails are not
purely a statistical artifact or measurement error in survey data.

Next, we characterize the mean reversion patterns of earnings changes by estimating
nonparametric impulse response functions conditional on recent earnings and on the
size and sign of the change. We find two types of asymmetry. First, fixing the size
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of the change, positive changes to high-earnings individuals are quite transitory while
negative ones are persistent, in contrast, the opposite is true for low-earnings individuals.
Second, with a fixed level of earnings, the strength of mean reversion differs by the size
of the change: large changes tend to be much more transitory than small ones. These
asymmetries are difficult to detect in a covariance matrix, in which all sorts of earnings
changes—large, small, positive, and negative—are masked by a single statistic.

Finally, we document two facts regarding long-term outcomes covering individuals’
entire working lives. First, the cumulative earnings growth over the life cycle varies
systematically and substantially across groups of workers with different lifetime earnings.
For example, average earnings rise by 60% from age 25 to age 55 for the median lifetime
earnings group, by 4.8-fold for the 95th percentile, and by 27.8-fold for the top 1 percent
groups.2 Second, there is substantial variation in individuals’ lifetime nonemployment
rate—which we define as the fraction of lifetime (ages 25 to 60) spent as (full-year)
nonemployed. For example, 40% of men experience at most one year of nonemployment,
while 18% spend more than half of their working years as nonemployed. These numbers
imply an extremely high persistence in the long-term nonemployment state.

While the nonparametric approach allows us to establish key features of earnings dy-
namics in a transparent way, a tractable parametric process is indispensable because (i)
it allows us to connect earnings changes to underlying innovations or shocks to earnings,
and (ii) it can be used as an input to calibrate quantitative models with idiosyncratic
risk.3 Therefore, in Section 6, we target the empirical moments described above to esti-
mate a range of income processes. We start with the familiar linear-Gaussian framework
and build on it incrementally until we arrive at a rich, yet tractable benchmark specifi-
cation that can capture the key features of the data. Along the way, we discuss which
aspect of the data each feature helps capture so that researchers can judge the trade-offs
between matching a particular moment and the additional complexity it brings.

Our preferred benchmark process extends the linear-Gaussian framework to contain
(i) an AR(1) process with innovations from a mixture of normals; (ii) an i.i.d. normal

2A positive relationship between lifetime earnings and life-cycle earnings growth is to be expected.
What is surprising is that the magnitudes are so large that they cannot be explained by simple processes.

3Although we follow the common practice in the literature of referring to innovations as income
“shocks,” individuals are likely to have more information about them than what we—as econometri-
cians—can identify from earnings data alone. Separating expected from unexpected changes requires
either survey data on expectations (e.g., Pistaferri (2003)) or economic choices (e.g., Cunha et al. (2005)
and Guvenen and Smith (2014)). Tackling this important question is beyond the scope of this paper.
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mixture transitory shock; and (iii) heterogeneous income profiles. More importantly,
we estimate (iv) a long-term nonemployment shock with a realization probability that
depends on age and earnings, which helps capture life-cycle and income variation of the
moments. This heterogeneous nonemployment risk generates recurring nonemployment
with long-term scarring effects concentrated among young and low-income individuals.
Our empirical facts require non-Gaussian features in persistent innovations; these can
be achieved by such nonemployment shocks or non-Gaussian shocks to the persistent
component, but not by a uniform nonemployment risk that is transitory in nature.4

Related Literature. The earnings dynamics literature has a long history, dating back
to seminal papers by Lillard and Willis (1978), Lillard and Weiss (1979), and MaCurdy
(1982). Until recently, this literature focused on linear ARMA-type time series models
identified from the variance-covariance matrix, thereby abstracting away from nonlinear-
ities and nonnormalities of the data.5

In an important paper, Geweke and Keane (2000) modeled earnings innovations us-
ing normal mixture distributions and found important deviations from normality.6 More
recently, using earnings data from France, Bonhomme and Robin (2009) estimate a flex-
ible copula model for the dependence patterns over time and a mixture of normals for
the transitory component that displays excess kurtosis. Bonhomme and Robin (2010)
use a nonparametric deconvolution method and find excess kurtosis in permanent and
transitory shocks. We go beyond the overall distribution and document that nonnor-
malities in transitory and persistent components vary substantially with earnings levels
and age. Another related paper is Guvenen et al. (2014b), which shows that earnings
growth becomes more left skewed in recessions, however, it abstracts away from life-cycle
variation. We also go further by analyzing kurtosis and how it varies across the income
distribution, asymmetries in mean reversion, and the heterogeneity in life-cycle income
growth rates and lifetime nonemployment rates, which are all absent from that paper.

4A transitory nonemployment shock (or any transitory shock for that matter) cannot generate
left skewness in earnings growth, because each nonemployment spell contributes same-sized negative
and positive earnings change observation (one when the worker becomes nonemployed and one when he
returns to work), consequently, stretching both tails of the distribution, leaving the symmetry unaffected.

5Quantitative macroeconomists use income processes usually by discretizing them using Tauchen or
Rowenhorst methods. Typical implementations of the Tauchen method assume the shocks are normally
distributed. Rowenhorst method does not rely on this assumption, but it focuses on matching the first
two moments of earnings levels and ignores the mechanical implications for the distribution of changes.

6In an even earlier contribution, Horowitz and Markatou (1996) showed how an income dynamics
model can be estimated nonparametrically and found evidence of nonnormality in the error components.
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In contemporaneous work, Arellano et al. (2017) explore nonlinear earnings dynamics.
They propose a new approach based on estimating the conditional quantiles of earnings,
which allows the persistence of earnings to vary with the size and sign of the shock. They
find asymmetries in mean reversion and non-Gaussian features that are consistent with
our results. They also show that the consumption response to earnings shocks displays
nonlinearities, which we do not study. Relative to that paper, we provide a more in-depth
analysis of the conditional skewness and kurtosis of earnings, document how they differ
between job-stayers and switchers, examine systematic variation in lifecycle earnings
profiles and lifetime employment rates. Overall, the two papers complement each other.

Finally, our work is also related to Altonji et al. (2013), who estimate a joint process
for earnings, wages, hours, and job changes, targeting a rich set of moments via indirect
inference. Browning et al. (2010) also employ indirect inference to estimate a process
featuring “lots of heterogeneity.” However, neither paper explicitly focuses on higher-
order moments, their evolution over the life cycle, or asymmetries in mean reversion.

2 Data and Variable Construction

2.1 The Data Set

We draw a representative 10% panel sample of the U.S. population from the Master
Earnings File (MEF) of the SSA. The MEF combines various datasets that go back
as far as 1978. For our purposes, the most important variables include labor income
from W-2 forms (for each job held by the employee during the year), self-employment
income (obtained from the Internal Revenue Service (IRS) tax form Schedule SE), and
various demographics (date of birth, sex, and race).7 We focus on total annual labor
earnings, which is the sum of total annual wage income plus the labor portion (2/3) of
self-employment income.

Wage income is not top coded throughout our sample, whereas self-employment in-
come was capped at the SSA taxable limit until 1994. Although this top coding affects
only a small number of individuals who make substantial income from self-employment,
we restrict our analysis to the 1994–2013 period to ensure that our analysis of higher-
order moments is not affected by this issue. The only exception is our use of the entire

7The measure of earnings on the W-2 form (Box 1) includes all wages and salaries, tips, restricted
stock grants, exercised stock options, severance payments, and other types of income considered remu-
neration for labor services by the IRS. It does not include any pre-tax payments to individual retirement
accounts (IRAs), retirement annuities, child care expense accounts, or other deferred compensation.
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1978 to 2013 period in Section 5, where we analyze long-term outcomes of workers for
which a longer time series is essential, such as the cumulative income growth over the
life cycle. For robustness, we impute self-employment income above the cap for the years
before 1994 using quantile regressions. Only a small number of individuals are affected
by this imputation, so the effect on our results is minimal. The details are provided
in Appendix A.1. Finally, we convert nominal values to real values using the personal
consumption expenditure (PCE) deflator, taking 2010 as the base year (see Appendix A
for further details of the construction of our sample and variables).

Despite the advantages noted, the dataset also has some important drawbacks, such
as limited demographic information, the absence of capital income, and the lack of hours
(and thus hourly wage) data. To overcome some of these limitations, we supplement
our analysis with survey data whenever possible. Another important limitation is the
lack of household-level data. Even though a large share of quantitative models focus on
individual earnings fluctuations (which we study), household earnings dynamics are key
for some economic questions, for which we have little to say about in this paper.8

2.2 Sample Selection

Our base sample is a revolving panel consisting of males with some labor market
attachment that is designed to maximize the sample size (important for precise com-
putation of higher-order moments in finely defined groups) and keep the age structure
stable over time. First, in order for an individual-year income observation to be admis-
sible to the base sample, the individual (i) must be between 25 and 60 years old (the
working lifespan) and (ii) have earnings above the minimum income threshold Ymin,t, that
is equivalent to one quarter of full-time work (13 weeks at 40 hours per week) at half of
the legal minimum wage in year t (e.g., approximately $1,885 in 2010). The revolving
panel for year t then selects individuals that are admissible in t− 1 and in at least two
more years between t−5 and t−2. This ensures that the individual was participating in
the labor market and we can compute a reasonable measure of average recent income—a
variable widely used extensively in the paper—which we describe next.

Recent Earnings. The average income of a worker i between years t− 1 and t− 5 is
given by Ŷ i

t−1 = 1
5

∑5
j=1 max

{
Ỹ i
t−j, Ymin,t

}
, where Ỹ i

t denotes his earnings in year t. We

then control for age and year effects by regressing Ŷ i
t−1 on age dummies separately for

8Arellano et al. (2017) show that household earnings dynamics in the PSID also display non-Gaussian
and nonlinear features.
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each year, and define the residuals as recent earnings (hereafter RE), Ȳ i
t−1. In Sections

3 and 4, we will group individuals by age and by Ȳ i
t−1 to investigate how the properties

of income dynamics vary over the life cycle and by income levels.

3 Cross-Sectional Moments of Earnings Growth

In this section, we study the distribution of earnings growth rates by analyzing its
second to fourth moments. We start by describing our nonparametric method.

3.1 Empirical Methodology: A Graphical Construct

Our main focus is on how the moments of earnings growth vary with recent earnings
and age. To this end, for each year t, we divide individuals into six groups based on
their age in t − 1 (25–29, 30–34, 35–39, 40–44 and 45–54), and then within each age
group, sort individuals into 100 percentile groups by their recent earnings Ȳ i

t−1. If these
groupings are done at a sufficiently fine level, we can think of all individuals within a
given age/RE group to be ex ante identical (or at least very similar). Then, for each
such group, the cross-sectional moments of earnings growth between t and t+ k can be
viewed as the properties of earnings changes that workers within that group expect to
face looking ahead (see Figure 2). In our figures, we plot the average of these moments
for each age/RE group over years between 1997 and 2013-k. This approach allows us
to compute higher-order moments precisely as each bin contains a very large number
of observations (see Table A.1 for sample size statistics). To make the figures more
readable, we aggregate the six age groups into three: 25–34, 35–44, 45–54.9

Growth Rate Measures. In our analysis we use two measures of income change, each
with its own distinct advantages and trade-offs. The first measure is log growth rate of
income between t to t+k, ∆k

logy
i
t ≡ yit+k−yit, where yit = ỹit−dt,h(i,t) denote the log income

Figure 2 – Timeline for Rolling Panel Construction

9To be more precise, the first age group consists of individuals aged 28–34 in year t− 1 due to the
base sample requirement of having a minimum three years of admissible observations.
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(ỹit) of individual i in year t at age h(i, t) net of age and year effects dt,h(i,t). {dt,h}60
h=25

are obtained by regressing ỹit on a full set of age dummies separately in each year. While
its familiarity makes the log change a good choice for the descriptive analysis, it has a
well-known drawback that observations close to zero need to be dropped or winsorized
at an arbitrary value. When we use ∆k

logy
i
t, we drop individuals from the sample with

earnings less than Ymin in t or t+ k, and lose information in the extensive margin.

Our second measure of income growth—arc-percent change—is not prone to this
caveat and is commonly used in the firm-dynamics literature, where firm entry and
exit are key margins (e.g., Davis et al. (1996)). We define ∆k

arcY
i
t =

Y it+k−Y
i
t

(Y it+k+Y it )/2
, where

earnings level Y i
t =

Ỹ it
d̃t,h(i,t)

is net of average earnings in age h and year t, d̃t,h(i,t). Because
of its familiarity, we use the log change measure in this section and report the results for
arc-percent change in Appendix C.2, which show qualitatively similar patterns.

Transitory vs. Persistent Income Changes. As is well understood, longer-term
earnings changes (i.e., ∆k

logy
i
t with larger k) reflect more persistent innovations. To see

this intuition, consider the commonly used random-walk permanent/transitory model in
which permanent (ηit) and transitory (εit) innovations are drawn from distributions Fη
and Fε, respectively. We denote the variance, skewness and excess kurtosis of distribution
Fx, x ∈ {η, ε} by σ2

x, Sx, and Kx, respectively. Then the second to fourth moments of
k−year log income growth ∆k

logy
i
t are given by (see Appendix B for the derivations):

σ2(∆k
logy

i
t) = kσ2

η + 2σ2
ε ,

S(∆k
logy

i
t) =

k × σ3
η

(kσ2
η + 2σ2

ε)
3/2︸ ︷︷ ︸

<1

Sη, (1)

K(∆k
logy

i
t) =

k × σ4
η

(kσ2
η + 2σ2

ε)
2︸ ︷︷ ︸

<1

Kη +
2× σ4

ε

(kσ2
η + 2σ2

ε)
2︸ ︷︷ ︸

<1

Kε.

Equation 1 shows that as k increases the variance and kurtosis of k−year log change
∆k

logy
i
t reflect more of the distribution of ηit than that of εit. Also, skewness is solely driven

by permanent changes.10 Finally, the distribution of ∆k
logy

i
t is closer to normal than the

underlying distributions of Fη and Fε, because as innovations ηit and εit accumulate, the
distribution of ∆k

logy
i
t converges toward Gaussian, per the central limit theorem.

10A time-varying distribution of transitory innovations can lead to asymmetry in earnings growth.
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Figure 3 – Dispersion of Five-Year Log Earnings Growth

(a) Second Standardized Moment
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With these considerations in mind, we document the moments of one-year (k = 1)
and five-year (k = 5) residual earnings growth to capture properties of transitory and
persistent changes, respectively. As persistent changes have a greater effect on economic
decisions compared with easier-to-insure transitory ones, we present the results for k = 5

in this section. The figures for k = 1 in Appendix C.1 show the same qualitative patterns.

3.2 Second Moment: Variance

Figure 3a plots the standard deviation of five-year residual earnings growth by age and
recent earnings groups (for clarity we use one marker for every 4th RE percentile group).
In the right panel, we also report a quantile-based dispersion measure—the difference
between the 90th and 10th percentiles of log earnings changes—denoted P90-P10, which
is robust to outliers. By both measures and for every age group, there is a pronounced
U-shape pattern across income groups. For example, for 35–44-year-olds, the standard
deviation falls from 1.05 for the lowest RE group to 0.6 for the 90th percentile, and then
rises rapidly to 1.05 for the top 1%.

Baker and Solon (2003) and Karahan and Ozkan (2013) have estimated a U-shaped
life-cycle profile for the variance of persistent shocks. Our analysis reveals a more intricate
life-cycle variation, as we also condition on recent earnings: Dispersion declines with age
for the bottom one third of the RE distribution, is U-shaped until the 95th percentile,
and monotonically increases for the top earners. However notice that the magnitude of
variation with age is quite a bit smaller compared with the RE variation.

One important observation is that the highest earners (the top 5% or so) are strikingly
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Figure 4 – Skewness of Five-Year Log Earnings Growth

(a) Third Standardized Moment
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different from other high earners—even those just below the 95th percentile. The same
theme will emerge again in our analysis of higher-order moments.

3.3 Third Moment: Skewness (Asymmetry)

Figure 4a plots the skewness of five-year earnings growth, measured as the third
standardized moment. First, notice that earnings changes are negatively (left) skewed
at every stage of the life cycle and for (almost) all earnings groups. Second, skewness
is increasingly more negative for individuals with higher earnings and as individuals get
older. Thus, it seems that the higher an individual’s current earnings, the more room
they have to fall and the less room they have left to move up. Note that the variation
in skewness with age is more muted for individuals at the bottom or top of the (recent)
earnings distribution (similar to the dispersion patterns above).

Is negative skewness as measured by the third central moment driven by extreme
observations? While the information on tails is important (and becomes especially valu-
able in estimating income processes in Section 6), we also look at Kelley (1947) skewness,
SK = (P90-P50)−(P50-P10)

P90-P10 , which is robust to observations above the 90th or below the 10th
percentile of the distribution. Basically, SK measures the relative fractions of the overall
dispersion (P90–P10) accounted for by the upper and lower tails. Specifically, SK <0

implies that the lower tail (P50-P10) is longer than the upper tail (P90-P50).

Kelley’s skewness exhibits essentially the same pattern as that of the third moment
(Figure 4b). Thus, the asymmetry is prevalent across the entire distribution rather
than being driven just by the tails. Furthermore, the magnitude of negative skewness
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is substantial. For example, a Kelley measure of –0.44 (for 45–54-year-old workers at
the 80th percentile of the RE distribution) implies that P90-P50 accounts for 28% of
P90-P10, far removed from the 50-50 of a normal distribution.

Figure 5 – Skewness Decomposed: P90-P50 and P50-P10 Relative to Age 25–34

(a) P90-P50
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Notes: The y-axes show the change in P90-P50 and P50-P10 from the youngest age group to the two older age groups.

Another question is whether skewness becomes more negative over the life cycle
because of a compression of the upper tail (fewer opportunities for large gains) or because
of an expansion in the lower tail (higher risk of large declines). To answer this question,
we investigate how the P90-P50 and P50-P10 change over the life cycle from their levels
in ages 25–34 (Figure 5). Up until age 44, both the P90-P50 and P50-P10 decline with
age across most of the RE distribution. However, the upper tail compresses more strongly
than the lower tail, which leads to the increasing left skewness. After age 45, the P90-P50
keeps shrinking, but the bottom end opens up for workers with above median RE (large
declines become more likely). Top earners are again an exception to this pattern: the
upper tail does not compress with age, but the bottom end opens up monotonically.

A natural question is whether the negative skewness is simply due to unemployment
spells. First, notice that unemployment can generate negative skewness in earnings
growth only if it has persistent effects: a transitory unemployment spell contributes one
negative and one positive earnings change of similar size, leaving the symmetry unaffected
(as shown by equation 1 for an arbitrary distribution Fε). Jacobson et al. (1993) and Von
Wachter et al. (2009) show that workers’ earnings indeed experience large scarring effects
after mass layoffs. We revisit this point in Section 6, where we link earnings changes to
the underlying shocks. Second, negative skewness is stronger for upper middle-income

11



Table I – Fraction of Individuals within Selected Ranges of Log Earnings Change

Prob(|∆1
logyt| ∈ S)

S : Data N (0, 0.51) Ratio
[−0.05, 0.05] 30.6 7.7 3.88
[−0.10, 0.10] 48.8 15.4 3.27
[−0.20, 0.20] 66.5 30.2 2.23
2σ+: [1.02,∞) 6.64 4.55 1.46
3σ+: [1.53,∞] 2.37 0.027 8.77

Notes: The empirical distribution used in this calculation is for 1997-98, the same as in Figure 1.

and older workers, for whom unemployment risk is relatively small, implying that decline
in hours is not the main driver. Finally, as noted above, the shift toward more negative
skewness is mostly coming from the compression of the right tail up to age 45, which is
unlikely to be related to unemployment.

3.4 Fourth Moment: Kurtosis (Peakedness and Tailedness)

We begin by discussing what kurtosis measures. One can think of it as the tendency of
a probability distribution to stay away from µ±σ (see Moors (1986)). Thus, a leptokurtic
distribution often has a sharp/pointy center, long tails, and little mass near µ ± σ. A
corollary to this description is that with excess kurtosis, the usual way we think about
standard deviation—as representing the size of the typical earnings change—is not very
useful: most realizations will be either close to the center (median) or in the tails.

To illustrate this point, we calculate concentration measures for earnings growth.
Table I reports the fraction of individuals experiencing an absolute log earnings change
less than a threshold x = 0.05, 0.10, and so on. In the data 31% of workers experience
an earnings change of less than 5%, whereas if innovations were drawn from a Gaussian
density with the same standard deviation as the data, only 8% of individuals would
experience such changes. Furthermore, extreme events are more likely in the data: A
typical worker experiences a change larger than three standard deviations (153 log points)
once in a lifetime—with a 2.4% annual chance—whereas this probability is almost one-
ninth that size under a normal distribution. These values suggest that the Gaussian
assumption vastly overstates the typical earnings growth and misses the extreme changes
received by a non-negligible share of the population.

The high likelihood of extreme events in the data motivate us to take a closer look at
the tails of the earnings growth distribution by examining its empirical log density versus
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Figure 6 – Double-Pareto Tails of the U.S. Annual Earnings Growth Distribution
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Notes: The empirical distribution in this figure is for 1997-98, the same as in Figure 1 but with the y-axis now in logs.

the Gaussian log density (which is an exact quadratic). First, in line with our previous
discussion, the data has much thicker and longer tails compared with a normal distribu-
tion (Figure 6). Second, the tails decline almost linearly, implying a Pareto distribution
at both ends. Third, they are asymmetric, with the left tail declining much more slowly
than the right, which contributes to the left skewness documented above. In fact, fitting
linear lines to each tail (in the regions ±[1, 4]) yields a tail index of 1.18 for the right
tail and 0.40 for the left tail—the latter showing especially high thickness. We highlight
that while the Pareto tail in the earnings levels distribution is well known—indeed, going
as far back as Pareto (1897)—the two Pareto tails emerge here in the earnings growth
distribution. To our knowledge, the present paper is the first to document this fact.

Finally, we quantify the extent of kurtosis by looking at two measures. The first is
the familiar fourth standardized moment of the data. For the same reasons given above
for dispersion and skewness, the second one is the quantile-based Crow and Siddiqui
(1967) measure, κC-S = P97.5−P2.5

P75−P25
, which is equal to 2.91 for a Gaussian distribution.

Both measures of kurtosis increase monotonically up to the 80th to 90th percentiles of
RE for all age groups (Figure 7). That is, high earners experience even smaller changes
of either sign, and few experience very large changes. Also, kurtosis tends to increase
with age for all RE levels (except the top 5%). It peaks over RE at 14 for the youngest
group and at 17.5 for the 35–44-year-olds. The Crow-Siddiqui measure also shows very
high kurtosis levels, indicating that the excess kurtosis is not driven by outliers.
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Figure 7 – Kurtosis of Five-Year Log Earnings Growth
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Overall, these findings show that earnings changes in the U.S. data exhibit important
deviations from lognormality, and the extent of these deviations varies both over the life
cycle and with the income level of individuals.

An Alternative Approach to Isolating Persistent Changes As we argued earlier,
five-year log income change acts as a proxy for persistent innovations. However, it still
contains the transitory innovations in years t and t+ 5. Another approach is to look at
the growth between average future (over t to t+ 4) and average past earnings (over t− 1

to t − 5), which should partially purge transitory changes; i.e., ∆
5

log(ȳt
i) ≡ ȳit+4 − ȳit−1,

where ȳit+4 ≡ log(Ȳ i
t+4) and ȳit−1 ≡ log(Ȳ i

t−1). Ȳ i
t+4 is analogous to recent earnings Ȳ i

t−1

but is calculated over the period t to t+ 4.

If nonnormalities are present only in the transitory changes, we should expect this
alternative measure to be closer to a Gaussian distribution. Centralized moments of
this measure display similar patterns to those in our baseline figures, confirming strong
non-Gaussian features in persistent changes (Figure 8). In fact, this measure displays
a slightly higher left-skewness and excess kurtosis compared to the 5-year log change
measure, which suggests that nonnormalities are stronger in persistent innovations than
transitory ones. A more formal exploration in Section 6 will reach similar conclusions.

3.5 Job-Stayers and Job-Switchers

Economists have documented that the earnings changes of workers who stay with the
same employer (job-stayers) are notably different from the changes of workers who switch
jobs (job-switchers) (see, Topel and Ward (1992), Low et al. (2010), and Bagger et al.
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Figure 8 – Centralized Moments of Persistent Earnings Changes, ∆
5
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(2014)). This literature has focused on the average change, whereas we examine how the
higher-order moments of earnings growth vary between job-stayers and job-switchers.

Figure 9 – Higher-Order Moments of Earnings Growth, ∆5
logy
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The SSA dataset contains employer identification numbers (EINs) that allow us to
match workers to firms. However, the annual frequency of the data, together with
the fact that some workers hold multiple jobs in a given year, poses a challenge for a
precise identification of job-stayers and job-switchers. We have explored several plausible
definitions for stayers and switchers and found qualitatively similar results. Here, we
describe one reasonable definition: A worker is said to be a job-stayer between years t
and t + 1 if he has a W-2 form from the same firm in years t − 1 through t + 2 , and
that firm is the main employer by providing at least 80% of his total annual earnings in
years t and t+ 1. A worker is defined as a job-switcher if he is not a job-stayer.

We show in Figure 9 how the quantile-based second to fourth moments of five-year
earnings growth for stayers and switchers vary with recent earnings. Relative to job-

15



Table II – Higher-Order Moments of Two-Year Changes in the PSID

All 25–39 40–55
Normal Earnings Wages Earnings Wages Earnings Wages

Skewness 0.0 –0.26 –0.14 –0.17 –0.20 –0.34 –0.09
Kelley Skew. 0.0 –0.02 –0.02 0.03 0.016 –0.06 –0.04
Kurtosis 3.0 12.26 13.65 10.44 9.00 14.01 17.10
Crow Kurt. 2.91 6.83 5.59 6.33 5.02 7.33 6.11

Note: Wages are obtained by dividing annual earnings of male heads of households by their annual hours in the PSID
using data over the period 1999–2013, during which data are biennial.

switchers, job-stayers experience earnings changes that have a smaller dispersion (about
one-third for median-income workers), and are more leptokurtic, especially for low-RE
workers. Changes are symmetric or slightly right skewed for stayers and left skewed for
switchers. The age profiles are broadly similar across switchers and stayers, and figures
for annual changes and centralized moments display similar patterns (Appendix C.4).

3.6 What Are the Sources of Nonnormalities in Earnings Growth?
So far, our analysis has focused on the distribution of annual earnings changes and

remained silent on what may be behind the nonnormalities. For example, are the left
skewness and excess kurtosis also present in the wage growth distribution? What are the
life-cycle events associated with extreme income changes? The lack of information in the
SSA data other than annual earnings does not allow us to investigate these questions,
which, in turn, we study using the PSID.

3.6.1 Separating Earnings, Wages, and Hours

For many economic questions, it is important to know the extent to which nonnor-
malities in earnings dynamics are driven by wages versus hours. For example, if nonnor-
malities come from changes in hours and not wages, this would suggest focus on hours
to identify its underlying sources, e.g., preferences for work or shocks to labor supply
(health shocks, involuntary layoffs, etc.). If, instead, nonnormalities are also present in
wage changes, that would point to a different set of factors to focus on. To shed light on
this question, we analyze the wage growth distribution in the PSID using a sample that
closely mimics the SSA sample (see Appendix C.7 for the construction of the sample).11

We start by investigating the non-Gaussian features of two-year earnings changes in
the PSID (Table II). The centralized third moment and the Kelley measure point to a

11Another approach is to estimate structural models of endogenous labor supply (such as those in
Low et al. (2010) and Heathcote et al. (2010b)) to study the role of hours versus wages in higher-order
moments of earnings growth.
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weakly left skewed distribution, possibly due to added noise in the PSID to the extent
that measurement error is symmetric. Excess kurtosis is a more striking feature: Both
measures of kurtosis from the PSID are quite close to their SSA counterparts. The age
patterns are also broadly in line with those from administrative data. In addition, De
Nardi et al. (forthcoming) document the income variation in higher order moments of
earnings growth from the PSID and find similar patterns to those in the SSA data.

Turning to hourly wage growth, negative skewness in the overall sample is even less
pronounced than that of earnings. Unlike skewness, excess kurtosis of wage growth, and
its life-cycle variation are roughly similar to those features of earnings growth.12 This
evidence suggests the leptokurtic property of earnings growth cannot be driven entirely
by the hours margin. We also conducted an analogous analysis using data from the
Current Population Survey (CPS), which has a larger sample size and reached similar
conclusions, specifically a weak left skewness (possibly due to measurement error) and
strong excess kurtosis in earnings and wage growth (see Appendix C.7).

Motivated by the importance of extreme earnings changes for excess kurtosis, we
investigate the roles of hours and wages in the tails of the earnings growth distribution.
For this purpose, we distribute workers into six groups based on their two-year residual
earnings change. As in the SSA data, most workers experience only small earnings
changes (col. 1 of Table III). For each group, we compute the average change in residual
earnings, hours and wages (Table III, cols. 2-4).13 Our results show that wage changes
are at least as important as hours changes. For example, the bottom group with the 165
log points average earnings decline experiences a 101 log points drop in wages. Clearly,
extensive margin events (e.g. layoffs) can lead to large declines in hours and wages at
the same time. Moreover, wage changes seem to be even more important for smaller
earnings changes (e.g. more than 70% of |∆y| < 0.25 can be attributed to wages).

3.6.2 Linking Earnings Changes to Life-cycle Events

In this section, we link large earnings changes to various life-cycle events. We start
with a natural suspect: nonemployment spells. The group with the largest earnings

12It is well known that there is significant measurement error in hours in the PSID, which leads to
“division bias” when constructing hourly wages (see Bound et al. (2001) and Heathcote et al. (2010b)).
This measurement error attenuates left skewness (if it is classical) and excess kurtosis (if it is Gaussian)
implying that our estimates are lower bounds (see Halvorsen et al. (2018)).

13Log earnings, hours and wages have been residualized by similar but separate regressions. Therefore,
at the individual level, residual hours and wages do not exactly add up to residual earnings. However,
as cols. 2–4 of Table III show, the discrepancy is negligible.
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Table III – Important Life Cycle Events and Earnings Changes

Group Share Mean Mean Mean ∆ wks Occup. Employer Disab.
∆y ∈ % ∆y ∆w ∆h not empl. switch % switch % Flow in %

(1) (2) (3) (4) (5) (6) (7) (8)
(−∞,−1) 3.8% –1.65 –1.01 –0.64 10.01 26.1 45.6 9.2
[−1,−0.25) 14.4% –0.48 –0.34 –0.14 1.62 14.9 29.1 4.4
[−0.25, 0) 31.2% –0.11 –0.08 –0.03 0.17 6.9 13.3 3.5
[0, 0.25) 31.1% 0.11 0.08 0.03 -0.03 5.3 9.7 2.8
[0.25, 1) 16.5% 0.47 0.34 0.13 -1.30 8.6 16.9 2.9
(1,∞) 3.0% 1.64 1.06 0.58 -7.51 18.0 30.7 3.8

Notes: This table shows hours and wage growth (∆h and ∆w, respectively) and the various life-cycle events for people in
different biennial earnings change (∆y) groups. In column 5, “weeks not employed” is the sum of weeks unemployed and
out of the labor force. Columns 6 and 7 show the fraction of workers that switch occupation and employer within each
earnings change group, respectively. Column 8 shows the fraction of workers that become disabled in that period.

decline also reports the largest increase in the incidence of nonemployment—10 weeks
(Table III, col. 5). Similarly, the group with the largest earnings increase reports the
largest decline in nonemployment.14 These results underline the importance of the ex-
tensive margin for the tails of the earnings change distribution.

Next, we study occupation and job mobility, both of which are known to be associated
with large changes in earnings. The likelihood of occupation and employer switches
follows a distinct U-shape pattern with earnings changes (Table III, cols. 6 and 7,
respectively). Compared to the workers with small changes (|∆y| < 0.25), the top
and bottom earnings-change groups are three to four times more likely to make these
switches. The sources of mobility are possibly very different at the top and the bottom
earnings-change groups. For example, the switches at the top are likely associated with
promotions or outside offers, whereas moves at the bottom are probably necessitated by
job losses. We also looked into involuntary geographic moves and found that they are
associated with large earnings changes too (Appendix C.7).

Finally, we investigate health shocks, which are known to have large effects on earn-
ings (see Dobkin et al. (2018)). We focus on disabilities that affect individuals’ work
performance (see Appendix C.7 for a detailed description). We find higher transition
rates into disability for workers with earnings declines, with the highest transition (9.2%)
in the bottom earnings-change group (Table III, col. 8). These results suggest that the
extreme earnings changes are not purely a statistical artifact or measurement error.

14We reached similar conclusions analyzing unemployment and out of labor force separately. The
incidence of unemployment is somewhat lower in the PSID than it is in the CPS: 6.8% of our sample
reports some unemployment in the previous year, compared with around 10% in a similar CPS sample.
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Disability Income If health shocks are an important source of earnings changes, how
important is disability insurance as a safety net? To answer this question, we add
individuals’ Social Security Disability Income (SSDI) from the SSA to their labor income
and construct a “total income” measure. Our results in Appendix C.9.1 show that the
cross-sectional moments of total income overlap with their labor income counterparts,
mainly because the share of SSDI recipients is small, ranging from 1.3% in 1978 to 4.1%
in 2013. However, SSDI makes a noticeable (albeit slight) difference only for the oldest
group of workers, who constitute the majority of the recipients.

To sum up, in light of the vast micro literature that finds very small Frisch elastic-
ities, large changes in earnings, especially declines, are much more likely to represent
involuntary shocks beyond the worker’s control such as health problems, reductions in
hours imposed by the employers, or unemployment.

Related Work A growing literature uses detailed administrative data from various
countries to study the determinants of nonnormalities in earnings growth. Kurmann
and McEntarfer (2018) show that the distribution of hourly wage growth displays high
excess kurtosis for job-stayers in the U.S., and wage changes constitute a substantial
portion of the earnings changes, mostly for those experiencing increases. These findings
are overall consistent with ours. They also argue that large declines in hours of job-
stayers are involuntary and imposed by firms. Blass-Hoffmann and Malacrino (2017) use
Italian data to argue that changes in weeks worked generate the tails of the one-year and
five-year earnings growth distributions and account for their procyclical left skewness
(first documented by Guvenen et al. (2014b) for the U.S.). In contrast, our analysis
from the PSID also attributes an important role to wage growth. Moreover, we find
that scarring effects are necessary to generate left skewness through extensive margin
fluctuations. Finally, Halvorsen et al. (2018) use Norwegian data and find that hourly
wage changes exhibit left-skewness and excess kurtosis, and both the magnitudes and
their life-cycle and income variation are similar to what we find for earnings changes.
Furthermore, they show that large earnings changes are mostly driven by wage changes
for high-RE individuals, but the split between wages and hours is more equal for low-RE
workers.

4 Dynamics of Earnings
Having studied the distribution of earnings changes, we now turn to their persistence.

Typically, earnings dynamics are modeled as an AR(1) or a low-order ARMA process,
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and the persistence parameter is pinned down by the rate of decline of autocovariances
with the lag order. While this linear approach might be a good first-order approximation,
it imposes strong restrictions, such as the uniformity of mean reversion for positive and
negative or large and small changes as well as for workers with different earnings levels.

Figure 10 – Impulse Responses, Prime-Age Workers

(a) Median RE Workers
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(c) High RE Workers
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(d) Butterfly Pattern
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Notes: Median-, low-, and high-RE in panels A, B, and C refer to workers with Y t−1 in (P46 − P55),
(P6− P10), and (P91− P95), respectively. Prime age refers to age 35 to 50.

We exploit our large sample and employ a nonparametric strategy to characterize the
nonlinear mean reversion. We do so by documenting the impulse response functions of
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earnings changes of different sizes and signs for workers with different recent earnings. In
particular, we group workers by their earnings growth between t− 1 and t, their recent
earnings Y i

t−1, and age, and then follow their earnings over the next 10 years.

To reduce the number of graphs to a manageable level, we combine the first two age
groups (ages 25 to 34) into “young workers” and the next three groups (ages 35 to 50)
into “prime-age workers.” Within each age group, we rank and group individuals by
Y
i

t−1 into the following 21 RE percentiles: 1–5, . . . , 91–95, 96–99, and 100. Next, within
each age and RE group, we sort workers by the size of their log earnings change between
t − 1 and t (yit − yit−1) into 20 equally-sized quantiles. Hence, all individuals within a
group have similar age and average earnings up to t−1, and experience a similar change
from t − 1 to t. For each such group of individuals, we then compute the log change of
their average earnings from t to t + k, logE

[
Y i
t+k

]
− logE [Y i

t ], where Y i
t is the income

level net of age and time effects. Rather than taking the average of log earnings change,
this approach allows us to include workers with earnings below the minimum threshold,
thereby keeping the composition of workers constant for each k. The results for the
alternative approach are qualitatively very similar and are available upon request.

4.1 Impulse Response Functions Conditional on Recent Earnings

In Figure 10, we show the mean reversion of different sizes of earnings changes yit−yit−1

for prime-age workers over a 10-year period. Specifically, we plot logE
[
Y i
t+k

]
− logE [Y i

t ]

of each yit−yit−1 quantile on the y-axis against its average on the x -axis.15 This graphical
construct contains the same information as a standard impulse response function but
allows us to see the heterogeneous mean reversion patterns more clearly.

We start with the median-RE group (Y t−1 ∈ P46 − P55) in Figure 10a. Even
at the 10-year horizon, a nonnegligible fraction of the earnings change is still present
for this group of workers, indicating a very persistent component in earnings growth.
Also, negative changes tend to recover more gradually than positive ones for them. For
example, workers whose earnings rise by 100 log points between t − 1 and t lose about
50% of this increase in the following 10 years. Almost all of this mean reversion happens
after one year. Workers whose earnings fall by 100 log points recover 25% of that decline
in the first year and around 50% of the total within 10 years. Finally, the degree of mean

15The average mean reversion varies across the RE groups because of different earnings histories.
Therefore, we normalize earnings changes on both the x - and y-axes such that their values at the
median quantile of yit − yit−1 cross at zero.
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reversion varies with the magnitude of earnings changes, with stronger mean reversion for
large changes: Small innovations (i.e., those less than 10 log points in absolute value) look
very persistent, whereas larger earnings changes exhibit substantial mean reversion. A
univariate autoregressive process with a single persistence parameter will fail to capture
this behavior. In Section 6, we will show how to modify the simple income process to
accommodate this variation in persistence by the size and sign of the earnings shock.

The analogous impulse response functions for low-income (Y t−1 ∈ P6 − P10) and
high-income (Y t−1 ∈ P91 − P95) workers (Figures 10b and 10c) show that for low-
income individuals, negative changes are more short-lived, whereas positive ones are
more persistent, and that for high-income individuals the opposite is true.

Extending the results to the entire distribution of recent earnings, we focus on a fixed
horizon and plot the cumulative mean reversion from t to t+ 10 for the 6 RE groups in
Figure 10d. Starting from the lowest RE group (the bottom 5%), notice that negative
changes are transitory, with an almost 75% mean reversion rate at the 10-year horizon.
But positive changes are quite persistent, with only about a 25% mean reversion at the
same horizon. As we move up the RE distribution, the positive and negative branches
of each graph start rotating in opposite directions, so that for the highest RE group (top
1%), we have the opposite pattern: only 20 to 25% of earnings declines revert to the
mean at the 10-year horizon, whereas around 80% of the increases do so at the same
horizon. We refer to this shape as the “butterfly pattern.”

This butterfly pattern broadly resonates the earnings dynamics in job ladder mod-
els. For high-RE workers—who are at the higher rungs of the ladder—a job loss leads
to a more persistent earnings decline relative to low-RE workers because of search fric-
tions. Similarly, for low-RE workers, large increases are likely due to unemployment-to-
employment or job-to-job transitions, which have long-lasting effects on earnings.16

5 Earnings Growth and Employment: The Long View

In this section, we turn to two questions that complete the picture of earnings dy-
namics over the life cycle. Both questions pertain to long-term outcomes—covering the
entire working life. The first one is about average earnings growth—complementing the

16Lise (2012) shows that a job ladder model with precautionary savings motive captures wealth
and consumption dispersions better than the incomplete markets model with a linear-Gaussian income
process.
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second to fourth moments analyzed in Section 3. In particular, how much cumulative
earnings growth do individuals experience over their working life, and how does that
vary across individuals with different lifetime incomes?

The second question investigates the lifetime nonemployment rate—defined as the
fraction of working life an individual spends as full-year nonemployed. Although inci-
dence of long-term nonemployment is of great interest for many questions in economics,
documenting it requires long panel data with no sample attrition, a phenomenon most
common among long-term nonemployed. The administrative nature of the MEF data
set and its long panel dimension provide an ideal opportunity to study this question.

5.1 Lifecycle Earnings Growth And Its Distribution

For the analysis in this section, we use the full length of the MEF panel, covering
1978 to 2013. We select individuals who (i) were born between 1951 and 1957 (hence for
whom we have 33-years of data between ages 25 and 60), and (ii) had annual earnings
above Ymin,t in at least 15 years, thereby excluding workers with very weak labor market
attachment. We take a closer look at this latter group in the next subsection. We sort
individuals into 100 percentiles by their lifetime earnings (LE), computed by averaging
their earnings from age 25 through 60. For each LE percentile bin, denoted LEj, j =

1, 2, ..., 99, 100, we compute the growth rate between ages h1 and h2 by differencing the
average earnings across all workers (including those with zero earnings) in those LE and
age cells; i.e., log(Y h2,j)− log(Y h1,j), where Y h,j ≡ E(Ỹ i

t |i ∈ LEj, h(i, t) = h).

The results in Figure 11a show that between ages 25 and 55 the median individual
(by LE) experiences a smaller earnings growth—about 60%—than a 150% mean growth
estimated from a Deaton-Paxson pooled regression (see Appendix C.6). More impor-
tantly, higher-LE workers experience a much higher earnings growth over the lifecycle
compared with the rest of the distribution. While an upward slope per se is not surpris-
ing (as it is partly mechanical—faster growth will deliver higher LE, everything else held
constant), the variation at the top end is so large, and the curvature is so steep, that it
turns out difficult to capture using simple earnings processes, as we discuss in the next
section. For example, average earnings grow by 1.5-fold (91 log pts) over 31 years at
LE80, by 4.8-fold (157 log pts) at LE95, and by 27.9-fold (333 log pts) in the top 1%.17

17Earnings decline from age 45 to 55 for 80% of the population, and those above LE80 experience
only small increases (Figure C.21b in Appendix C.6). The decline in earnings later in the life could be
due to a decline in hours because of partial retirement (see Aaronson and French (2004)).
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Figure 11 – Earnings Growth and Employment: The Long View
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One question is whether this extremely high growth rate at the top is driven by higher
rates of school enrollment in these groups at age 25 (and thereby low earnings). While
the lack of education data does not allow us to answer this question directly, several
pieces of evidence are informative. First, about 21.7% of individuals in the LE100 has
earnings below the Ymin threshold at age 25, which is higher than the rate for half of the
sample, suggesting schooling could be playing some role (see Figure C.36a). However,
this rate drops quickly to 5.95% by age 30, which is one of the lowest in our sample. At
the same time, earnings growth for this group between ages 25 and 30 is only slightly
higher compared to that between ages 30 and 35 (2.9-fold vs 2.6-fold), when schooling
is unlikely to matter much. Similarly, looking at growth from 35 to 55, we still find a
steep profile of earnings growth with respect to LE (see Figure C.21). These observations
suggest that low labor supply at age 25 is not the major driver of these patterns.

Turning to the lower end, individuals below LE20 see their earnings decline from age
25 to 55. How important is disability for this decline? Adding SSDI to labor earnings
has virtually no effect above the 40th LE group or so (Figure C.35). But it matters at
the lower end, mitigating the decline by 18% for LE10 and by 24% for LE5.

5.2 Lifetime Employment Rate and Its Distribution

Next, we investigate the lifetime nonemployment rates across individuals. Using the
same criteria as before—working life defined as the period between ages 25 and 60, and
full-year nonemployed defined as annual earnings below Ymin—we examine the cumulative

24



distribution of total lifetime years employed in Figure 11b. The results show that, first,
a large fraction of individuals are very strongly attached to the labor market: 28% of
individuals were never nonemployed during their working life, and almost half (48%)
were nonemployed for less than three years. But second, there is a long left tail of the
distribution, showing a surprisingly large fraction of men who spend half of their working
life or more without employment: 18.3% of men spend 18 years—or half of their working
life—as full-year nonemployed, and 12.3% spend at least 24 years as nonemployed.

To understand these magnitudes, note that the employment-to-population ratio for
prime-age men in cross-sectional data (such as the one the Bureau of Labor Statistics
publishes monthly) has averaged around 86% during this time period, implying a monthly
nonemployment rate around 14%. Getting nonemployment at annual frequency for 24
years for 12% of the male population requires an extremely high persistence of the long
term nonemployment state. As we shall see in the next section, this statistic turns out to
be very hard to match with a simple earnings process with standard parameter values.

6 Econometric Models for Earnings Dynamics
The empirical facts documented in the last three sections can be viewed as snapshots

of an earnings process taken from different angles. They allowed us to identify key
patterns by (partially) isolating other features. That said, for many purposes, it is
essential to combine these different snapshots to get a fuller picture of the underlying
earnings process. Therefore, our goal in this section is to search for earnings processes
that can reproduce the key empirical facts documented above.

In light of the nonlinearities and nonnormalities revealed by the descriptive analysis,
it is clear that we need to move beyond the linear-Gaussian framework, which has been
the workhorse for modeling earnings dynamics (with a few exceptions noted earlier). The
approach we follow here is to start from a simple and widely used linear-Gaussian model
and extend it incrementally until we arrive at a more general model that is consistent
with the key features documented. This approach has two advantages over starting from
an entirely new nonlinear modeling framework. First, by adding each piece incrementally
to a well-understood benchmark, we can learn what each new component brings. Second,
the components we include are already familiar to economists from previous work, which
should make it easier to be implemented in future quantitative models.

We have conducted an extensive search for a suitable model specification, which
involves estimating more than a hundred different specifications. We have conducted a
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battery of diagnostic tests on each set of moments to understand which components have
the potential to capture them. As always, there is a trade-off between the complexity
of the specification and the set of moments it can reproduce. A key guiding principle
was to keep the process as parsimonious as possible, both in terms of the number of
parameters, but even more importantly, the number state variables the process will
require when embedded in a dynamic programming problem. Overall, our benchmark
process described below achieves both goals: It requires only one state variable—the
same as a standard persistent-plus-transitory model—while offering a good fit to the
data. It does however have more parameters, as we discuss next.

6.1 A Flexible Stochastic Process

The econometric models we estimate are special cases (with a few exceptions) of the
following benchmark specification, which includes (i) an AR(1) process (zit) with inno-
vations drawn from a mixture of normals; (ii) a nonemployment shock whose incidence
probability piν(t, zt) can vary with age or income or both, and whose duration (νit) is
exponentially distributed ; (iii) a heterogeneous income profiles component (HIP); and
(iv) an i.i.d. normal mixture transitory shock (εit):

Level of earnings: Ỹ i
t = (1− νit)e(

g(t)+αi+βit+zit+ε
i
t) (2)

Persistent component: zit = ρzit−1 + ηit, (3)

Innovations to AR(1): ηit ∼

N (µη,1, ση,1) with prob. pz

N (µη,2, ση,2) with prob. 1− pz
(4)

Initial condition of zit: zi0 ∼ N (0, σz,0) (5)

Transitory shock: εit ∼

N (µε,1, σε,1) with prob. pε

N (µε,2, σε,2) with prob. 1− pε
(6)

Nonemployment duration: νit ∼

0 with prob. 1− pν(t, zit)

min {1, exp (λ)} with prob. pν(t, zit)
(7)

Prob of Nonemp. shock: piν(t, zt) =
eξ
i
t

1 + eξ
i
t

, where ξit ≡ a+ bt+ czit + dzitt. (8)

In eq. (2), t = (age− 24) /10 denotes normalized age and g(t) is a quadratic poly-
nomial of age that captures the lifecycle profile of earnings common to all individuals.
The random vector (αi, βi) determines ex ante heterogeneity in the level and growth rate
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of earnings and is drawn from a multivariate normal distribution with zero mean and a
covariance matrix to be estimated.18 The innovations ηit to the AR(1) component are
drawn from a mixture of two normals. An individual draws a shock from N (µη,1, ση,1)

with probability pz; and otherwise from N (µη,2, ση,2). Without loss of generality, we
normalize η to have zero mean (i.e., µη,1pz + µη,2(1 − pz) = 0) and assume µη,1 < 0 for
identification. Heterogeneity in initial conditions of the persistent process is captured by
zi0. Transitory shocks, εit, are also drawn from a mixture of two normals (eq. 6), with
similar identifying assumptions (zero mean and µε,1 < 0).

Our decision to use of normal mixtures is motivated by two considerations. First,
they provide a flexible way to model shock distributions with non-Gaussian properties.
In fact, by increasing the number of normals that are mixed one can approximate almost
any distribution (see, e.g., McLachlan and Peel (2000)). Second, incorporating normal
mixture innovations into a dynamic programming problem requires minimal adjustments
to the computational methods commonly used with Gaussian shocks. This is a very
appealing feature given our stated objectives.

The final component of the earnings process—and as it turns out, a critical one—is
the non-employment shock (eq. 7), which is realized (i.e., νt > 0) with probability pνt
in each period. The duration, νt, follows an exponential distribution with mean 1/λ and
is truncated at 1, corresponding to full-year nonemployment (zero annual income). An
important difference of νt from zt and εt is that it scales the level of income rather than
its logarithm (as zt and εt do), which allows the process to capture the sizable fraction
of workers who transition into full-year nonemployment every year.19

None of the stochastic components introduced so far depend explicitly on age or
recent earnings, even though the empirical facts revealed substantial variation along
these dimensions. One promising way we found to capture such variation is by making
pν depend on age t and zt through a logistic function as shown in equation 8.20 Notice

18One possible source of heterogeneity in the growth rate, βi, could be human capital accumulation
in the presence of ability heterogeneity. See, e.g., Huggett et al. (2011) and Guvenen et al. (2014a).

19It takes a –350 log point shock to zt or εt for a worker earning $50,000 a year to drop below Ymin.
Forcing zt or εt to generate such large shocks with sufficiently high frequency to match worker exit rates
makes it challenging for them to simultaneously match the frequency of smaller shocks, which make up
the bulk of the shock distribution. We return to this point later.

20Another option would be to make pz instead of pν depend on age and recent earnings, which we
explore later. We have also considered a number of other options, among them modifying ξit by allowing
quadratic terms in t or zt or dependence on αi and βi, and introducing age or income dependence in the
innovation variances or their mixture probabilities, among others. Results are available upon request.
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that the dependence of pν on zt induces persistence in nonemployment from one year to
the next, generating what looks like scarring effects of nonemployment even though νt

itself is independent over time.

This completes the description of the benchmark processes. We also considered a
2-state process, which, as expected, fits the data better but increases the computational
burden by adding an extra state variable in a dynamic programming problem. Further
details and results from this specification are in Appendix D.3.

Estimation Procedure

We employ the method of simulated moments (MSM) by targeting five sets of mo-
ments. The first four broadly correspond to the moments documented in Sections 3 to 5:
(i) the standard deviation, skewness, and kurtosis of one- and five-year earnings growth;
(ii) moments of the impulse response functions for all RE groups; (iii) average earnings of
each LE group over the life cycle (essentially a more detailed version of Figure 11a); and
(iv) the cumulative distribution function of nonemployment (Figure 11b).21 In addition,
the age profile of the within-cohort variance of log earnings is a key dimension of the
data extensively studied in previous research. For both completeness and consistency
with earlier work, we include these variances as a fifth set of moments (Figure D.3). The
full list of moments and how they are constructed are reported in Appendix D.1.22

In the MSM estimation, we minimize the weighted sum of squared percentage devia-
tions from targeted moments.23 We chose a weighting matrix that reflects our subjective
beliefs on the importance of each set of moments.24 We employ a global search algorithm,

21The targeted moments differ from those in the descriptive analysis in two ways. First, some statistics
that were omitted from the descriptive analysis to save space—such as the higher moments of 1-year
changes, levels of average earnings by LE percentiles—are targeted in estimation. Second, as noted in
Section 3, using the log earnings change measure requires dropping individuals with very low earnings
and in turn losing valuable information in the extensive margin. Therefore, we target the arc-percent
analogs of the moments (shown in figures in Sections 3 and 4 of Appendix C.2).

22Our approach is in the spirit of Browning et al. (2010), Altonji et al. (2013), and Guvenen and
Smith (2014), among others, who target moments beyond the variance-covariance matrix.

23As explained in the appendix, we employ a small adjustment term to ensure that the moments
with values close to zero do not have a disproportionate effect on the objective function. The overall
effect of this adjustment term is small for the purposes of the point made here.

24In particular, our weighting matrix first assigns 15% relative weight to the employment CDF
moments. The rest of the moments share the remaining 85% weight according to the following scheme:
the cross-sectional moments (standard deviation, skewness, kurtosis) collectively receive a relative weight
of 35%, the life-cycle earnings growth moments and impulse response moments each receive a weight of
25%, and the variance of log earnings by age receives a weight of 15%. We have also experimented with
a few other weighting matrices that also seemed natural (e.g., giving equal weight to each of the five
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that often requires days on large parallel clusters to estimate a specification. Appendix
D presents further details of estimation and our numerical method.

6.2 Results: Estimates of Stochastic Processes

In this section, we present the results for eight specifications (Table IV). We start from
a simple linear-Gaussian model and add new features step by step until we attain our
benchmark process. We discuss along the way which aspect of the data each feature helps
capture. Each moment we target answers some concrete and well-defined questions about
earnings dynamics (e.g., how skewed are earnings changes, what fraction of individuals
work less than 70% of their prime ages, etc). Therefore, we believe, this approach allows
researchers to better judge the trade-offs between the importance of matching a particular
moment for the questions at hand and the additional complexity it brings.

In Model (1) we start with the linear-Gaussian model—the sum of an individual
fixed effect, an AR(1) process, and an i.i.d. transitory shock, all drawn from Gaussian
distributions (i.e, σβ = 0, pz = 1, pν = 0, and pε = 1 in equations (2) to (8)). The
estimates of key parameters are unusually large: the standard deviations of the fixed
effect and the transitory shock (σα = 1.28 and σε = 0.76) are several times larger than
what has been found in the previous literature, and the persistence parameter (ρ = 1.02)
implies a nonstationary process, wherein the effects of shocks are amplified over time
(c.f., Storesletten et al. (2004) and Heathcote et al. (2010b)).

The large magnitudes of the parameters should perhaps not be surprising, as the bulk
of the moments targeted here have not been targeted in previous analyses. However, it
turns out that one set of moments is responsible for most of these differences—the CDF of
lifetime employment rates, which shows that nonemployment is an extremely persistent
state for a nonnegligible fraction of men.25 To match the high fraction of persistently
nonemployed individuals, the estimation chooses a wide dispersion of fixed effects, placing
many individuals closer to the minimum threshold. Combined with the large transitory
shocks and nonstationary persistent shocks, this choice allows the model to match the
distribution of lifetime (non)employment in the data very well (Figure 12e).

sets of moments or to each individual moment) and found substantively similar estimates (results are
available upon request). Clearly, with sufficiently large changes in the weighting matrix, one can always
get very different estimates.

25Reestimating the same process without targeting the employment CDF yields σα = 0.51, ρ = 1.0,
ση = 0.156; and σε = 0.49 (see Table D.1 in Appendix D.4). These estimates are similar to those in
previous studies cited above, with the exception of σε, which is on the high side.
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Figure 12 – Estimated Model vs. Data: Key Moments
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Table IV – Estimates of Stochastic Process Parameters

Model: (1) (2) (3) (4) (5) (6) (7) (8)
Gaussian
process Benchmark

AR(1) Component G G G mix mix mix mix mix
↪→Probability age/inc. — — — no/no no/no yes/yes no/no no/no
Nonemployment shocks no yes yes no no no yes yes
↪→Probability age/inc. — no/no yes/yes — — — yes/yes yes/yes
Transitory Shocks G G G G mix mix mix mix
HIP no no no no no no no yes

Parameters

ρ 1.017 0.998 0.971 0.998 1.010 0.995 0.983 0.958
pz 6.3% 5.7% —† 26.7% 21.9%
µη,1 −1.0∗ −1.0∗ −1.0∗ –0.194 –0.147
ση,1 0.102 0.158 0.210 1.487 1.275 1.098 0.444 0.457
ση,2 0.031 0.020 0.108 0.076 0.139
σz1,0 0.128 0.102 0.390 0.360 0.101 0.395 0.495 0.667
λ 0.690 0.070 0.044 0.001
pε 12.4% 6.8% 9.2% 12.6%
µε,1 –0.559 0.387 0.352 0.236
σε,1 0.758 0.351 0.135 0.358 1.433 0.831 0.294 0.343
σε,2 0.021 0.048 0.065 0.063

σα 1.284 1.288 0.594 1.066 0.334 0.493 0.467 0.298
σβ 0.185
corrαβ 0.976

Objective value 76.70 74.95 32.76 58.52 54.60 37.67 26.25 22.29
Decomposition:
(i) Standard deviation 10.51 9.36 6.80 7.79 7.81 6.45 5.66 5.48
(ii) Skewness 44.01 39.92 15.16 21.60 22.54 15.63 14.47 10.34
(iii) Kurtosis 27.60 14.65 5.85 17.97 13.08 8.83 5.03 5.97
(iv) Impulse response 28.29 34.31 22.33 36.87 33.06 26.98 16.77 13.32
(v) Lifetime inc. growth 41.00 46.33 11.04 26.79 25.55 12.85 9.75 8.29
(vi) Within cohort ineq. 23.25 19.60 5.44 18.75 18.65 11.96 1.95 3.00
(vii) Nonemployment CDF 7.18 3.70 10.61 12.06 12.13 4.34 6.51 8.30

Notes: The top panel provides a summary of the features of each specification, the middle panel shows the estimated
values of key parameters that are discussed in the main text (the rest are reported in Table D.2), and the bottom panel
reports the weighted percentage deviation between the data and simulated moments for each set of moments (the total
objective value is the square root of sum of squares of objective values of each component). The standard errors for the
benchmark process are reported in Table D.1. The ∗’s indicate that in columns 4, 5, and 6 the value of µη,1 is constrained
by the lower bound we impose in the estimation. † : pz is not a number but a function in this specification.

However, the model fails in most of the other dimensions. First, it generates nearly
zero skewness and no excess kurtosis in income changes, which is not surprising given the
Gaussian structure (Figure 12b and 12c). Second, it vastly overstates lifecycle income
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growth rates for all LE groups—for example, implying a 4.6-fold rise for the median
worker compared with only a 60% rise in the data (Fig. 12d). Finally, it overshoots both
the level of income inequality at age 25 as well as its rise over the life cycle (Fig. 12f).26

Clearly, this process does not offer a good fit to these key features of the data.

Introducing Nonemployment Shocks

We first consider introducing nonemployment shocks (νt) to improve the fit by allow-
ing the model to match the employment CDF more easily and leaving more flexibility
for matching other moments. Another motivation is to investigate a common conjecture
that the negative skewness of earnings changes could be entirely due to unemployment
(disaster) shocks. Finally, unemployment shocks are a common feature in quantitative
models, so it is instructive to understand what they add to the fit relative to the simple
Gaussian model. We consider two versions. First, in Model (2), we restrict the nonem-
ployment risk to be uniform across workers (i.e., b, c, d ≡ 0 in eq. 8). Second, in Model
(3), we remove the restriction on heterogeneity and estimate a, b, c, and d.

The estimates from the first specification (Model (2)) imply that 2.3% of workers
are hit with a nonemployment shock each year (pν = 0.023, not reported in the table)
and about half of those experience full-year nonemployment (implied by λ = 0.69). The
other estimates remain similar to the linear-Gaussian model, except for a large decline
in the size of transitory shocks (σε,1 falling from 0.76 in Model (1) to 0.35 here) and
a modest decline in the persistence of the AR(1) process. Overall, the fit improves
marginally (75.0 vs 76.7 before). Further, as the breakdown at the bottom of the table
shows, the fit to the skewness moment improves only slightly, with larger gains coming
from the kurtosis and nonemployment CDF moments.

A key factor driving these results is the uniform nonemployment risk, under which
nonemployment spells are basically large but fully transitory shocks: every worker, whose
income goes down due to nonemployment in the current period, bounces back to his
previous income level (on average) in the next period. Consequently, they stretch both
tails of the income change distribution, leaving its symmetry unaffected. The longer tails
generate some excess kurtosis in annual earnings growth (less so over longer horizons)
and a longer left tail of the lifetime nonemployment CDF, which improves the fit in

26Notice that the variance of log earnings at age 25 (100 log points) is less than half what would be
predicted from the estimated parameters, the sum of σ2

α and σ2
ε , or 225 log points. This is because the

variance in simulated data is computed excluding workers below the minimum threshold; and with the
large variance of shocks there are many such individuals.
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Figure 13 – Estimated Model vs. Data: Selected Impulse Response Moments

-2 -1 0 1 2
-2

-1

0

1

2

Data Benchmark

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

RE Pct: 1-5% RE Pct: 31-70% RE Pct: 96-100%

Notes: In the estimation we target arc-percent earnings growth between t + k and t − 1, which allows us to keep the
composition of workers constant for each k (for details see Appendix D.1). To keep concepts analogous to what is shown
in Section 4, where our focus is on income change between t and t+ k, we plot E[∆k+1

arc Y
i
t−1 | ∆1

arcY
i
t−1]− E[∆1

arcY
i
t−1])

for k = 10.

these dimensions. Nevertheless, this specification still misses out completely on income
or age variation in the cross-sectional moments, and implies an unusually large initial
heterogeneity (σα = 1.29). These results show that transitory shocks—regardless of
whether they are modeled as a shock to the level or log of earnings (νt or εt)—cannot
account for the left-skewness in earnings growth, as they miss the key features of the left
tail shocks in the data, which are that they are recurring and have scarring effects (see
Jacobson et al. (1993); Von Wachter et al. (2009); Guvenen et al. (2017)).

Motivated by this observation, in Model (3), we allow nonemployment shocks to
vary by age and zt. This change improves the performance of the model dramatically:
the objective value falls from 75.0 to 32.8, with improved fit in all sets of moments except
for the nonemployment CDF. The improvements are apparent in Figure 12, which also
shows that the model captures the variation in cross-sectional moments by RE levels fairly
well.27 Perhaps somewhat surprisingly, the model also better fits the lifecycle earnings
growth moments. Furthermore, this model now understates the rise in within-cohort
inequality rather than overstating it substantially. This is especially surprising given
that the estimated model also matches the large standard deviation of earnings changes.
It has been a challenge to jointly match moments in earnings levels and differences (see
Heathcote et al. (2010a) and Daly et al. (2016)).

Model (3) yields these improvements by not pushing workers into nonemployment
27Because the age variation is much smaller than the RE variation in the data, we omit the age

patterns here to save space, but the fit improves along this dimension as well (see Figures D.5 and D.6).
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through very large shocks, as under the previous specifications, but instead by generating
systematic nonemployment that is concentrated among certain groups of workers. Con-
sequently, it is able to fit the data with a smaller dispersion of fixed effects (σα = 0.594)
and of transitory shocks (σε = 0.135) and with a lower persistence (ρ = 0.97). We con-
clude that heterogeneous nonemployment risk is a promising ingredient for an earnings
process that aims to reproduce a broad set of moments of earnings levels and changes.28

Introducing Normal Mixtures

In the next step, we investigate the potential of modeling zt and εt as normal mix-
tures. To see their effects more clearly, we shut down nonemployment risk for the time
being (pν ≡ 0). Model (4) allows a mixture in the persistent component, zt, whereas
Model (5) allows it in both components. As before, we begin by restricting the mixture
probabilities to be the same for all individuals.29

The fit improves significantly relative to Model (1), and most of it comes from adding
the mixture component in z (comparing Model (4) to Model (5)), which improves the
fit on skewness, kurtosis, and lifetime income growth moments.30 In both models, one
of the shocks to the persistent component looks like a rare disaster shock: it has a low
probability of around 6%, with a large negative mean of –1 (the lower bound imposed)
and a large standard deviation bigger than 1.25.31 Similarly, the mixture in transitory
shocks also displays rare large shocks, with a probability of 12%, a mean of –0.55, and a
standard deviation of 1.43. Thus, allowing for a non-Gaussian εt has very little impact
on the estimated nonnormality of ηt and its importance for the overall estimation.

Not surprisingly, with constant mixture probabilities (pz and pε) these models do
not capture the age and income variation in higher-order moments. To improve the fit,

28Krusell et al. (2011) also show that persistent idiosyncratic productivity shocks play a key role
in matching the persistence of the employment and out-of-the-labor-market states found in individual
labor market histories in the CPS data. Two recent papers attribute an important role to heterogeneity
in unemployment risk. Jarosch (2017) finds job security to be important in accounting for scarring
effects of unemployment. Karahan et al. (2018) find differences in unemployment risk to be important
in explaining lifetime earnings differences among the bottom half of the distribution.

29Nonemployment shocks can be mimicked by the mixture of normals if one of them has a very large
negative mean and a small variance. To keep the distinction between two modeling tools clear, we
impose a lower bound on the smaller mean of both mixture distributions (µη,1 and µε,1). The lower
bound is set to –1 (or –63% mean shock) but we also estimated with a bound of –5 (or –99.3%). The
objective value for the latter is 47.9, down from 54.6.

30We have estimated a specification that adds uniform nonemployment risk to Model (5) and found
its probability to be almost zero (0.01%).

31As you will see, in all models discussed below (and in virtually all of our explorations not included
in the paper) we find very strong left skewness and excess kurtosis in persistent innovations.
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Model (6) models pz with the same functional form used before for pν (eq. 8) but with
ξit is replaced with ξit−1. Now, the model matches better the age and income variation in
higher-order moments, except for kurtosis at the top of the RE distribution (Figure 12).

Next, in Model (7), we combine the two most promising features we found so
far: the normal mixture specifications of zt and εt of Model (5) with the heterogeneous
nonemployment risk of Model (3).32 The resulting income process lacks only the HIP
from the benchmark specification defined by equations (2) to (7). Relative to Model
(6), this combined model improves the fit across the board, but especially so for the
impulse response moments. In other words, while the cross-sectional moments can be
generated to a large extent with either heterogeneous nonemployment risk or mixture of
normals, the nonlinear earnings persistence revealed by impulse responses requires both
components together. In particular, the extreme earnings changes followed by moderate
mean reversion (as was shown in Figure 10) cannot be explained by fully transitory
or permanent shocks, whereas nonemployment shocks are better able to generate this
pattern with their long-lasting but nonpermanent effects.

Introducing Heterogeneous Income Profiles

Finally, we turn to the benchmark model, which adds a HIP component to Model
(7). This leads to a nonnegligible decline in the objective value driven by a better fit
to the skewness and impulse response moments. The improvement mainly arises from a
lower persistence for zt (ρ = 0.958 vs. 0.983), with the half-life of ηt shocks declining to
16 years from 40 in Model 7. This allows the process to better capture the persistence
patterns of large earnings changes just described (Figure 13).33 This process also offers
a decent fit to the age variation in cross-sectional moments (Figures D.7 and D.8).

Overall, we believe the benchmark process offers a reasonable trade-off between a
good fit to the data and the need for a parsimonious process that can be implemented in
models without increasing the computational complexity.34 Nonetheless, one could make

32We also explored an alternative case in which nonemployment risk is uniform but the mixture prob-
ability of persistent shocks is allowed to vary with age and z. Model (7) outperforms this specification.

33The fact that adding HIP to a process lowers the estimated ρ is well understood. Basically, the
age profile of the within-cohort variance of earnings is close to linear, which is generated by an AR(1)
process only if ρ = 1. Without HIP, this force pushes up the estimate of ρ relative to what is implied
by the mean reversion patterns in the data. HIP provides extra flexibility by generating the linear age
profile, allowing ρ to fall to values more consistent with other moments (Guvenen (2009)).

34A feature that has found empirical support among other researchers is heterogeneity in innovation
variances. Although we have not explicitly modeled that feature, the variation in mixture probabilities
by income and age naturally gives rise to heterogeneity in these variances (similar to introducing ARCH
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an argument in favor of Model (7) as well. An even simpler process with a reasonable
fit is Model (3), which does not have the normal mixture in zt. But the computational
burden introduced by a normal mixture is often very small, so in our subjective opinion,
the trade-off present in Model (3) is not likely to be worth it in many applications.

6.3 Parameter Estimates of the Benchmark Process

We now turn to the parameter estimates from the benchmark process and its fit
to some untargeted moments. Starting with the AR(1) process, the persistent shock
is drawn about every five years (pz = 21.9%) from an “unfavorable” distribution—with
a negative mean and large standard deviation (µη,1 = −0.15 and ση,1 = 0.46)—and
in the other years from a “favorable” one—with a positive mean and small standard
deviation (µη,2 = 0.041, ση,2 = 0.14). This mixture of normals implies that innova-
tions to the persistent component are both strongly left skewed (skewness of −1.10)
and leptokurtic (kurtosis around 8). In contrast, transitory shocks (εt) are typically
smaller: in most years (with 87% probability), they are drawn from a tight distribution,
N (−0.034, 0.0632); and every eight years or so (pε = 12.6%) from a distribution with
large positive mean and dispersion, N (0.236, 0.3432). Consequently, transitory shocks
feature a skewness of 2.75 and a kurtosis of 15.4. However, ηt and εt are not the only
sources of higher-order moments in our model; workers also face nonemployment risk,
which is another key source of (age- and income-varying) skewness and kurtosis in persis-
tent earnings changes. Thus, as expected, Models (4)-(6) (without nonemployment risk)
find persistent shocks to be more strongly leptokurtic and left skewed than Model (8).35

Thus, we conclude that persistent innovations are key drivers of non-Gaussian features
in the data.

Regarding initial heterogeneity, it is captured by (i) the permanent fixed effect σα
(since βi × 0 = 0), and (ii) σz0 , the dispersion in the initial conditions of the zt process,
whose effect declines at rate ρ. Since the dispersion in zi0 is about twice that of αi

(σz0 = 0.67 versus σα = 0.30), a large part of the wage dispersion observed at age 25
reflects persistent but not permanent differences.

Finally, our estimate σβ ' 0.02 is close to earlier estimates from the PSID despite
different data sets and targets. However, the estimated correlation here is 0.98, rather

effects as inMeghir and Pistaferri (2004)). We found that allowing for additional ex ante heterogeneity
as in Browning et al. (2010) does not improve the fit on the targeted moments.

35In fact, in Model (5), in which the only sources of nonnormalities are the persistent and transitory
innovations, we find persistent innovations to be more left-skewed and leptokurtic than transitory ones.
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Figure 14 – Model Fit: Non-targeted Statistics
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Notes: The parameters of the Gaussian process are presented in column (1) of Table IV, whereas Gaussian (std.) is the
same process being estimated without targeting the employment CDF (see Table D.1 for its parameter estimates). The
data series on Panel (B) is conditional on past 2 year income (in t− 1 and t− 2).

than close to zero in those studies (c.f. Haider (2001) and Guvenen and Smith (2014)).

Persistent Nonemployment Shocks Virtually all workers hit by nonemployment
shocks experience full-year nonemployment (λ = 0.001). These shocks, together with
the non-Gaussian ηt and εt shocks, allow the model to generate a leptokurtic density
for arc-percent changes with spikes at both ends (figure 14a). To the extent that these
shocks are realized with a non-negligible probability, they can have important effects on
a worker’s earnings dynamics. This brings up the question of how often these shocks are
realized, to which we now turn.

The coefficients of the probability function in (8) are hard to interpret on their own
(see Figure D.11 for its 3D graph), so instead, we investigate the probability of drawing
a nonemployment shock for various age and RE percentile groups for workers who satisfy
the conditions of the base RE sample. Starting with the age variation, nonemployment
risk declines modestly over a working life, from 7.1% over 25–34 to 6.1% in the next 10
years, and to 5.5% over 45–54. There is less variation in the data with the corresponding
figures being 6.8%, 6.2%, and 6.6%, respectively.

Differences in nonemployment risk between income groups are much more pronounced
(Figure 14b). In the bottom RE decile, workers experience full-year nonemployment
almost once every six years (with 17.8% probability). This probability declines sharply
over the RE distribution to 4.9% for the median quintile and to 0.6% for the top decile.
The fit to the data is fairly good, though the variation with respect to RE is slightly
less pronounced compared with the data.36 Perhaps surprisingly, the linear-Gaussian

36These patterns are also consistent with the evidence from the Survey of Income and Program
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Table V – Persistence of Nonemployment Risk, 1-State Benchmark Process

25-35 36–45 46–55
Nonemp. at t→ t+ 1 t+ 5 t+ 1 t+ 5 t+ 1 t+ 5
RE Groups

1–10 0.534 0.476 0.570 0.490 0.608 0.513
41–60 0.460 0.429 0.548 0.477 0.609 0.504

91− 100 0.385 0.385 0.530 0.467 0.596 0.496

income process also matches this feature of the data reasonably well. As noted in the
earlier discussion, however, this specification’s ability to capture the nonemployment
CDF comes at the cost of an implausibly steep inequality profile (Figure 12f). Under a
more plausible parameterization, less than 1% of individuals ever experience a full-year
of nonemployment over their working life, a result severely at odds with the data.

An important feature of the benchmark process is the dependence of nonemployment
probability on zt. A negative innovation to the persistent component increases not only
the nonemployment risk in the current period, but also its future incidence. Thus, the
autocorrelation of shocks is not precisely captured by ρ, and nonemployment shocks are
autocorrelated even though vt is drawn in an i.i.d. manner. This feature, along with the
normal mixture innovations to persistent and transitory components, contributes to the
asymmetric mean reversion documented in the impulse response analysis (Figure 13).

To illustrate the persistence of nonemployment, we examine nonemployment rates in
t + 1 and t + 5 for workers who experience nonemployment in t. As usual, we further
condition workers on their RE in t − 1. Nonemployment is fairly persistent overall and
more so for low-income workers: In the first 10 years of the working life, around 48% of
the workers in the bottom decile of the RE distribution experience another nonemploy-
ment spell after five years of the initial nonemployment (Table V). This number declines
monotonically over the RE distribution to 39% for the top decile. Furthermore, nonem-
ployment risk becomes more persistent over a working life, particularly for higher-income
workers. For example, in the top decile, the conditional probability of nonemployment
in t+ 5 increases from 39% in the first 10 years to 50% in the last 10.

An important feature of the data not targeted in the estimation is income concentra-
tion at the top. We consider the log density of earnings (levels, not changes) in the data
for 45–49-year-olds, along with the counterparts from the benchmark specification and

Participation on income and age variation in unemployment risk (see Karahan et al. (2018)).
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the Gaussian process (Figure 14c). While the benchmark process provides an accurate
fit to the earnings distribution under the $1 million mark, it fails to capture the density
of higher levels of income in the data. On this front, the Gaussian process surprisingly
generates a longer Pareto tail, which is due to its extreme parameter values, as discussed
in Section 6.2. In contrast, the standard parameterization of the same process vastly
understates the number of individuals with very high earnings.

A 2-State Specification. Our benchmark process contains a single AR(1) and can
be easily implemented in quantitative models. We have investigated how much the fit
can be improved by a process with two AR(1) components by extending our benchmark
specification to allow for an additional AR(1) component, and letting the mixture prob-
abilities vary with ξit−1. The resulting process provides a significantly better fit to the
targeted moments and matches top income inequality as well as the income variation in
nonemployment risk (Figures 14b and 14c). See Appendix D.3 and D.4 for more details.

We find that the two AR(1) components are quite different from each other, especially
in terms of their persistence with ρ2 = 0.98 vs. ρ1 = 0.82. The composition of large
negative shocks changes from (hard-to-insure) more persistent innovations to the less
persistent ones over the life cycle. The probability of receiving at least one large shock
to one of the two AR(1) components or a nonemployment shock in a given year is
declining in recent earnings, ranging from 53% at the low end to 16% for individuals
above the 90th percentile. Finally, the age and income variation of nonemployment risk
in the 2-state specification is similar to that in the benchmark process.

7 Concluding Thoughts
Using earnings histories of millions of U.S. workers, we have studied non-Gaussian

and nonlinear earnings dynamics and reached the following conclusions: First, the dis-
tribution of earnings growth is not symmetric but left skewed; it is leptokurtic in that
most individuals experience very small changes, while changes for a small but nonnegli-
gible number are extremely large. Critically, these features vary substantially over the
life cycle and across the earnings distribution: Higher-income and older workers on av-
erage face earnings growth that is more left-skewed and leptokurtic. Finally, earnings
changes display asymmetric persistence: Increases for high-earning individuals are quite
transitory, whereas declines are very persistent; the opposite is true for low earners.

After establishing these facts nonparametrically, we estimated an earnings process
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that is broadly consistent with these features of the data.37 This specification allows for
normal mixture innovations to the persistent and transitory components and a long term
nonemployment shock with a realization probability that varies with age and earnings.
We found that this feature generates systematic recurring nonemployment with long-
term scarring effects, which is important to match the data.

Our empirical findings are broadly consistent with job ladder models. In these mod-
els, workers in most years see little change in their earnings but once in a while experience
a large change due to an unemployment shock, a job switch, or an outside offer, which
in turn leads to leptokurtic changes. Furthermore, the scarring effects of falling off the
job ladder can generate left skewness. However, the variation in earnings dynamics over
the life cycle and by recent earnings are so large that it is an open question whether
existing models can be quantitatively consistent, and, if not, how they should be mod-
ified. Recently, Hubmer (2018) and Karahan et al. (2018) explore the ability of various
frameworks to generate some of these patterns.

A natural question is what non-Gaussian features imply for the consumption-savings
behavior of households. As a first approximation, consider the following well-known
thought experiment: A household with constant relative risk aversion preferences (with a
coefficient of 10) pays a risk premium π to avoid a gamble that changes consumption by a
random proportion (1+δ̃). We compare two scenarios. First, δ̃A is drawn from a Gaussian
distribution with a mean of zero and a standard deviation of 0.10, for which the risk
premium is 4.9%. Second, δ̃B has the same first two moments as δ̃A, but it has a skewness
of −2 and a kurtosis of 30 (roughly corresponding to the one-year earnings change of a
45-year-old at the 90th RE percentile), which amplifies π to 22.2%. Interestingly, excess
kurtosis plays a more important role in this amplification. A leptokurtic but symmetric
risk increases π to 18.8%, compared with 6.3% for a left skewed but mesokurtic risk.

Of course, our calculations are only suggestive rather than conclusive. Incorporating
higher-order moments of earnings dynamics into quantitative models is still in its infancy.
Recently, De Nardi et al. (forthcoming) examine the consumption-savings behavior in

37The nonparametric empirical facts documented in Sections 3 to 5 (along with those reported in the
appendix) add up to more than 10,000 empirical moments of individual earnings data. Adding analogous
moments for women, as mentioned in footnote 1, doubles this number. The richness of this information
is far beyond what we are able to fully utilize in the estimation exercise in this paper. Furthermore,
for different questions, it would make sense to focus on a subset of these moments that are different
from what we have aimed for in this paper. With these considerations in mind, we make these detailed
moments available online for download as an Excel file.
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the presence of non-Gaussian income risk. Guvenen et al. (2018) analyzes a life-cycle
incomplete market model with the stochastic process we estimate in Section 6. Build-
ing on the evidence in Guvenen et al. (2014b), Constantinides and Ghosh (2016) and
Schmidt (2016) show that an asset pricing model with incomplete markets and procycli-
cal skewness generates plausible asset pricing implications. And McKay (2014) studies
cyclical consumption dynamics of these skewness fluctuations. Targeting the moments
documented in this paper, Golosov et al. (2016) show that a process with negative skew-
ness and excess kurtosis implies a substantially higher optimal top marginal tax rate
on earnings compared with a traditional Gaussian calibration. Similarly, Kaplan et al.
(2016) introduce leptokurtic idiosyncratic risk to generate a realistic asset portfolio dis-
tribution in a New Keynesian model. We hope our findings will further feed back into
economic research and policy analyses.
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A Data Appendix
Constructing a nationally representative panel of males from the MEF is relatively straight-

forward. The last four digits of the SSN are randomly assigned, which allows us to pick a
number for the last digit and select all individuals in 1978 whose SSN ends with that number.38

This process yields a 10% random sample of all SSNs issued in the United States in or before
1978. Using SSA death records, we drop individuals who are deceased in or before 1978 and
further restrict the sample to those between ages 25 and 60. In 1979, we continue with this
process of selecting the same last digit of the SSN. Individuals who survived from 1978 and
who did not turn 61 continue to be present in the sample, whereas 10% of new individuals who
just turn 25 are automatically added (because they will have the last digit we preselected), and
those who died in or before 1979 are again dropped. Continuing with this process yields a 10%
representative sample of U.S. males in every year from 1978 to 2013.

The measure of wage earnings in the MEF includes all wages and salaries, tips, restricted
stock grants, exercised stock options, severance payments, and many other types of income
considered remuneration for labor services by the IRS as reported on the W-2 form (Box 1).
This measure does not include any pre-tax payments to IRAs, retirement annuities, independent
child care expense accounts, or other deferred compensation. We apportion 2/3 of the self-
employment income as labor income. Given the lack of direct data on this, the 2/3 allocation
has been the convention adopted by the literature as well as the PSID. In a previous version
we ignored self-employment income altogether and found similar results, leading us to believe
that the exact allocation matters very little.

Finally, the MEF has a small number of extremely high earnings observations. For privacy
and confidentiality reasons, we cap (winsorize) observations above the 99.999th percentile of
the year-specific income distribution. For background information and detailed documentation
of the MEF, see Panis et al. (2000) and Olsen and Hudson (2009).

Recent Earnings. Average income of a worker i between years t − 1 and t − 5 is given by
Ŷ i
t−1 = 1

5

∑5
j=1 max

{
Ỹ i
t−j , Ymin,t

}
, where Ỹ i

t denotes his earnings in year t. We then control for

age and year effects by regressing Ŷ i
t−1 on age dummies separately for each year, and define the

residuals as recent earnings (RE), Ȳ i
t−1. In Sections 3 and 4, we grouped individuals by age

and by Ȳ i
t−1 to investigate how the dynamics of income vary over the life cycle and by income

levels.

Table A.1 shows some sample size statistics regarding the sample used in the cross-sectional
moments. Recall that we compute these statistics for each age-year-RE percentile and aggregate
them across years. Therefore, sample sizes refer to the sum across all years of a given age by
percentile group. Each row reports the median, minimum, maximum and total number of
observations used to compute the cross-sectional moments for a given age group. Note that
even the smallest cell has a sample size of more than 75,000 on which the computation of
higher-order moments is based.

38In reality, each individual is assigned a transformation of their SSN number for privacy reasons,
but the same method applies.
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Table A.1 – Sample Size Statistics for Cross-Sectional Moments of Five-Year Earnings
Growth

# Observations in Each RE Percentile Group
Age group Median Min Max Total (’000s)

28-34 141,914 75,417 147,867 13,593
35-44 202,203 103,688 210,169 19,193
45-54 171,043 91,058 180,318 16,312

Note: Each row reports several statistics for the number of observations used to compute the cross-
sectional moments of five-year earnings changes for a given age group. Since cross-sectional moments are
computed for each age-year-RE percentile cell and then averaged over all years, sample sizes refer to the
sum across all years of a given age by percentile group. The last column (“Total”) reports the sum of
observations across all 100 RE percentile groups for the age group indicated.

A.1 Imputation of Self Employment Income Above SSA Taxable
Limit

We restrict our main sample for cross-sectional and impulse response moments to years
between 1994 and 2013 during which neither self employment income nor wage/salary income
is capped. However, this sample period–covering only 20 years–is too short to construct reliable
measures of lifetime incomes of individuals. For this purpose, lifetime income moments in
section 5 are computed using the whole sample that covers 36 years between 1978 and 2013.
But self employment income is capped by the SSA maximum taxable earnings limit before 1994.
In this section we introduce a methodology to impute self-employment income above the top
code for years before 1994, and show that imputing self employment income has a negligible
effect on our results.

Let ymaxt be the official SSA maximum taxable earnings limit in year t. Our goal is to
impute the uncapped (unobservable) self employment income measure, ỹSEi,t for individuals who
have self employment income around the maximum taxable earnings limit reported in the MEF
data specified by threshold χymaxt (i.e., ySEit ≥ χymaxt ), where χ < 1.39 For this purpose we take
the uncapped self employment income measure in 1996, ySEi,1996, and regress it on observables
that can also be constructed for the period before 1994.40 In particular, we first group workers
into three bins based on their age in year 1996: 28–29, 30–34, and 35–40.41 Next, within each
age group h, we estimate quantile regressions of uncapped self employment income in 1996 for
75 equally-spaced quantiles τ . Thus, in total we estimate the following specification 3 × 75

39We assume χ = 0.95 < 1 because the MEF data have several observations above the SSA taxable
limit implying measurement error around the limit.

40The first year with uncapped self employment income is 1994 but we rather use 1996 self employment
income in the regression due to measurement issues in 1992 self employment income data.

41Our imputed lifetime income sample employs a balanced panel that selects all individuals who are
between ages 25 and 28 in 1981 (who were born between 1954 and 1957). This condition ensures that we
have 33-year earnings histories between ages 25 and 60 for each individual (which might include years
with zero earnings). The same condition also implies that, in this sample, only workers younger than
40 are affected by the top coding until 1993 and we impute their capped self employment income.
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times—one for each age group and quantile:

log ySEi,1996 =∑3
k=0 α

h,τ
1,k I

{
yWi,1996−k < Ymin,1996−k

}
+
∑3

k=0 α
h,τ
2,k I

{
yWi,1996−k ≥ Ymin,1996−k

}
log yWi,1996−k

+
∑3

k=1 α
h,τ
3,k I{y

SE
i,1996−k > χymax1996−k}+

∑3
k=1 α

h,τ
4,k I

{
ySEi,1996−k < Ymin,1996−k

}
+
∑3

k=1 α
h,τ
5,k I

{
ySEi,1996−k ≥ Ymin,1996−k

}
min

(
log ySEi,1996−k, logχymax1996−k

)
+ εit,

(9)
where yWi,t is the wage and salary income of individual i in year t, I is the indicator function,
and εit is the residual term. The right-hand side variables are as follows: (i) a dummy variable
of whether the worker’s wage earnings yWi,t is less than the minimum income threshold Ymin,t;
(ii) if it is higher then Ymin,t, the log of wage earnings log yWi,t ; (iii) a dummy variable of whether
the self employment income ySEi,t is above the maximum cap χymaxt ; (iv) a dummy variable of
whether ySEi,t is less than the minimum threshold Ymin,t; (v) if it is higher than Ymin,t, the log

self employment income capped at the maximum threshold log
(

min(ySEi,t , χy
max
t )

)
. We also

include 3 lags of these as independent variables. Then, αh,τi,k denotes the regression coefficient
of variable i with lag k for age group h, quantile τ .

Figure A.1 – Fraction of Top-Coded Self Employment Income Observations
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We then use these regression coefficients to impute the uncapped self employment income
before 1994 for individuals who have SE income above the limit χymaxt reported in the MEF
data. For this purpose, we randomly assign individuals to quantiles τ = 1....75 in our lifetime
income sample. Then, the imputed self employment income for an individual in age group
h with quantile τ who has recorded self employment income above the limit χymaxt in year
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t = 1981, 1981, ...1993 is given by the following equation:42

log ỹSEi,t =∑3
k=0 α

h,τ
1,k I

{
yWi,t−k < Ymin,t−k

}
+
∑3

k=0 α
h,τ
2,k I

{
yWi,t−k ≥ Ymin,t−k

}
log yWi,t−k

+
∑3

k=1 α
h,τ
3,k I{y

SE
i,t−k > χymaxt−k }+

∑3
k=1 α

h,τ
4,k I

{
ySEi,t−k < Ymin,t−k

}
+
∑3

k=1 α
h,τ
5,k I

{
ySEi,t−k ≥ Ymin,t−k

}
min

(
log ySEi,t−k, logχymaxt−k

)
.

(10)

Figure A.2 – Income Growth for Imputed and Non-Imputed Data
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Figure A.2 plots the fraction of top coded self employment income observations against the
percentiles of lifetime earnings distribution at ages 25, 30, 35, and 40 in our imputed lifetime
income sample.43 Almost no observations are top coded for individuals below the 20th percentile
of the lifetime earnings distribution, in particular at young ages. As expected, the fraction of
top-coded observations increases with age and with lifetime earnings and is highest for workers
in the 99th percentile when they are 40 years old.

Furthermore, Figure A.2 plots the lifetime income growth between 25 and 55 against lifetime
earnings percentiles using imputed and non-imputed data, which is already shown on Figure
11a. The two series are almost indistinguishable, indicating that top-coding has very little effect
on lifetime income growth. This is because only a very small number of workers are affected
by the top coding; those who had very high self-employment income before 1994 or when the
cohort was younger than age 41.

B Transitory vs. Persistent Income Changes
Let’s suppose that the earnings dynamics are given by the commonly used random-walk

permanent/transitory model in which i.i.d. permanent (ηit) and transitory (εit) innovations are
42The imputed lifetime income sample starts with year 1981 because, to impute self employment

income, we need to observe wage and self employment income in the previous three years between 1978
and 1980.

43Recall that in this sample only workers younger than 40 are affected by the top coding.
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drawn from some general distributions Fη and Fε, respectively. Then, the k−year log growth
of earnings is given by:

∆k
logy

i
t = yit+k − yit =

t+k∑
j=t+1

ηij + εit+k − εit.

Let’s denote the variance, skewness and excess kurtosis of distribution Fx, x ∈ {η, ε} by σ2
x,

Sx, and Kx , respectively. Then the variance is given by:

σ2(∆k
logy

i
t) = kσ2

η + 2σ2
ε .

In order to derive the skewness of ∆k
logy

i
t we use the following properties:

S(kx) = Sx, for any k > 0,

S(x+ y) =

(
σx
σx+y

)3

× Sx +

(
σy
σx+y

)3

× Sy,

S(x− y) =

(
σx
σx+y

)3

× Sx −
(

σx
σx+y

)3

× Sy.

Then:

S(∆k
logy

i
t) =

t+k∑
j=t+1

(
ση

σ2(∆k
logy

i
t)

)3

× Sη

+

(
σε

σ2(∆k
logy

i
t)

)3

× Sε −

(
σε

σ2(∆k
logy

i
t)

)3

× Sε

=
kσ3

ηSη

σ3(∆k
logy

i
t)

In order to derive the kurtosis of ∆k
logy

i
t we use the following properties:

K(kx) = Kx, for any k > 0,

K(

k∑
j=1

xj) =

k∑
j=1

( σxj
σ(
∑

j xj)

)4

· Kxj

 .
We obtain:

K(∆k
logy

i
t) =

k × σ4
η

σ4(∆k
logy

i
t)
Kη +

2× σ4
ε

σ4(∆k
logy

i
t)
Kε.
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C Appendix: Robustness and Additional Figures
This section reports additional results from the data. Section C.1 reports the cross-sectional

moments of one-year earnings growth. Section C.2 shows the cross-sectional moments of one-
year and five-year arc-percent changes of earnings. Finally, Section C.3 shows several features
of the data that are mentioned in the paper but are relegated to the appendix.

C.1 Cross-Sectional Moments of One-Year Earnings Growth
Throughout the main text, we showed the cross-sectional moments of five-year (log) earnings

growth. This section shows analogous features of the data for one-year earnings growth.

Figure C.1 – Dispersion of One-Year Log Earnings Growth

(a) Second Standardized Moment

0  20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

25-34

35-44

45-54

(b) P90-10

0  20 40 60 80 100

0.4

0.7

1

1.3

1.6

1.9

2.2

Figure C.2 – Skewness of One-Year Log Earnings Growth

(a) Third Standardized Moment
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Figure C.3 – Kelley’s Skewness Decomposed: Change in P90-P50 and P50-P10 Relative
to Age 25–29 (Log Growth)

(a) P90-P50
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Figure C.4 – Kurtosis of One-Year Log Earnings Growth

(a) Fourth Standardized Moment
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(b) Crow-Siddiqui Measure
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C.2 Arc-Percent Moments
In the main text, we documented moments of log earnings changes. In doing so, we are

forced to drop observations close to zero to obtain sensible statistics. However, as we discuss
in Section 2, such observations contain potentially valuable information, as they inform us
about very large changes in earnings caused by events such as long-term nonemployment. To
complement our analysis, this section reports the cross-sectional moments of arc-percent changes
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defined in Section 2, which we reproduce here for convenience:

arc percent change: ∆arcY
i
t,k =

Y i
t+k − Y i

t(
Y i
t+k + Y i

t

)
/2
.

This measure allows computation of earnings growth even when the individual has zero income
in one of the two years t and t + k. Section C.2.1 shows the moments of one-year arc percent
change, and C.2.2 shows the moments of five-year change.

C.2.1 Moments of Annual Arc-Percent Changes

Figure C.5 – Dispersion of Annual Arc-percent Earnings Change

(a) Second Standardized Moment
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(b) P90-10
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Figure C.6 – Skewness of Annual Arc-percent Earnings Change

(a) Third Standardized Moment
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Figure C.7 – Kelley’s Skewness Decomposed (Annual Arc-percent Growth):
Change in P90-P50 and P50-P10 Relative to Age 25–34

(a) P90-P50
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Figure C.8 – Kurtosis of Annual Arc-percent Earnings Change

(a) Fourth Standardized Moment
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C.2.2 Moments of Five-Year Arc-Percent Changes

Figure C.9 – Dispersion of Five-Year Arc-percent Earnings Change

(a) Second Standardized Moment
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(b) P90-10
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Figure C.10 – Skewness of Five-Year Arc-percent Earnings Change

(a) Third Standardized Moment
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Figure C.11 – Kelley’s Skewness Decomposed (5-Year Arc-percent Growth):
Change in P90-P50 and P50-P10 Relative to Age 25–34

(a) P90-P50
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Figure C.12 – Kurtosis of Five-Year Arc-percent Earnings Change

(a) Fourth Standardized Moment
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C.3 Further Figures
In this section, we report some additional figures of interest that are omitted from the main

text due to space constraints. First, Figure C.13 plots selected percentiles of the annual and
five-year log earnings change distribution for every RE percentile.
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Figure C.13 – Selected Percentiles of Log Earnings Changes

(a) One-Year Changes
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(b) Five-Year Changes
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Figure C.14 – Moors Kurtosis of Log Earnings Changes

(a) One-Year Log Changes
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Second, Figure C.14 shows an additional measure of kurtosis proposed by Moors (1988) for
one- and five-year earnings changes. Similar to the measure proposed by Crow and Siddiqui
(1967), this measure is robust to outliers in the tails. Moors’ kurtosis, κM is defined as

κM =
(P87.5− P62.5) + (P37.5− P12.5)

P75− P25
.

For a Gaussian distribution, Moors’ kurtosis is 1.23 (shown on dashed lines).

C.4 Cross-Sectional Moments for Job-Stayers vs. Job-Switchers
In the main text, we analyzed the properties of earnings growth separately for job stayers

and switchers by showing percentile-based moments of earnings growth. Here, we complement
our analysis by showing several features of the data that were omitted in the main text to
save space. First, Figure C.15 shows our measure of the fraction of job stayers as a function
of recent earnings and age. The probability of staying with the same employer increases with
recent earnings and age. For the youngest age group (25-34), the probability of staying in
the same job is around 20% at the bottom of the recent earnings distribution. This fraction
increases with recent earnings and reaches a peak around 60% at the 95th percentile of the RE
distribution. This pattern reverses itself slightly at the top of the RE distribution. As workers
age, the probability of staying with the same employer increases across the RE distribution.

Second, Figure C.16 shows the age profile of higher-order moments shown in Section 3.5.
The age patterns are broadly the same across switchers and stayers: P90-10 declines slightly,
skewness becomes more negative, and kurtosis increases for both job-stayers and job-switchers
over the life cycle.

Next, we complement our analysis of job stayers and switchers by investigating the central-
ized moments of one- and five-year earnings changes (as opposed to percentile-based moments
analyzed in the main text). We plot these moments in Figure C.18.
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Figure C.15 – Fraction Staying Jobs Between t and t+ 1
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Figure C.16 – Percentile-Based Moments of Five-Year Earnings Growth: Stayers vs
Switchers

(a) P90-P10
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(b) Kelley’s Skewness
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Figure C.17 – Percentile-Based Moments of One-Year Earnings Growth: Stayers vs
Switchers
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Figure C.18 – Centralized Moments of Earnings Growth: Stayers vs Switchers

(a) Std. Dev., One-year
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(b) Std. Dev., Five-Year
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The results are consistent with what one might expect. Job-stayers face earnings changes
that (i) have half the dispersion of job-changers, (ii) are less negatively skewed as opposed to
job-switchers, who face very negatively skewed changes, and (iii) have a much higher kurtosis
than job-switchers. In fact, kurtosis is as high as 40 for annual changes and 25 for five-year
changes for job-stayers, but is less than 10 for job-switchers at both horizons.

C.5 An Alternative Measure for Persistent Earnings Changes
In section 3, we studied the distribution of five-year earnings changes, and explained that

the five-year changes reflect more of the distribution of the persistent innovations rather than
transitory innovations. We also considered an alternative measure (∆5

log(ȳt
i) ≡ ȳit+4 − ȳit−1,

where ȳit+4 ≡ log(Ȳ i
t+4) and ȳit−1 ≡ log(Ȳ i

t−1)) to deal with the caveat that our baseline measure
is contaminated by transitory changes in years t and t+k. The main text showed the centralized
moments of this alternative measure; we now show the percentile-based moments.

Figure C.19 – Percentile-based Moments of Persistent Earnings Changes, ∆
5

log(ȳt
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C.6 Additional Figures on Lifecycle Patterns of Earnings
To provide a benchmark for the analysis in Section 5, we estimate the average lifecycle

profile of log earnings using a standard pooled regression of log individual earnings on a full
set of age and (year-of-birth) cohort dummies using the admissible observations (as defined in
Section 2) between 1994-2013.44 The estimated age dummies are plotted as circles in Figure
C.20 and represent the average life-cycle profile of log earnings. It has the usual hump-shaped
pattern that peaks around age 50. These age dummies turn out to be indistinguishable from a
fourth-order polynomial in age:

yh = −0.0240 + 0.2013× h− 0.6799× h2 + 1.2222× h3 + 9.4895× h4,

where h = (age−24)/10. Figure C.21 contains two panels on the distribution of lifecycle growth
rates that complement the analysis in Section 5.

44This procedure is standard in the literature; see, e.g., Deaton and Paxson (1994) and Storesletten
et al. (2004).
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Figure C.20 – Life-Cycle Profile of Average Log Earnings
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Figure C.21 – Log Earnings Growth over Subperiods of Life Cycle
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C.7 Survey Data and Higher-Order Moments
Panel Study of Income Dynamics (PSID)

Panel Study of Income Dynamics has a smaller sample size compared to the CPS, but has the
advantage of following the same household over a much longer period of time. The PSID started
collecting data annually in 1968 on a sample of around 5,000 households. 3,000 households
were representative and the remaining were low-income families (the Census Bureau’s Survey of
Economic Opportunities sample, SEO). We restrict our study to households in the core sample
and do not use households in the SEO or the Latino subsamples. The questions on income are
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retrospective, meaning that respondents in a given year are asked about the previous calendar
year. We analyze data for the period 1999–2013. During this period, the survey was biennial.

Our measure of labor income (variable ER16463 in 1999) is the sum of wages and salaries,
bonuses, pay for overtime, tips, commissions, professional practice or trade, market gardening,
miscellaneous labor income and extra job income. To remain consistent with the rest of the
paper, we focus on male head of households between ages 25 and 55. We deflate annual earnings
by the price level with the base year 2010.45 We drop observations that report earnings less
than $1,500. We residualize earnings, wages and hours by regressing them on a full set of
age dummies, controlling for 3 race, 3 education and 8 region dummies. The three education
levels are: less than 11 years (less than high school), 12 years (high school), and more (college
dropout, BA degree or more). We take the maximum grade achieved as the relevant education
level of an individual throughout the sample. Race dummies correspond to white, black and the
remaining race and ethnicities. We clean the age variable so that it increases by two for each
individual across two surveys. We run these regressions separately by year, obtain the residuals
and analyze the change in the residuals between consecutive interviews. We group observations
into 7 bins, depending on the magnitude of this change.

We utilize different variables in the PSID to identify individuals that experience a change in
health, start experiencing disability, experience time out of work or a job or occupation change.
We now describe specifically which variables are used to construct the various measures in Table
III.

Current Population Survey (CPS)
The CPS is a rotating panel based on addresses. Each address in the survey is interviewed

for four consecutive months, then leaves the sample for eight months and then returns for
another four consecutive months. Because of this rotating nature, it is possible to match at
most three quarters of respondents across months. Since the survey is based on addresses and
doesn’t follow households, if households move, they leave the sample and may be replaced by
others that move in to the same address. To have a reliable panel, we match individual records
using rotation groups, household identifiers, individual line numbers, race, sex, and age.

The Annual Social and Economic Supplement (ASEC) of the CPS, a supplement to the
CPS in March, asks respondents about their earnings, hours and weeks worked during the past
calendar year (variables incwage, wkslyr and hrslyr, respectively.) We use data for the period
1968–2013 and focus on males between ages 25 and 55. Similar to the SSA sample, we impose
a minimum earnings threshold that corresponds to working for 13 weeks for 40 hours a week at
half the minimum wage. We focus on three measures: annual earnings, average weekly wages,
and average hourly wages. We regress each measure on a full set of age dummies and a race
dummy (white and nonwhite). We run these regressions separately for each year and education
group (college and non-college), thereby allowing the coefficients on age and race dummies to
depend on age and education. We then obtain the residuals from this regression and analyze
the changes in the residuals. We use the CPS weights throughout this analysis.

Bad health. The head is asked the following question (ER15447 in 1999): “Would you
(HEAD) say your health in general is excellent, very good, good, fair, or poor?” We classify

45We use the Consumer Price Index for All Urban Consumers (CPI-U) published by the Bureau of
Labor Statistics.
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someone in bad health if he reports a poor health condition (==5). Transitions into poor health
are identified as someone who reported being in excellent, very good, good, or fair health in
the previous survey and reports being in poor health in the current survey. This variable is
available throughout our sample period.

Disability. The head is asked the following question on disability (ER15451 in 1999): “For
work you can do, how much does it limit the amount of work you can do--a lot, somewhat, just
a little, or not at all?” We classify someone as having some disability if he reports having an
issue that affects his work a lot (==1), somewhat (==3) or just a little (==5). A new disability
is coded as someone who did not have such an issue the last time and reports an issue in the
current survey. This variable is available throughout our sample period.

Weeks unemployed. Some individuals report time spent unemployed in units of months
(ER21322 in 2003), whereas some report it in units of weeks (ER21320 in 2003). We combine
these two variables by taking the maximum reported unemployment duration in weeks. These
variables are available starting in 2003.

Weeks out of labor force. The PSID asks about head’s total weeks out of the labor force
in the previous calendar year (ER24087 in 2003). This variable is available throughout our
sample period.

Move in response to outside events (involuntary reasons) The PSID asks about
geographic moves (whether the head changed residence) and the reasons of the move (variable
ER13080 in 1999). We classify someone as having moved for involuntary reasons if they report
having moved for being evicted, armed services, health reasons, divorce and health-related re-
tirement. Other observations are classified as non movers. This variable is available throughout
our sample period.

Group ∆y ∈ (−∞,−1) [−1,−0.25) [−0.25, 0) [0, 0.25) [0.25, 1) (1,∞)

Share % 3.8% 14.4% 31.2% 31.1% 16.5% 3.0%
Invol. move % 6.9% 4.5% 3.2% 2.6% 3.6% 4.3%

Occupation change. The PSID asks about the head’s occupation in the main employer,
labeled as job 1 (ER21145 in 2003). This variable is available starting in 2013 and uses the
3-digit occupation code from 2000 Census of Population and Housing. This variable is available
every year since 2003. We code someones as having changed occupations if i) his occupation
in the current year t is different than the previous survey t − 2, ii) he reports having changed
jobs (explained below), and iii) his occupation in the next survey t + 2 is different from his
occupation in year t − 2. The last condition is used to deal with potential coding error of
occupations prevalent in most survey data.

Job change. We use the start year of the current main job (job 1) to identify job changes
(ER21130 in 2003). If the head reports having started the job in the same year as the survey or
the year before, we code him as a job switcher. This variable is available every year since 2003.

Higher-Order Moments in CPS. In the main text, we reported higher-order moments of
two-year changes in earnings and wages by age groups. Table C.1 provides similar results from
the CPS. The growth measure in the CPS is annual and are therefore not easily comparable to
the figures from the PSID. However, the findings are qualitatively similar
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Table C.1 – Higher-Order Moments of Income Changes in PSID and CPS

PSID
All 25–39 40-55

Gaussian Earnings Wages Earnings Wages Earnings Wages
Skewness 0.0 –0.26 –0.14 –0.17 –0.20 –0.34 –0.09
Kelley Skewness 0.0 –0.02 –0.02 0.03 0.016 –0.06 –0.04
Kurtosis 3.0 12.26 13.65 10.44 9.00 14.01 17.10
Crow Kurtosis 2.91 6.83 5.59 6.33 5.02 7.33 6.11

CPS
All 25–39 40-55

Earnings Wages Earnings Wages Earnings Wages
Skewness 0.0 –0.15 –0.09 –0.09 –0.023 –0.21 0.004
Kelley Skewness 0.0 –0.02 –0.01 0.002 –0.008 –0.03 –0.017
Kurtosis 3.0 9.29 11.2 9.12 10.60 9.53 12.1
Crow Kurtosis 2.91 7.15 5.93 6.97 5.72 7.29 6.05

Note: Wages are obtained by dividing annual earnings by annual hours in the PSID, and by the weekly
wage variable in the CPS.

C.8 Cross-sectional moments by age without sample selection
When choosing the sample for cross-sectional moments, we required an individual to have

an earnings level above the minimum threshold in t− 1 and in at least two more years between
t−5 and t−2. Figure C.22 shows that these conditions result in a substantial share of the initial
sample to be dropped from the analysis. This large selectivity opens up the possibility that
some of our results might be specific to our final sample. Here, we relax the selection criteria
and include any person for whom earnings change can be computed. Figures C.23–C.28 show
the centralized and percentile-based moments of one-year and five-year earnings changes. We
find that our substantive conclusions are unchanged: Dispersion of earnings changes declines
with age for most of the life cycle, earnings changes become more negatively skewed and more
leptokurtic.
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Figure C.22 – Fraction of Observations Dropped by Age
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Figure C.23 – Dispersion of One-Year Log Earnings Growth by Age

(a) Second Standardized Moment
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Figure C.24 – Skewness of One-Year Log Earnings Growth by Age

(a) Third Standardized Moment
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Figure C.25 – Kurtosis of One-Year Log Earnings Growth by Age

(a) Fourth Standardized
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Figure C.26 – Dispersion of Five-Year Log Earnings Growth by Age

(a) Second Standardized Moment
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Figure C.27 – Skewness of Five-Year Log Earnings Growth by Age

(a) Third Standardized Moment
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Figure C.28 – Kurtosis of Five-Year Log Earnings Growth by Age

(a) Fourth Standardized
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(b) Crow-Siddiqui Measure
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C.9 The Role of Disability Income
In this section, we investigate the robustness of our findings to the inclusion of income from

Social Security disability benefits (SSDI). This is particularly relevant for thinking about the
tails of the distribution of earnings changes. To this end, we link to our dataset information
about disability benefits from the SSA records. We then define a measure of “total income”
as the sum of labor income and annual disability income. Section C.9.1 compares the cross-
sectional moments of earnings changes to our baseline and section C.9.2 does the same for
lifetime income growth.

C.9.1 Cross-sectional Moments

Figures C.29–C.34 show several moments of one-year and five-year earnings changes. In
each figure and for each age group, we show these moments for labor income and total income
separately, where total income is labor income plus disability benefits. For each measure of
income, recent earnings is re-calculated using that measure. Otherwise, these graphs are cal-
culated in an analogous fashion as described in section 3. The main finding here is that the
inclusion of disability income has little effect on cross-sectional moments, even at low levels of
earnings.
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Figure C.29 – Dispersion of One-Year Log Earnings Growth

(a) Second Standardized Moment
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Figure C.30 – Dispersion of Five-Year Log Earnings Growth

(a) Second Standardized Moment
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Figure C.31 – Skewness of One-Year Log Earnings Growth

(a) Third Standardized Moment
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Figure C.32 – Skewness of Five-Year Log Earnings Growth

(a) Third Standardized Moment
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Figure C.33 – Kurtosis of One-Year Log Earnings Growth

(a) Fourth Standardized
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Figure C.34 – Kurtosis of Five-Year Log Earnings Growth

(a) Fourth Standardized
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C.9.2 Lifetime income growth moments

Figure C.35 shows growth in average earnings over the life cycle. The left panel shows (log)
growth in average earnings between ages 25 and 55, whereas the right panel does the same for
30 and 55. We consider two measures: Labor income and total income (including disability
benefits). Figure C.35 plots income growth for the two measures against lifetime income. To
allow comparability across the two measures, we use labor income to construct each individual’s
lifetime income and impose the sample selection criteria based on this measure. This allows us
to keep the same overall sample as well as the same people in each lifetime income group. The
differences in the two series are therefore only due to disability payments. We find that SSDI
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makes a difference for the income growth of the bottom LE individuals. For the bottom 1%, we
find that SSDI can undo around 50% of earnings declines over the lifetime. This contribution
declines gradually and vanishes by around 20th percentile of the LE distribution. This result is
not very surprising since bottom LE workers are more likely to be claiming disability benefits.

Figure C.35 – Life-Cycle Earnings Growth Rates, by Lifetime Earnings Group
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C.10 Concentration of nonemployment by lifetime earnings group

Figure C.36 – Nonemployment Concentration over the Life Cycle, by Lifetime Earnings
Group

(a) Fraction Nonemployed wrt Labor Income
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(b) Fraction Nonemployed wrt Total Income
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In this section, we investigate how concentrated (full-year) nonemployment is. We rank
individuals by their lifetime earnings and group them into percentiles. For each lifetime earnings
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group, we compute what fraction of full-year nonemployment at a given age is accounted for
by that group. These are shown in Figure C.36. For example, the bottom one percent of the
lifetime earnings distribution accounts for around 50 percent of total nonemployment at ages
25–30.

D Estimation
In this section we describe the steps of our estimation procedure of method of simulated

moments (MSM) in more detail.

D.1 Moment Selection and Aggregation
Accounting for Zeros. Recall that in order to construct the cross-sectional moments of
log growth, we have dropped individuals who had very low earnings—below Y min—in year t or
t+k so as to allow taking logarithms in a sensible manner. Although this approach made sense
for documenting empirical facts that are easy to interpret, for the estimation exercise, we would
like to also capture the patterns of these “zeros” (or very low earnings observations), given that
they clearly contain valuable information. Targeting log growth moments also creates technical
issues with the optimization due to (little) jumps in the objective function as workers cycle in
and out of employment. To this end, instead of targeting moments of log earnings change, we
target moments of arc percent change, as defined in Section 3. According to this measure, an
income change from any positive level to 0 corresponds to an arc percent change of -2, whereas
an income change from 0 to any positive level indicates an arc percent change of 2.

Aggregating Moments. If we were to match all data points for every RE percentile and
every age group, it would yield more than 10,000 moments. Although this step is doable, not
much is likely to be gained from such a level of detail, and it would make the diagnostics—that
is, judging the performance of the estimation—quite difficult. To avoid this, we aggregate the
100 RE percentiles and the 6 age groups into fewer homogenous groups. We discuss the full
details of this aggregation and the moments targeted in our estimation below:

1. Cross-sectional moments of earnings changes. In order to capture the variation
in the cross-sectional moments of earnings changes along the age and recent earnings dimensions,
we condition the distribution of earnings changes on these variables. For this purpose, we first
group workers into 6 age bins (five-year age bins between 25 and 54) and within each age
bin into 13 selected groups of RE percentiles in age t − 1. The RE percentiles are grouped
as follows: 1, 2–10, 11–0, 21–30, ..., 81–90, 91–95, 96–99, 100. Thus, we compute the three
moments of the distribution of one- and five-year earnings changes for 6 × 13 = 78 different
groups of workers. We aggregate these 6 age bins into 3 age groups, Ait−1. The first age group
is defined as young workers between ages 25 through 34, the second is between ages 35-44,
whereas the third age group is defined as workers between the ages of 35 and 54. Consequently,
we target three centralized moments moments (i.e., standard deviation, skewness, and kurtosis)
of one- and five-year arc percent change for three age and 13 recent earnings group, giving us
3× 2× 3× 13 = 234 cross-sectional moments. These moments are shown in Figure D.1.

2. Mean of log earnings growth. The second set of moments captures the heterogeneity
in log earnings growth over the working life across workers that are in different percentiles of
the LE distribution. We target the average dollar earnings at 8 points over the life cycle: ages
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Figure D.1 – Centralized Cross Sectional Moments of Arc-Percent Growth Targeted in
the Estimation
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(b) St. Deviation of Five-Year Earnings Growth
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(c) Skewness of One-Year Earnings Growth
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(d) Skewness of Five-Year Earnings Growth
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(e) Kurtosis of One-Year Earnings Growth

Percentiles of Recent Earnings (RE) Distribution
1 11-20 31-40 51-60 71-80 91-95 100

K
u
rt
o
si
s
o
f
∆

a
y
i t

2

4

6

8

10

12

14

25-34

35-44

45-54

(f) Kurtosis of Five-Year Earnings Growth
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25, 30, ..., and 60 for different LE groups. We combine LE percentiles into larger groups to keep
the number of moments at a manageable number, yielding 15 groups consisting of percentiles
of the LE distribution: 1, 2–5, 6–10, 11–20, 21–30,..., 81–90, 91–95, 96–97, 98–99, and 100. The
total number of moments we target in this set is 8× 15 = 120.

3. Impulse response functions. We target average arc percent change in earnings
over the next k years for k = 1, 2, 3, 5, 10 conditional on groups formed by crossing age,
recent earnings Y t−1, and earnings change between t − 1 and t ∆1

arcY
i
t−1: E[∆k+1

arc Y
i
t−1 |

age, Y t−1,∆
1
arcY

i
t−1].46 In each year, we first group workers into two age bins, denoted by

h: young workers (25-34) and prime-age workers (35-55). Then, within each age group indi-
viduals are ranked into the following RE percentiles, denoted by j: 1–5, 6–10, 11–30, 31–50,
51–70, 71–90, 91–95, 96–100.

Within each age h and RE group j, we then estimate our targets for the persistence of earn-
ings growth. For each k-year expected future earnings growth we create a piecewise linear func-
tion of arc percent growth between t and t−1, i.e., Eh,j [∆k+1

arc Y
i
t−1 | ∆1

arcY
i
t−1] = fkh,j(∆

1
arcY

i
t−1).

For this purpose, we condition workers in the data into 23 groups with respect to their ranking
in the ∆1

arcY
i
t−1 distribution, defined by the following percentiles: 1–2, 3–5, 6–10, 11-15, 16-20,

21-25, ..., 91–95, 96–98, 99–100. Then the piecewise linear function fkh,j(∆
1
arcY

i
t−1) for year-k

is determined by the linear interpolation of 23 data points of average earnings growth between
t− 1 and t, E

[
∆1
arcY

i
t−1

]
and their corresponding k-year future expected growth, E[∆k

arcY
i
t ].

For the model-simulated data, we group workers into 2 × 8 age and RE groups—similar
to the data moments. But within each age h and RE group j we now rank workers into 10
∆1
arcY

i
t−1 groups defined by the following percentiles: 1–2, 3–5, 6–10, 11–30, 31–50, 51–70,

71–90, 91–95, 96–98, 99–100. In the estimation of income processes we minimize the distance
between 10 different values of Emodelh,j [∆k+1

arc Y
i
t−1 | ∆1

arcY
i
t−1] (for each age and RE group and k-

year expectation) from the model and its corresponding data moment from the piecewise linear
function, fkh,j(∆

1
arcY

i
t−1). As a result, we have a total of 2 × 8 × 5 × 10 = 800 moments based

on impulse response.

The impulse response functions targeted in the estimation are plotted in Figures D.2a–D.2d
(to keep the figures similar to their counterparts in Section 4, we plot E[∆k+1

arc Y
i
t−1 | ∆1

arcY
i
t−1]−

E[∆1
arcY

i
t−1]). More specifically, Figure D.2a plots for prime age workers with median recent

earnings, the mean reversion patterns at various horizons. Figures D.2b and D.2c do the same
for workers at the 90th and 10th percentiles of the recent earnings distribution, respectively.
Lastly, Figure D.2d shows the variation of these impulse response functions with recent earnings.

4. Variance of log earnings. Although the main focus of this section is on earnings
growth, the life-cycle evolution of the dispersion of earnings levels has been at the center of
the incomplete markets literature since the seminal paper of Deaton and Paxson (1994). For
completeness, and comparability with earlier work, we have estimated the within-cohort variance
of log earnings over the life cycle and report it in Figure D.3. We target the life cycle profile of
the variance of log earnings for income observations larger than our minimum income threshold.
As a result, we have a total of 36 moments based on the variance of log earnings.

46Notice that, different from the moments we have shown in Section 4, we target earnings growth
between t + k and t − 1. This is because all workers have Ỹ it−1 ≥ Ymin,t−1 in t − 1 by construction of
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5. CDF of Employment over the Life Cycle. We target the distribution of total
number of years employed (Ỹ i

t,h ≥ Y min,t) over life cycle. In particular, we target the fraction
of workers who have worked at least 6, 14, 20, 25, 30, 33 over a 36-year working life (shown on
Figure 11b). Thus, in total there are 6 such moments targeted in our estimation.

In sum, we target a total of 234 + 120 + 800 + 36 + 6 = 1, 196 moments in our estimation.47

D.2 Numerical Method for Estimation
Objective Function Let mn for n = 1, ..., N = 1, 196 denote a generic empirical moment,
and let dn(θ) be the corresponding model moment that is simulated for a given vector of earnings
process parameters, θ. We simulate the entire earnings histories of 100,000 individuals who enter
labor market at age 25 and work until age 60. When computing the model moments, we apply
precisely the same sample selection criteria and employ the same methodology to the simulated
data as we did with the actual data. To deal with potential issues that could arise from the large
variation in the scales of the moments, we minimize the scaled arc percent deviation between
each data target and the corresponding simulated model moment. For each moment n, define

Fn(θ) =
dn(θ)−mn

0.5 (|dn(θ)|+ |mn|) + ψn
, (11)

where ψn > 0 is an adjustment factor. When ψn = 0 and mn is positive, Fn is simply the (arc)
percentage deviation between data and model moments. This measure becomes problematic
when the data moment is very close to zero, which is not unusual (e.g., impulse response of arc
percent earnings changes close to zero). To account for this, we choose ψn to be equal to the
10th percentile of the distribution of the absolute value of the moments in a given set. The
MSM estimator is

θ̂ = arg min
θ

F (θ)′WF (θ), (12)

where F (θ) is a column vector in which all moment conditions are stacked, that is,

F (θ) = [F1(θ), ..., FN (θ)]T .

The weighting matrix, W , is chosen such that we first assign 15% relative weight to the employ-
ment CDF moments. The rest of the moments share the remaining 85% weight according to
this scheme: the life-cycle average earnings growth moments and impulse response moments are
assigned a relative weight of 0.25 each, the cross-sectional moments of earnings growth receive
a relative weight of 0.35, and the variance of log earnings is given a relative weight of 0.15.48

Numerical Method The global stage is a multi-start algorithm where candidate parameter
vectors are uniform Sobol (quasi-random) points. We typically take about 250,000 initial Sobol

the RE sample. Thus, we can compute the arc-percent growth between t+ k and t− 1 for all workers,
which keeps the composition of workers constant in each k.

47The full set of moments targeted in the estimation are reported (in Excel format) as part of an
online appendix available from the authors’ websites.

48More precisely, each employment CDF moment is weighed by 0.15/6, life-cycle growth moment is
weighed 0.85 ∗ 0.25/120, each cross-sectional moment by 0.85 ∗ 0.35/234, each impulse response moment
by 0.85 ∗ 0.25/800, and each variance moment by 0.85 ∗ 0.15/36.
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points for pre-testing and select the best 1,000 (i.e., ranked by objective value) for the multiple
restart procedure depending on the number of parameters to be estimated. For processes with
a large number of parameters to be estimated (e.g. the benchmark process or the 2-state
process), we also tried using 300,000 initial Sobol points and used the best 2,000 of them. We
found this wider search for parameter values to be inconsequential for our estimates. The local
minimization stage is performed with a mixture of Nelder-Mead’s downhill simplex algorithm
(which is slow but performs well on difficult objectives) and the DFNLS algorithm of Zhang
et al. (2010), which is much faster but has a higher tendency to be stuck at local minima. We
have found that the combination balances speed with reliability and provides good results.

D.3 2-State Process
We also estimate a more flexible income process which has 2 AR(1) components, denoted

by z1 and z2, each subject to innovations from a mixture of two normals with age and income
dependent shock probabilities. Furthermore, we allow the variance of each innovation to be
individual-specific in the spirit of Browning et al. (2010). Here is the full specification:

Y i
t = (1− νit) exp

(
g (t) + αi + βit+ zi1,t + zi2,t + εit

)
(13)

zi1,t = ρ1z
i
1,t−1 + ηi1t (14)

zi2,t = ρ2z
i
2,t−1 + ηi2t, (15)

where t = (age− 24) /10 denotes normalized age, and for j = 1, 2

Innovations to AR(1): ηij,t ∼

{
N (µzj ,1, σz,1) with pr. pzj ,t
N (µzj ,2, σz,2) with pr. 1− pzj ,t

(16)

Initial value of AR(1) process: zij0 ∼ N (0, σj0). (17)

Nonemployment shocks: equation 7 (18)
Transitory shock: equation 6 (19)

Each AR(1) component, z1 and z2, receives a shock drawn from a mixture of 2 Gaussian
distributions as in our benchmark specification. We again normalize the mean of innovations
to the persistent components to zero; i.e., µzj ,1pzj + µzj ,2(1 − pzj ) = 0.49 We also allow for
heterogeneity in the initial conditions of the persistent processes, zi1,0 and zi2,0, given in equation
(18). Since the specifications of z1 and z2 are the same so far, we need an identifying assumption
to distinguish between the two, so, without loss of generality, we impose ρ1 < ρ2.

The age and income dependence of moments is captured by allowing the mixture probabil-

49We don’t have to make the identification assumption of µzj ,1 < 0 as we did for the benchmark
process, because the first Gaussian, N (µzj ,1, σz,1) is already different than the second one N (µzj ,2, σz,2)
by having a mean µzj ,1 constant over age and income, whereas µzj ,2 varies by income and age. The
latter is because pzj is a function of persistent components and age.
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ities to depend on age and the sum of persistent components (z1 + z2):50

pijt =
exp

(
ξij,t−1

)
1 + exp

(
ξij,t−1

) , (20)

ξijt = azj + bzj × t+ czj ×
(
zi1,t + zi2,t

)
+ dzj ×

(
zi1,t + zi2,t

)
× t,

for j = 1, 2. The equation for pνt is the same as (20) but ξij,t−1 is replaced with ξijt. This
completes the description of the 2-state process.

D.4 Additional Estimation Results
This section contains estimation results not reported in the main text. We first report the

estimates of additional specifications. Then, for all of the estimated income processes, we report
some of the parameters that were not reported in Table IV. A comprehensive set of parameters
for all income processes are available online for download as an Excel file on authors’ websites.

Model Fit: Additional Figures

Deviations of estimated models from targeted values In the main text, we com-
pared the model counterparts of targeted moments to the data. In this section, we show how
the fit looks through the lens of our objective function in (11). Figure D.9 shows these for
several key moments. More specifically, we plot equation 11 for each set of moments, with the
exception of income growth moments. Recall that in our estimation we target the levels of
income at various ages of different LE percentiles and not the life cycle growth rates.

Results for Additional Specifications The first column on Table D.1 reports the stan-
dard errors of our benchmark process using a parametric bootstrap. In calculating the bootstrap
standard errors we first simulate data using our estimates reported on table IV and create target
moments from simulated data. We then run the estimation for 100 different seeds of random
variables by targeting the moments obtained in the previous step. For each seed of random vari-
ables we run the estimation once by employing simplex algorithm around our original parameter
estimates. Using 100 sets of parameter values we then compute the standard errors.

Column 9 report the parameter estimates for 2-state income process defined in Section D.3
and their bootstrap standard errors.

The next columns—columns 10 to 17— report the estimates of 8 different specifications
that are not reported in the main text. Columns (10), (11), and (12) are different versions of
Column (7) of table (IV). Namely, we model nonemployment probability as a logistic function
of a number of combinations of individual fixed effect α and persistent component z (similar to
equation (8)). In particular, in column (10) nonemployment probability is a quadratic function
of α. In column (11) nonemployment probability pν is assumed to be a linear function of α+ z
and age and their interaction. In column (12) nonemployment probability depends linearly on
α and z and their interaction.

50We have also considered an alternative specification where the innovation variances are functions
of earnings and age. After extensive experimentation with this formulation, we have found it to perform
very poorly.

79



Columns (13) and (14) are similar to our benchmark specification. Again they only differ
in how the nonemployment shock probability is modeled. In column (13) pν is a quadratic
function of z. In column (14) pν depends on z, z2 and age and the interaction of z and age.

In column (15) we introduce variance heterogeneity to the 1-state benchmark process. In
particular, we allow the variance of each innovation from N (µz,1, σ

i
z,1) to the persistent com-

ponent be individual-specific, with a lognormal distribution with mean σz,1 and a standard

deviation proportional to σ̃z,1, i.e., log
(
σiz,1

)
∼ N (log σz,1 −

σ̃2
z,1

2 , σ̃z,1).

In the next income process (column (16)), in the 1-state benchmark process we incorpo-
rate age and income dependence to the mixture probability in innovations to the persistent
component similar to equation (20).

In column (17) we introduce ex ante variance heterogeneity in the 2-state benchmark process.
Thus the variance of each innovation from N (µzj ,1, σ

i
zj ,1

) to the persistent component j be
individual-specific, with a lognormal distribution with mean σzj ,1 and a standard deviation

proportional to σ̃zj ,1, i.e., log
(
σizj ,1

)
∼ N (log σzj ,1 −

σ̃2
z,1

2 , σ̃zj ,1).

In column (18) we replicate our parameter estimates for the Gaussian specification that is
estimated in the previous version of the paper in which we didn’t target the distribution of
years worked.

The last column (column (19)) shows the parameter estimates for the specification presented
in column (5) but without imposing a lower bound for the mean of persistent shocks.

Parameter Estimates Table D.2 contains several parameters that were not reported in
the main text on table IV due to space constraints. These parameters include deterministic life
cycle profile and the coefficients on age and income in the probability functions.

Since it is difficult to interpret the magnitudes of the coefficients on shock probabilities, in
Figures D.10 and D.11 we visually show the estimated relationship between shock probabilities
and age and income for the benchmark specification. For the 2-state income process, we also
report the probability of drawing a nonemployment shock for various age and RE percentile
groups for workers who satisfy the conditions of the base sample in Table D.3.

80



T
a
bl

e
D

.1
–
St
an

da
rd

E
rr
or
s
an

d
A
dd

it
io
na

lS
pe

ci
fic
at
io
ns

Sp
ec
ifi
ca
tio

n:
(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

(1
8)

(1
9)

2-
st

at
e

U
n
em

p
.

U
n
em

p
.

U
n
em

p
.

U
n
em

p
.

U
n
em

p
.

1-
st

at
e

1-
st

at
e

2-
st

at
e

G
au

ss
ia

n
C

ol
u
m

n
(5

)
B

en
ch

m
ar

k
P

ro
ce

ss
d
ep

en
d
s

d
ep

en
d
s

d
ep

en
d
s

d
ep

en
d
s

d
ep

en
d
s

B
en

ch
m

ar
k

B
en

ch
m

ar
k

B
en

ch
m

ar
k

N
o

E
m

p
.

N
o

B
ou

n
d

S
td

.
E
rr

or
s

S
td

.
E
rr

or
s

on
α

on
α

+
z

&
ag

e
on

α
an

d
z

on
z

an
d
z
2

on
z
,z

2
,
&

ag
e

w
/

va
r.

h
et

.
w

/
η

h
et

.
w

/
va

r.
h
et

.
C

D
F

fo
r
µ
z
,1

A
R
(1
)
C
om

po
ne
nt

m
ix

2
m
ix
tu
re
s

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

2
m
ix
tu
re
s

G
m
ix

↪→
P
ro
ba
bi
lit
y
ag
e/
in
c.

no
/n

o
ye
s/
ye
s

no
/n

o
no

/n
o

no
/n

o
no

/n
o

no
/n

o
no

/n
o

ye
s/
ye
s

ye
s/
ye
s

—
no

/n
o

N
on

em
pl
oy
m
en
t
sh
oc
ks

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no
no

↪→
P
ro
ba
bi
lit
y
ag
e/
in
c.

ye
s/
ye
s

ye
s/
ye
s

ye
s/
α

ye
s/
α

+
z

no
/α
,z

no
/z
,z

2
ye
s/
z,
z2

ye
s/
ye
s

ye
s/
ye
s

ye
s/
ye
s

—
—

T
ra
ns
it
or
y
Sh

oc
ks

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

m
ix

G
m
ix

H
IP

ye
s

ye
s

no
no

no
ye
s

ye
s

ye
s

ye
s

ye
s

no
no

V
ar
ia
nc
e
H
et
er
og
en
ei
ty

no
no

no
no

no
no

no
ye
s

no
ye
s

no

P
ar

am
et

er
s

es
t.

se
.

ρ
1

0.
00
01

0.
82
1

0.
00
04

0.
84
7

0.
97
8

0.
97
6

0.
96
8

0.
96
4

0.
96
0

0.
96
5

0.
82
4

1.
0

1.
00
5

ρ
2

0.
98
0

0.
00
04

0.
97
9

p z
1

0.
00
02

—
—

0.
04
4

0.
15
0

0.
09
1

0.
21
9

0.
42
7

0.
27
4

0.
01
24

µ
η
1
,1

0.
00
05

-0
.3
73

0.
00
10

-0
.9
61

-0
.3
27

-0
.5
76

-0
.3
35

-0
.1
20

-0
.1
07

-0
.4
36

-0
.3
93

-5
.6
3

µ
η
2
,1

-0
.2
72

0.
00
06

-0
.2
70

σ
η
1
,1

0.
00
06

0.
59
7

0.
00
04

1.
39
6

0.
68
9

0.
57
5

0.
30
4

0.
34
5

0.
43
3

0.
78
8

0.
62
0

0.
15
6

0.
47
1

σ
η
1
,2

0.
00
06

0.
12
1

0.
00
04

0.
06
6

0.
08
3

0.
16
8

0.
17
4

0.
06
1

0.
08
27

0.
19
5

0.
11
6

0.
14
8

σ
η
2
,1

0.
57
4

0.
00
04

0.
56
4

σ
η
2
,2

0.
00
3

0.
00
03

0.
00
1

σ
i η
1
,1

0.
16
2

0.
00
2

σ
i η
2
,1

0.
01
3

σ
z 1
,0

0.
00
06

0.
19
9

0.
00
04

0.
33
9

0.
15
4

0.
19
3

0.
71
9

0.
68
9

1.
50
42

0.
53
0

0.
18
9

0.
22
7

σ
z 2
,0

0.
60
5

0.
00
04

0.
60
3

λ
0.
00
1

0.
00
1

0.
00
03

0.
19
6

0.
10
4

0.
02
2

0.
00
1

0.
00
2

0.
00
5

0.
01
4

0.
00
1

a
ν
×

1
0.
00
47

0.
00
36

-3
.8
75

-2
.3
99

-3
.1
91

-4
.1
31

-3
.1
15

-2
.9
58

-3
.7
73

-3
.0
45

b ν
×

t,
α

0.
00
38

0.
00
24

-5
.3
66

-1
.2
41

-1
.9
32

-1
.1
08

-1
.3
41

0.
46
8

-1
.0
92

c ν
×

[z
t,
α
,(
α

+
z t

)]
0.
00
39

0.
00
25

-3
.5
50

-5
.5
28

-5
.4
77

-3
.9
14

-4
.2
22

-3
.6
35

-3
.2
19

d
ν
×

α
2
,z

2
0.
29
3

1.
61
1

0.
83
2

e ν
×

t[
z t
,(
α

+
z t

)]
0.
00
58

0.
00
43

-1
.8
37

0.
70
0

-2
.4
03

-3
.4
50

-3
.5
60

-2
.2
40

pr
ob
ε

0.
00
04

9.
5%

0.
00
01

0.
22
7

0.
10
4

0.
23
9

0.
29
0

0.
10
5

0.
13
0

0.
11
5

0.
09
5

0.
21
0

µ
ε,

1
0.
00
07

0.
34
9

0.
00
07

0.
11
5

0.
24
9

0.
14
6

0.
15
9

0.
29
6

0.
22
3

0.
34
0

0.
34
0

-0
.0
9

σ
ε,

1
0.
00
1

0.
44
4

0.
00
06

0.
44
9

0.
56
2

0.
23
9

0.
14
2

0.
24
7

0.
38
4

0.
28
3

0.
43
8

0.
49
4

1.
02
4

σ
ε,

2
0.
00
03

0.
04
0

0.
00
02

0.
06
1

0.
04
2

0.
07
2

0.
02
2

0.
06
4

0.
04
8

0.
08
1

0.
02
5

0.
02
4

σ
α

0.
00
06

0.
27
2

0.
00
03

0.
80
8

0.
52
0

0.
64
0

0.
28
9

0.
27
4

0.
31
3

0.
26
7

0.
27
3

0.
51
4

0.
43
67

σ
β

0.
00
02

0.
18
0

0.
00
02

0.
19
4

0.
20
5

0.
21
7

0.
20
4

0.
18
2

co
rr
α
β

0.
00
13

0.
45
0

0.
00
07

0.
63
0

0.
67
6

0.
48
9

0.
97
4

0.
43
5

O
bj

ec
ti
ve

va
lu

e
18
.7
8

40
.3
3

28
.2
8

26
.1
9

23
.3
2

22
.1
1

21
.8
1

21
.7
4

18
.4
3

47
.9

D
ec
om

po
si
ti
on

:
(i
)
St
an

da
rd

de
vi
at
io
n

4.
82

4.
86

4.
81

5.
31

5.
86

5.
93

5.
09

5.
95

4.
95

7.
92

(i
i)
Sk

ew
ne
ss

7.
49

21
.1
5

15
.7
6

14
.6
7

12
.7
60

10
.6
5

10
.0
9

9.
52

7.
06

22
.9
9

(i
ii)

K
ur
to
si
s

4.
64

6.
67

6.
04

4.
80

5.
63

5.
88

6.
32

6.
70

4.
70

13
.9
9

(i
v)

Im
pu

ls
e
re
sp
.

12
.3
5

27
.9
8

18
.1
9

15
.8
2

13
.5
4

13
.5
0

13
.2
5

13
.7
0

11
.5
8

36
.4
0

(v
)
In
c.

gr
ow

th
8.
22

15
.1
0

10
.8
1

10
.3
9

9.
21

8.
39

8.
24

7.
84

8.
37

8.
94

(v
i)
In
eq
ua

lit
y

1.
92

7.
70

3.
38

1.
66

3.
36

3.
47

3.
68

3.
16

2.
23

4.
99

(v
ii)

N
on

em
pl
oy
m
en
t
C
D
F

5.
28

6.
46

5.
71

7.
66

5.
94

6.
43

7.
14

6.
52

5.
86

8.
91

81



Table D.2 – Additional Parameter Estimates for Estimated Specification

Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9)
Parameters

Deterministic Life Cycle Profile Parameters
a0 ×1 0.7275 0.7902 2.6352 1.9265 2.6920 2.2661 2.7408 2.6291 2.5180
a1 ×t 0.7513 0.3637 0.7213 -0.4222 -0.0786 0.2200 0.4989 0.7300 0.5666
a2 ×t2 -0.0539 0.0884 -0.1401 0.0165 -0.0746 -0.1268 -0.1137 -0.1692 -0.1296

Nonemployment Shock Probability Function Parameters
aν ×1 0.0231 -2.6429 -2.8571 -3.2740 -3.2131
bν ×t -1.2028 -0.7788 -0.8935 -1.0235
cν ×zt -5.2467 -4.5407 -4.5692 -3.2602
dν ×t× zt -4.2236 -1.3702 -2.9203 -2.1656

Normal Mixture Probability Function Parameters
az1 ×1 0.0630 0.0572 -0.7834 0.2665 0.2191 -2.1797
bz1 ×t 1.9560 0.9374
cz1 ×zt−1 -3.5429 -1.5598
dz1 ×t× zt−1 -0.0497 -1.5786
az2 ×1 -0.1858
bz2 ×t -1.0438
cz2 ×zt−1 -0.9686
dz2 ×t× zt−1 0.6316

Note: We define deterministic life cycle profile as a quadratic function of t, g(t) = a0+a1t+a2t2, where t = (age− 24) /10.
yt = zt for the 1-state income process with 1 AR(1) component and yt = z1 + z2 for 2-state income process with 2 AR(1)
components.

Table D.3 – Mixture Probabilities for 2-State Process

Age groups RE (Percentile) groups
25–34 35–49 45–60 1–10 21–30 41–60 71–80 91–100

pz1 (ρz1 = 0.82) 0.120 0.142 0.170 0.416 0.204 0.112 0.051 0.012
pz2 (ρz2 = 0.98) 0.236 0.138 0.086 0.166 0.156 0.150 0.147 0.151
pν (nonemp.) 0.065 0.052 0.051 0.186 0.077 0.038 0.016 0.003
Pr (any large shock) 0.325 0.263 0.248 0.526 0.333 0.248 0.193 0.161

Notes: This table reports the probabilities of innovations with large standard deviations vary by age and past income. In
particular, the first row reports the probability of drawing innovations to the z1persistent component from the first normal
distribution, z1,1 ∼ N (−0.373, 0.597). And similarly, the second row presents the probability of drawing innovations to the
z2persistent component from the first normal distribution, z2,1 ∼ N (−0.272, 0.574). The last row reports the probability
of any one of the events happening in the first three rows.
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Figure D.2 – Impulse Response Moments Targeted in the Estimation, Prime-Age Work-
ers

(a) Workers with Median RE
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(b) Workers at the 90th Percentile of RE
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(c) Workers at the 10th Percentile of RE
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(d) Asymmetric Mean Reversion: Butterfly Pattern
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Figure D.3 – Within-Cohort Variance of Log Earnings
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Figure D.4 – Fit of Estimated Model on Cross-Sectional Moments of One-Year Earnings
Changes
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Figure D.5 – Model Fit on Cross-Sectional Moments of One-Year Earnings Changes
by Age
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Figure D.6 – Model Fit on Cross-Sectional Moments of Five-Year Earnings Changes
by Age
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Figure D.7 – Cross-Sectional Moments of One-Year Earnings Changes by Age and
Recent Earnings: Benchmark, Gaussian and Data

(a) Standard deviation of ∆1
arcY

i
t

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

(b) Skewness of ∆1
arcY

i
t

0 20 40 60 80 100
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(c) Kurtosis of ∆1
arcY

i
t

0 20 40 60 80 100
0

5

10

15
25-34, Data

25-34, Gaussian

25-34, Benchmark

35-44, Data

35-34, Gaussian

35-44, Benchmark

45-54, Data

45-54, Gaussian

45-54, Benchmark

Figure D.8 – Cross-Sectional Moments of Five-Year Earnings Changes by Age and
Recent Earnings: Benchmark, Gaussian and Data
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Figure D.9 – Deviations of Model Moments from Data Moments
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Note: This figure shows the deviations of each estimated model through the lens of our objective function. With the

exception of Figure D.9d, we plot equation (11) for each set of moments. For income growth moments in Figure D.9d, we

plot the difference between the income growth of a given LE percentile in the model and the data.
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Figure D.10 – Benchmark Process: 3-D Plot of Nonemployment Shock Probability pν
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Figure D.11 – 2-State Process: 3-D Plot of Mixing Probabilities for the

(a) Mixing Probability pz1 for z1t
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(b) Mixing Probability pz2 for z2t
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(c) Shock Probability pν for νt
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