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APPENDIX A: DATA APPENDIX

CONSTRUCTING A NATIONALLY REPRESENTATIVE PANEL OF MALES from the MEF is rela-
tively straightforward. The last four digits of the SSN are randomly assigned, which allows
us to pick a number for the last digit and select all individuals in 1978 whose SSN ends
with that number.1 This process yields a 10% random sample of all SSNs issued in the
United States in or before 1978. Using SSA death records, we drop individuals who are
deceased in or before 1978 and further restrict the sample to those between ages 25 and
60. In 1979, we continue with this process of selecting the same last digit of the SSN. In-
dividuals who survived from 1978 and who did not turn 61 continue to be present in the
sample, whereas 10% of new individuals who just turned 25 are automatically added (be-
cause they will have the last digit we preselected), and those who died in or before 1979
are again dropped. Continuing with this process yields a 10% representative sample of
U.S. males in every year from 1978 to 2013.

The measure of wage earnings in the MEF includes all wages and salaries, tips, re-
stricted stock grants, exercised stock options, severance payments, and many other types
of income considered remuneration for labor services by the IRS as reported on the W-2
form (Box 1). This measure does not include any pre-tax payments to IRAs, retirement
annuities, independent child care expense accounts, or other deferred compensation. We
apportion 2/3 of the self-employment income as labor income. Given the lack of direct
data on this, the 2/3 allocation has been the convention adopted by the literature as well
as the PSID. In a previous version, we ignored self-employment income altogether and
found similar results, leading us to believe that the exact allocation matters very little.

Finally, the MEF has a small number of extremely high earnings observations. For pri-
vacy and confidentiality reasons, we cap (winsorize) observations above the 99.999th per-
centile of the year-specific income distribution. For background information and detailed
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1In reality, each individual is assigned a transformation of their SSN number for privacy reasons, but the
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TABLE A.I

SAMPLE SIZE STATISTICS FOR CROSS-SECTIONAL MOMENTS OF
FIVE-YEAR EARNINGS GROWTHa

# Observations in Each RE Percentile Group

Age group Median Min Max Total (’000s)

28–34 141,914 75,417 147,867 13,593
35–44 202,203 103,688 210,169 19,193
45–54 171,043 91,058 180,318 16,312

aNote: Each row reports several statistics for the number of observations used
to compute the cross-sectional moments of five-year earnings changes for a given
age group. Since cross-sectional moments are computed for each age-year-recent
earnings percentile cell and then averaged over all years, sample sizes refer to the
sum across all years of a given age by percentile group. The last column (“Total”)
reports the sum of observations across all 100 RE percentile groups for the age
group indicated.

documentation of the MEF, see Panis, Euller, Grant, Bradley, Peterson, Hirscher, and
Stinberg (2000) and Olsen and Hudson (2009).

Table A.I shows some sample size statistics regarding the sample used in the cross-
sectional moments. Recall that we compute these statistics for each age-year-recent earn-
ings percentile and aggregate them across years. Therefore, sample sizes refer to the sum
across all years of a given age by percentile group. Each row reports the median, mini-
mum, maximum, and total number of observations used to compute the cross-sectional
moments for a given age group. Note that even the smallest cell has a sample size of more
than 75,000 on which the computation of higher-order moments is based.

A.1. Imputation of Self-Employment Income Above SSA Taxable Limit

We restrict our main sample for cross-sectional and impulse response moments to years
between 1994 and 2013 during which neither self-employment income nor wage/salary
income is capped. However, this sample period–covering only 20 years–is too short to
construct reliable measures of lifetime incomes of individuals. For this purpose, lifetime
income moments in Section 5 are computed using the whole sample that covers 36 years
between 1978 and 2013. But self-employment income is capped by the SSA maximum
taxable earnings limit before 1994. In this section, we introduce a methodology to im-
pute self-employment income above the top code for years before 1994, and show that
imputing self-employment income has a negligible effect on our results.

Let ymax
t be the official SSA maximum taxable earnings limit in year t. Our goal is to

impute the uncapped (unobservable) self employment income measure, ỹSE
i�t for individ-

uals who have self-employment income around the maximum taxable earnings limit re-
ported in the MEF data specified by threshold χymax

t (i.e., ySE
it ≥ χymax

t ), where χ < 1.2
For this purpose, we take the uncapped self-employment income measure in 1996, ySE

i�1996,
and regress it on observables that can also be constructed for the period before 1994.3
In particular, we first group workers into three bins based on their age in year 1996: 28–

2We assume χ = 0�95 < 1, because the MEF data have several observations above the SSA taxable limit
implying measurement error around the limit.

3The first year with uncapped self-employment income is 1994, but we use 1996 self-employment income in
the regression due to measurement issues in the 1992 data for self-employment income.
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29, 30–34, and 35–40.4 Next, within each age group h, we estimate quantile regressions
of uncapped self-employment income in 1996 for 75 equally spaced quantiles τ. Thus, in
total we estimate the following specification 3 × 75 times—one for each age group and
quantile:

log ySE
i�1996

=
3∑
k=0

αh�τ1�kI
{
yWi�1996−k < Ymin�1996−k

} +
3∑
k=0

αh�τ2�kI
{
yWi�1996−k ≥ Ymin�1996−k

}
log yWi�1996−k

+
3∑
k=1

αh�τ3�kI
{
ySE
i�1996−k > χy

max
1996−k

} +
3∑
k=1

αh�τ4�kI
{
ySE
i�1996−k < Ymin�1996−k

}
+

3∑
k=1

αh�τ5�kI
{
ySE
i�1996−k ≥ Ymin�1996−k

}
min

(
log ySE

i�1996−k� logχymax
1996−k

) + εit� (A.1)

where yWi�t is the wage and salary income of individual i in year t, I is the indicator function,
and εit is the residual term. The right-hand-side variables are as follows: (i) a dummy vari-
able of whether the worker’s wage earnings yWi�t is less than the minimum income thresh-
old Ymin�t ; (ii) if it is higher than Ymin�t , the log of wage earnings log yWi�t ; (iii) a dummy
variable of whether the self-employment income ySE

i�t is above the maximum cap χymax
t ;

(iv) a dummy variable of whether ySE
i�t is less than the minimum threshold Ymin�t ; (v) if it

is higher than Ymin�t , the log self-employment income capped at the maximum threshold
log(min(ySE

i�t �χy
max
t )). We also include three lags of these as independent variables. Then,

αh�τi�k denotes the regression coefficient of variable i with lag k for age group h, quantile τ.
We then use these regression coefficients to impute the uncapped self-employment in-

come before 1994 for individuals who have SE income above the limit χymax
t reported in

the MEF data. For this purpose, we randomly assign individuals to quantiles τ = 1� � � � �75
in our lifetime income sample. Then, the imputed self-employment income for an indi-
vidual in age group h with quantile τ who has recorded self-employment income above
the limit χymax

t in year t = 1981�1981� � � � �1993 is given by the following equation:5

log ỹSE
i�t =

3∑
k=0

αh�τ1�kI
{
yWi�t−k < Ymin�t−k

} +
3∑
k=0

αh�τ2�kI
{
yWi�t−k ≥ Ymin�t−k

}
log yWi�t−k

+
3∑
k=1

αh�τ3�kI
{
ySE
i�t−k > χy

max
t−k

} +
3∑
k=1

αh�τ4�kI
{
ySE
i�t−k < Ymin�t−k

}
+

3∑
k=1

αh�τ5�kI
{
ySE
i�t−k ≥ Ymin�t−k

}
min

(
log ySE

i�t−k� logχymax
t−k

)
� (A.2)

4Our imputed lifetime income sample employs a balanced panel that selects all individuals who are between
ages 25 and 28 in 1981 (who were born between 1954 and 1957). This condition ensures that we have 33 years of
earnings-histories between ages 25 and 60 for each individual (which might include years with zero earnings).
The same condition also implies that, in this sample, only workers younger than 40 are affected by the top
coding until 1993 and we impute their capped self-employment income.

5The imputed lifetime income sample starts with year 1981 because, to impute self-employment income, we
need to observe wage and self-employment income in the previous three years between 1978 and 1980.
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FIGURE A.1.—Fraction of top-coded self-employment income observations.

Figure A.1 plots the fraction of top-coded self-employment income observations
against the percentiles of lifetime earnings distribution at ages 25, 30, 35, and 40 in our
imputed lifetime income sample.6 Almost no observations are top coded for individuals
below the 20th percentile of the lifetime earnings distribution, in particular at young ages.
As expected, the fraction of top-coded observations increases with age and with lifetime
earnings and is highest for workers in the 99th percentile when they are 40 years old.

Furthermore, Figure A.2 plots the lifetime income growth between 25 and 55 against
lifetime earnings percentiles using imputed and nonimputed data, which is already shown
in Figure 11(a). The two series are almost indistinguishable, indicating that top coding has
very little effect on lifetime income growth. This is because only a very small number of
workers are affected by the top coding; those who had very high self-employment income
before 1994 or when the cohort was younger than age 41.

FIGURE A.2.—Income growth for imputed and nonimputed data.

6Recall that in this sample, only workers younger than 40 are affected by the top coding.
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APPENDIX B: DERIVATION OF HIGHER-ORDER MOMENTS OF LOG CHANGE

Let us suppose that the earnings dynamics are given by the commonly used random-
walk permanent/transitory model in which i.i.d. permanent (ηit) and transitory (εit) in-
novations are drawn from some general distributions Fη and Fε, respectively. Then, the
k-year log growth of earnings is given by

	klogy
i
t = yit+k − yit =

t+k∑
j=t+1

ηij + εit+k − εit �

Let us denote the variance, skewness, and excess kurtosis of distribution Fx, x ∈ {η�ε}
by σ 2

x , Sx, and Kx, respectively. Then the variance is given by

σ2
(
	klogy

i
t

) = kσ2
η + 2σ2

ε �

In order to derive the skewness of 	klogy
i
t , we use the following properties:

S(kx)= Sx� for any k> 0�

S(x+ y)=
(
σx

σx+y

)3

× Sx +
(
σy

σx+y

)3

× Sy�

S(x− y)=
(
σx

σx+y

)3

× Sx −
(
σx

σx+y

)3

× Sy �

Then:

S
(
	klogy

i
t

) =
t+k∑
j=t+1

(
ση

σ2
(
	klogy

i
t

))3

× Sη

+
(

σε

σ2
(
	klogy

i
t

))3

× Sε −
(

σε

σ2
(
	klogy

i
t

))3

× Sε

= kσ3
ηSη

σ3
(
	klogy

i
t

) �
In order to derive the kurtosis of 	klogy

i
t , we use the following properties:

K(kx)= Kx� for any k> 0�

K
(

k∑
j=1

xj

)
=

k∑
j=1

[(
σxj

σ

(∑
j

xj

))4

·Kxj

]
�

We obtain

K
(
	klogy

i
t

) = k× σ4
η

σ4
(
	klogy

i
t

)Kη + 2 × σ4
ε

σ4
(
	klogy

i
t

)Kε�
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APPENDIX C: ROBUSTNESS AND ADDITIONAL FIGURES

This section reports additional results from the data. Section C.1 reports the cross-
sectional moments of one-year earnings growth. Section C.2 shows the cross-sectional
moments of one-year and five-year arc-percent changes of earnings. Section C.3 presents
several features of the data on log earnings changes that are mentioned in the paper but
are relegated to the Appendix. In Section C.4, we show several moments of persistent
earnings changes based on the measure introduced in Section 3.4. Section C.5 provides
further analysis regarding the higher-order moments of job-stayers and -switchers. Sec-
tion C.6 documents cross-sectional moments using a much broader sample and shows
that the changes in higher-order moments are not driven by the particular sample se-
lection criteria used in the main text. In Section C.6, we present properties of earnings
changes in survey data. Section C.8 investigates the role of Social Security Disability In-
come in our findings. Finally, Section C.9 shows several results about the lifecycle profile
of earnings and employment that were left out of the main analysis.

C.1. Cross-Sectional Moments of One-Year Log Earnings Growth

Throughout the main text, we showed the cross-sectional moments of five-year (log)
earnings growth. Figures C.1–C.4 show analogous features of the data for one-year earn-
ings growth.

C.2. Arc-Percent Moments

In the main text, we documented moments of log earnings changes. In doing so, we
are forced to drop observations close to zero to obtain sensible statistics. However, as we
discuss in Section 2, such observations contain potentially valuable information, as they
inform us about very large changes in earnings caused by events such as long-term nonem-
ployment. To complement our analysis, this section reports the cross-sectional moments
of arc-percent changes defined in Section 2, which we reproduce here for convenience:

arc-percent change: 	arcY
i
t�k = Y i

t+k −Y i
t(

Y i
t+k +Y i

t

)
/2
�

FIGURE C.1.—Dispersion of one-year log earnings growth.
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FIGURE C.2.—Skewness of one-year log earnings growth.

FIGURE C.3.—Kelley’s skewness decomposed: change in P90–P50 and P50–P10 relative to age 25–29
(one-year log growth).

FIGURE C.4.—Kurtosis of one-year log earnings growth.
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FIGURE C.5.—Dispersion of annual arc-percent earnings change.

This measure allows computation of earnings growth even when the individual has zero
income in one of the two years t and t + k. Section C.2.1 shows the moments of one-year
arc-percent change, and Section C.2.2 shows the moments of five-year change.

C.2.1. Moments of Annual Arc-Percent Changes

Figures C.5(a)–C.8(b) show the standardized moments of one-year arc-percent
changes.

C.2.2. Moments of Five-Year Arc-Percent Changes

Figures C.9(a)–C.12(b) show the standardized moments of -year arc-percent changes.

FIGURE C.6.—Skewness of annual arc-percent earnings change.
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FIGURE C.7.—Kelley’s skewness decomposed (annual arc-percent growth): change in P90–P50 and P50–P10
relative to age 25–34.

FIGURE C.8.—Kurtosis of annual arc-percent earnings change.

FIGURE C.9.—Dispersion of five-year arc-percent earnings change.



10 GUVENEN, KARAHAN, OZKAN, AND SONG

FIGURE C.10.—Skewness of five-year arc-percent earnings change.

FIGURE C.11.—Kelley’s skewness decomposed (5-year arc-percent growth): change in P90–P50 and
P50–P10 relative to age 25–34.

FIGURE C.12.—Kurtosis of five-year arc-percent earnings change.
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FIGURE C.13.—Selected percentiles of log earnings changes.

C.3. Further Moments of Log Earnings Change

In this section, we report some additional figures of interest that are omitted from the
main text due to space constraints. First, Figure C.13 plots selected percentiles of the
annual and five-year log earnings change distribution for every RE percentile.

Second, Figure C.14 shows an additional measure of kurtosis proposed by Moors (1988)
for one- and five-year earnings changes. Similar to the measure proposed by Crow and
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FIGURE C.14.—Moors’s kurtosis of log earnings changes.

Siddiqui (1967), this measure is robust to outliers in the tails. Moors’s kurtosis, κM , is
defined as

κM = (P87.5 − P62.5)+ (P37.5 − P12.5)
P75 − P25

�

For a Gaussian distribution, Moors’s kurtosis is 1.23 (shown on dashed lines).

C.4. An Alternative Measure of Persistent Earnings Changes

In Section 3, we studied the distribution of five-year earnings changes, and explained
that the five-year changes reflect more of the distribution of the persistent innovations
rather than transitory innovations. We also considered an alternative measure (	

5

log(ȳt
i)≡

ȳ it+4 − ȳ it−1, where ȳ it+4 ≡ log(Ȳ i
t+4) and ȳ it−1 ≡ log(Ȳ i

t−1)) to deal with the caveat that our
baseline measure is contaminated by transitory changes in years t and t + k. The main
text showed the standardized moments of this alternative measure; Figure C.15 shows the
quantile-based moments.

FIGURE C.15.—Alternative measure of persistent earnings changes, 	
5
log(ȳt

i): quantile-based moments.
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FIGURE C.16.—Fraction staying at jobs between t and t + 1 (baseline definition).

C.5. Cross-Sectional Moments for Job-Stayers versus Job-Switchers

In the main text, we analyzed the properties of earnings growth separately for job-
stayers and job-switchers by showing quantile-based moments of five-year earnings
changes. Here, we first complement our analysis by showing several features of the data
that were omitted in the main text to save space. Second, we consider an alternative defi-
nition of job-stayers and investigate the cross-sectional moments of earnings according to
that definition.

Figure C.16 shows the fraction of job-stayers according to our baseline definition as a
function of recent earnings and age. The probability of staying with the same employer in-
creases with recent earnings and age. For the youngest age group (25–34), the probability
of staying in the same job is around 20% at the bottom of the recent earnings distribution.
This fraction increases with recent earnings and reaches a peak around 60% at the 95th
percentile of the RE distribution. This pattern reverses itself slightly at the top of the RE
distribution. As workers age, the probability of staying with the same employer increases
across the RE distribution.

Second, Figures C.17 and C.18 show the age profile of higher-order moments shown
in Section 3.5. The age patterns are broadly similar across switchers and stayers: P90–10
declines slightly, skewness becomes more negative, and kurtosis increases for both job-
stayers and job-switchers over the life cycle.

Next, we complement our analysis of job-stayers and job-switchers by investigating the
standardized moments of one- and five-year earnings changes (as opposed to quantile-
based moments analyzed in the main text). We plot these moments in Figure C.19.

The results are consistent with what one might expect. Job-stayers face earnings
changes that (i) have half the dispersion of job-switchers, (ii) are less negatively skewed as
opposed to job-switchers, who face very negatively skewed changes, and (iii) have a much
higher kurtosis than job-switchers. In fact, kurtosis is as high as 40 for annual changes
and 25 for five-year changes for job-stayers, but is less than 10 for job-switchers at both
horizons.

One caveat worth emphasizing again is that constructing a clean measure of job-stayers
and job-switchers is not possible in our data set, primarily because of the annual nature
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FIGURE C.17.—Quantile-based moments of one-year log earnings growth: stayers versus switchers.

of the data: We observe when employment spells begin and end only at annual frequency,
and therefore cannot infer if a worker worked multiple jobs at the same time or if he
switched employers at some point during the year, and if so, whether the change was a
direct job-to-job switch or involved a nonemployment spell in between. In our baseline
measure, we have opted to be very conservative when defining job-stayers. This measure
probably understates job-stayers and overstates true switchers.

We now consider an alternative definition, which is a much more conservative defini-
tion of job-switchers. According to this definition, we call an individual a job-switcher in
year t if (i) the largest paying employer is different in years t and t + 1, (ii) the largest
paying employers in years t and t + 1 contribute to at least 75% of the worker’s total
salary, (iii) the worker either has no income in year t + 1 from the main employer of
year t, or if he does, that income in t + 1 is less than 25% of what he made in t (from
the same employer). Figure C.20 compares the share of job-stayers according to this al-
ternative definition (left panel) to our baseline (right panel) and Figure C.21 compares
the cross-sectional moments of one-year earnings changes. By construction, the fraction
of individuals identified as job-stayers and job-switchers is quite different across the two
definitions. Nevertheless, all of the substantive conclusions go through regarding the dif-
ferences in the cross-sectional moments of job-stayers and job-switchers.

C.6. Cross-Sectional Moments by Age Without Sample Selection

When choosing the sample for cross-sectional moments, we required an individual to
have an earnings level above the minimum threshold in t − 1 and in at least two more

FIGURE C.18.—Quantile-based moments of five-year log earnings growth: stayers versus switchers.
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FIGURE C.19.—Standardized moments of log earnings growth: stayers versus switchers.
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FIGURE C.20.—Fraction of job stayers.

years between t − 5 and t − 2. Figure C.22 shows that these conditions result in a sub-
stantial share of the initial sample being dropped from the analysis. This large selectivity
opens up the possibility that some of our results might be specific to our final sample.
Here, we relax the selection criteria and include any person for whom earnings change
can be computed. Figures C.23–C.28 show the standardized and quantile-based moments
of one-year and five-year earnings changes. We find that our substantive conclusions are
unchanged: Dispersion of earnings changes declines with age for most of the life cycle,
and earnings changes become more negatively skewed and more leptokurtic.

C.7. Survey Data and Higher-Order Moments

Panel Study of Income Dynamics (PSID)

The Panel Study of Income Dynamics has a smaller sample size compared to the CPS,
but it has the advantage of following the same household over a much longer period
of time. The PSID started collecting data annually in 1968 on a sample of around 5000
households, of which 3000 households were representative and the remaining were low-
income families (the Census Bureau’s Survey of Economic Opportunities sample, SEO).
We restrict our study to households in the core sample and do not use households in the
SEO or the Latino subsamples. The questions on income are retrospective, meaning that
respondents in a given year are asked about the previous calendar year. We analyze data
for the period 1999–2013. During this period, the survey was biennial.

Our measure of labor income (variable ER16463 in 1999) is the sum of wages and
salaries, bonuses, pay for overtime, tips, commissions, professional practice or trade, mar-
ket gardening, miscellaneous labor income, and extra job income. To remain consistent
with the rest of the paper, we focus on male heads of household between ages 25 and 55.
We deflate annual earnings by the price level with the base year 2010.7 We drop observa-
tions that report earnings less than $1500. We residualize earnings, wages, and hours by

7We use the consumer price index for all urban consumers (CPI-U) published by the Bureau of Labor
Statistics.
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FIGURE C.21.—Alternative job-stayer definition: cross-sectional moments of one-year earnings growth.
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FIGURE C.22.—Fraction of observations dropped by age.

FIGURE C.23.—Dispersion of one-year log earnings growth by age.

FIGURE C.24.—Skewness of one-year log earnings growth by age.
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FIGURE C.25.—Kurtosis of one-year log earnings growth by age.

FIGURE C.26.—Dispersion of five-year log earnings growth by age.

FIGURE C.27.—Skewness of five-year log earnings growth by age.
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FIGURE C.28.—Kurtosis of five-year log earnings growth by age.

regressing them on a full set of age dummies, controlling for 3 race, 3 education, and 8 re-
gion dummies. The three education levels are: less than 11 years (less than high school),
12 years (high school), and more (college dropout, BA degree, or more). We take the
maximum grade achieved as the relevant education level of an individual throughout the
sample. Race dummies correspond to white, black, and the remaining race and ethnic-
ities. We clean the age variable so that it increases by 2 for each individual across two
surveys. We run these regressions separately by year, obtain the residuals, and analyze the
change in the residuals between consecutive interviews. We group observations into seven
bins, depending on the magnitude of this change.

We utilize different variables in the PSID to identify individuals who experience a
change in health, start experiencing disability, or experience time out of work or a job
or occupation change. We now describe specifically which variables are used to construct
the various measures in Table III.

Bad Health. The head is asked the following question (ER15447 in 1999): “Would
you (HEAD) say your health in general is excellent, very good, good, fair, or poor?” We
classify someone in bad health if he reports a poor health condition (==5). Transitions
into poor health are identified as someone who reported being in excellent, very good,
good, or fair health in the previous survey and reports being in poor health in the current
survey. This variable is available throughout our sample period.

Disability. The head is asked the following question on disability (ER15451 in 1999):
“For work you can do, how much does it limit the amount of work you can do—a lot,
somewhat, just a little, or not at all?” We classify someone as having some disability if
he reports having an issue that affects his work a lot (==1), somewhat (==3), or just a
little (==5). A new disability is coded as someone who did not have such an issue the last
time and reports an issue in the current survey. This variable is available throughout our
sample period.

Weeks Unemployed. Some individuals report time spent unemployed in units of
months (ER21322 in 2003), whereas some report it in units of weeks (ER21320 in 2003).
We combine these two variables by taking the maximum reported unemployment dura-
tion in weeks. These variables are available starting in 2003.
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TABLE C.I

INVOLUNTARY MOVES AND (THE TAILS OF) THE EARNINGS CHANGE DISTRIBUTION

Group 	y ∈ (−∞�−1) [−1�−0�25) [−0�25�0) [0�0�25) [0�25�1) (1�∞)

Share % 3.8% 14�4% 31�2% 31�1% 16�5% 3.0%
Invol. move % 6.9% 4�5% 3�2% 2�6% 3�6% 4.3%

Weeks out of Labor Force. The PSID asks about head’s total weeks out of the labor
force in the previous calendar year (ER24087 in 2003). This variable is available through-
out our sample period.

Move in Response to Outside Events (Involuntary Reasons). The PSID asks about geo-
graphic moves (whether the head changed residence) and the reasons for the move (vari-
able ER13080 in 1999). We classify someone as having moved for involuntary reasons if
they report having moved for being evicted, armed services, health reasons, divorce, and
health-related retirement. Other observations are classified as nonmovers. This variable
is available throughout our sample period. See Table C.I.

Occupation Change. The PSID asks about the head’s occupation in the main em-
ployer, labeled as job 1 (ER21145 in 2003). This variable is available starting in 2013
and uses the 3-digit occupation code from the 2000 Census of Population and Housing.
This variable is available every year since 2003. We code someone as having changed oc-
cupations if (i) his occupation in the current year t is different than in the previous survey
t−2, (ii) he reports having changed jobs (explained below), and (iii) his occupation in the
next survey t + 2 is different from his occupation in year t − 2. The last condition is used
to deal with potential coding errors of occupations prevalent in most survey data.

Job Change. We use the start year of the current main job (job 1) to identify job
changes (ER21130 in 2003). If the head reports having started the job in the same year
as the survey or the year before, we code him as a job-switcher. This variable is available
every year since 2003.

Current Population Survey (CPS)

The CPS is a rotating panel based on addresses. Each address in the survey is inter-
viewed for four consecutive months, then leaves the sample for eight months, and then
returns for another four consecutive months. Because of this rotating nature, it is possible
to match at most three quarters of respondents across months. Since the survey is based
on addresses and does not follow households, if households move, they leave the sample
and may be replaced by others that move in to the same address. To have a reliable panel,
we match individual records using rotation groups, household identifiers, individual line
numbers, race, sex, and age.

The Annual Social and Economic Supplement (ASEC) of the CPS, a supplement to
the CPS in March, asks respondents about their earnings and hours and weeks worked
during the past calendar year (variables incwage, wkslyr and hrslyr, respectively.) We use
data for the period 1968–2013 and focus on males between ages 25 and 55. Similarly to the
SSA sample, we impose a minimum earnings threshold that corresponds to working for 13
weeks for 40 hours a week at half the minimum wage. We focus on three measures: annual
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TABLE C.II

HIGHER-ORDER MOMENTS OF INCOME CHANGES IN PSID AND CPSa

PSID

All 25–39 40–55

Gaussian Earnings Wages Earnings Wages Earnings Wages

Skewness 0�0 −0�26 −0�14 −0�17 −0�20 −0�34 −0�09
Kelley Skewness 0�0 −0�02 −0�02 0�03 0�016 −0�06 −0�04
Kurtosis 3�0 12�26 13�65 10�44 9�00 14�01 17�10
Crow Kurtosis 2�91 6�83 5�59 6�33 5�02 7�33 6�11

CPS

All 25–39 40–55

Earnings Wages Earnings Wages Earnings Wages

Skewness 0�0 −0�15 −0�09 −0�09 −0�023 −0�21 0�004
Kelley Skewness 0�0 −0�02 −0�01 0�002 −0�008 −0�03 −0�017
Kurtosis 3�0 9�29 11�2 9�12 10�60 9�53 12�1
Crow Kurtosis 2�91 7�15 5�93 6�97 5�72 7�29 6�05

aNote: Wages are obtained by dividing annual earnings by annual hours in the PSID, and by the weekly wage variable in the CPS.

earnings, average weekly wages, and average hourly wages. We regress each measure on a
full set of age dummies and a race dummy (white and nonwhite). We run these regressions
separately for each year and education group (college and noncollege), thereby allowing
the coefficients on age and race dummies to depend on age and education. We then obtain
the residuals from this regression and analyze the changes in the residuals. We use the
CPS weights throughout this analysis.

Higher-Order Moments in CPS. In the main text, we reported higher-order moments
of two-year changes in earnings and wages by age groups. Table C.II provides similar
results from the CPS. The growth measure in the CPS is annual and is therefore not
easily comparable to the figures from the PSID. However, the findings are qualitatively
similar.

C.8. The Role of Disability Income

In this section, we investigate the robustness of our findings to the inclusion of income
from Social Security disability benefits (SSDI). This is particularly relevant for thinking
about the tails of the distribution of earnings changes. To this end, we link to our data
set information about disability benefits from the SSA records. We then define a mea-
sure of “total income” as the sum of labor income and annual disability income. Sec-
tion C.8.1 compares the cross-sectional moments of earnings changes to our baseline and
Section C.8.2 does the same for lifetime income growth.

C.8.1. Cross-Sectional Moments

Figures C.29–C.34 show several moments of one-year and five-year earnings changes.
In each figure and for each age group, we show these moments for labor income and total
income separately, where total income is labor income plus disability benefits. For each
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FIGURE C.29.—Dispersion of one-year log earnings growth.

measure of income, recent earnings are recalculated using that measure. Otherwise, these
graphs are calculated in a fashion analogous to that in Section 3. The main finding here
is that the inclusion of disability income has little effect on cross-sectional moments, even
at low levels of earnings.

C.8.2. Lifetime Income Growth Moments

Figure C.35 shows growth in average earnings over the life cycle. The left panel shows
(log) growth in average earnings between ages 25 and 55, whereas the right panel does the
same for 30 and 55. We consider two measures: labor income and total income (including
disability benefits). Figure C.35 plots income growth for the two measures against lifetime
income. To allow comparability across the two measures, we use labor income to construct
each individual’s lifetime income and impose the sample selection criteria based on this
measure. This allows us to keep the same overall sample as well as the same people in
each lifetime income group. The differences in the two series are therefore only due to
disability payments. We find that SSDI makes a difference for the income growth of the

FIGURE C.30.—Dispersion of five-year log earnings growth.
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FIGURE C.31.—Skewness of one-year log earnings growth.

FIGURE C.32.—Skewness of five-year log earnings growth.

FIGURE C.33.—Kurtosis of one-year log earnings growth.
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FIGURE C.34.—Kurtosis of five-year log earnings growth.

bottom LE individuals. For the bottom 1%, we find that SSDI can undo around 50% of
earnings declines over the lifetime. This contribution declines gradually and vanishes by
around the 20th percentile of the LE distribution. This result is not very surprising since
bottom LE workers are more likely to be claiming disability benefits.

C.9. Additional Figures on Lifecycle Patterns of Earnings

To provide a benchmark for the analysis in Section 5, we estimate the average lifecycle
profile of log earnings using a standard pooled regression of log individual earnings on a
full set of age and (year-of-birth) cohort dummies using the admissible observations (as
defined in Section 2) between 1994 and 2013.8 The estimated age dummies are plotted as
circles in Figure C.36 and represent the average lifecycle profile of log earnings. It has the

FIGURE C.35.—Lifecycle earnings growth rates, by lifetime earnings group.

8This procedure is standard in the literature; see, for example, Deaton and Paxson (1994) and Storesletten,
Telmer, and Yaron (2004).
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FIGURE C.36.—Lifecycle profile of average log earnings.

usual hump-shaped pattern that peaks around age 50. These age dummies turn out to be
indistinguishable from a fourth-order polynomial in age:

yh = −0�0240 + 0�2013 × h− 0�6799 × h2 + 1�2222 × h3 + 9�4895 × h4�

where h= (age − 24)/10. Figure C.37 contains two panels on the distribution of lifecycle
growth rates that complement the analysis in Section 5.

C.10. Concentration of Nonemployment by Lifetime Earnings Group

In this section, we investigate how concentrated (full-year) nonemployment is. We rank
individuals by their lifetime earnings and group them into percentiles. For each lifetime
earnings group, we compute what fraction of full-year nonemployment at a given age is

FIGURE C.37.—Log earnings growth over subperiods of life cycle.
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FIGURE C.38.—Nonemployment concentration over the life cycle, by lifetime earnings group.

FIGURE C.39.—Employment CDF by age groups.

accounted for by that group. These are shown in Figure C.38. For example, the bottom
1% of the lifetime earnings distribution accounts for around 50% of total nonemployment
at ages 25–30.

APPENDIX D: ESTIMATION

In this section, we describe the steps of our estimation procedure of method of simu-
lated moments (MSM) in more detail and provide additional estimation results.

D.1. Moment Selection and Aggregation

Accounting for Zeros. Recall that in order to construct the cross-sectional moments of
log growth, we have dropped individuals who had very low earnings—below Ymin—in year
t or t + k so as to allow taking logarithms in a sensible manner. Although this approach
made sense for documenting empirical facts that are easy to interpret, for the estimation
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exercise, we would like to also capture the patterns of these “zeros” (or very low earnings
observations), given that they clearly contain valuable information. Targeting log growth
moments also creates technical issues with the optimization due to (little) jumps in the
objective function as workers cycle in and out of employment. To this end, instead of
targeting moments of log earnings change, we target moments of arc-percent change, as
defined in Section 3. According to this measure, an income change from any positive level
to 0 corresponds to an arc-percent change of −2, whereas an income change from 0 to
any positive level indicates an arc-percent change of 2.

Aggregating Moments. If we were to match all data points for every RE percentile and
every age group, it would yield more than 10,000 moments. Although such an estimation
is not infeasible, not much is likely to be gained from such a level of detail, and it would
make the diagnostics—that is, judging the performance of the estimation—quite difficult.
To avoid this, we aggregate the 100 RE percentiles and the 6 age groups into fewer ho-
mogeneous groups. We now describe the details of this aggregation and the resulting list
of moments targeted in our estimation.

1. Cross-Sectional Moments of Earnings Changes. To capture the variation in the cross-
sectional moments of earnings changes along the age and recent earnings dimensions, we
condition the distribution of earnings changes on these variables. For this purpose, we first
group workers into 6 age bins (five-year age bins between 25 and 54) and within each age
bin into 13 selected groups of RE percentiles in age t−1. The RE percentiles are grouped
as follows: 1, 2–10, 11–0, 21–30, . . . , 81–90, 91–95, 96–99, 100. Thus, we compute the
three moments of the distribution of one- and five-year earnings changes for 6 × 13 = 78
different groups of workers. We then aggregate the 6 age bins into 3 age groups, Ai

t−1,
by taking an average of moments within each age group. The first age group is defined
as young workers between ages 25 and 34, the second is between ages 35 and 44, and the
third age group is defined as workers between the ages of 35 and 54. Consequently, we
target three standardized moments (i.e., standard deviation, skewness, and kurtosis) of
one- and five-year arc-percent change for three age and 13 recent earnings groups, giving
us 3×2×3×13 = 234 cross-sectional moments. These moments are shown in Figure D.1.

2. Lifecycle Earnings Profile. The second set of moments captures the heterogeneity in
log earnings growth over the working life across workers who are in different percentiles
of the LE distribution. We target the average dollar earnings at 8 points over the life cycle:
ages 25, 30, . . . , and 60 for different LE groups. We combine LE percentiles into larger
groups to keep the number of moments at a manageable number, yielding 15 groups
consisting of percentiles of the LE distribution: 1, 2–5, 6–10, 11–20, 21–30, . . . , 81–90, 91–
95, 96–97, 98–99, and 100. The total number of moments we target in this set is 8 × 15 =
120.

3. Impulse Response Functions. We target average arc-percent changes in earnings
over the next k years for k= 1�2�3�5�10 conditional on groups formed by crossing age,
recent earnings Y t−1, and earnings change between t − 1 and t 	1

arcY
i
t−1: E[	k+1

arc Y
i
t−1 |

age�Y t−1�	
1
arcY

i
t−1].9 In each year, we first group workers into two age bins, denoted by

9Notice that, different from the moments we have shown in Section 4, we target earnings growth between
t+k and t−1. This is because all workers have Ỹ i

t−1 ≥ Ymin�t−1 in t−1 by construction of the RE sample. Thus,
we can compute the arc-percent growth between t + k and t − 1 for all workers, which keeps the composition
of workers constant in each k.
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FIGURE D.1.—Standardized cross-sectional moments of arc-percent growth targeted in the estimation.

h: young workers (25–34) and prime-age workers (35–55). Then, within each age group,
individuals are ranked into the following RE percentiles, denoted by j: 1–5, 6–10, 11–30,
31–50, 51–70, 71–90, 91–95, 96–100.
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Within each age h and RE group j, we then estimate our targets for the persistence
of earnings growth. For each k-year expected future earnings growth, we create a piece-
wise linear function of arc-percent growth between t and t − 1, that is, Eh�j[	k+1

arc Y
i
t−1 |

	1
arcY

i
t−1] = f kh�j(	

1
arcY

i
t−1). For this purpose, we condition workers in the data into 23

groups with respect to 	1
arcY

i
t−1. We first group all workers who are full-year nonemployed

in t in the first bin. Then we rank the rest of the workers into the following percentiles:
1–2, 3–5, 6–10, 11–15, 16–20, 21–25, . . . , 91–95, 96–98, 99–100. Then the piecewise lin-
ear function f kh�j(	

1
arcY

i
t−1) for year k is determined by the linear interpolation of 23 data

points of average earnings growth between t − 1 and t, E[	1
arcY

i
t−1], and their correspond-

ing k-year future expected growth, E[	karcY
i
t ].

For the model-simulated data, we group workers into 2×8 age and RE groups—similar
to the data moments. But within each age h and RE group j, we now rank workers into
10 	1

arcY
i
t−1 groups defined by the following percentiles: 1–2, 3–5, 6–10, 11–30, 31–50, 51–

70, 71–90, 91–95, 96–98, 99–100. In the estimation of income processes, we minimize the
distance between 10 different values of Emodel

h�j [	k+1
arc Y

i
t−1 | 	1

arcY
i
t−1] (for each age and RE

group and k-year expectation) from the model and its corresponding data moment from
the piecewise linear function, f kh�j(	

1
arcY

i
t−1). As a result, we have a total of 2×8×5×10 =

800 moments based on impulse responses.
The impulse response functions targeted in the estimation are plotted in Figures

D.2(a)–D.2(d) (to keep the figures similar to their counterparts in Section 4, we plot
E[	k+1

arc Y
i
t−1 | 	1

arcY
i
t−1]−E[	1

arcY
i
t−1]). More specifically, Figure D.2(a) plots, for prime-age

workers with median recent earnings, the mean reversion patterns at various horizons.
Figures D.2(b) and D.2(c) do the same for workers at the 90th and 10th percentiles of
the recent earnings distribution, respectively. Last, Figure D.2(d) shows the variation of
these impulse response functions with recent earnings.

4. Age Profile of Within-Cohort Variance of log Earnings. Although the main focus of
this section is on earnings growth, the lifecycle evolution of the dispersion of earnings lev-
els has been at the center of the incomplete markets literature since the seminal paper
of Deaton and Paxson (1994). For completeness and comparability with earlier work, we
have estimated the within-cohort variance of log earnings over the life cycle by control-
ling for cohort dummies in a sample of cross-sectional moments in the data (Figure D.3).
In our estimation, we compute this set of moments for a sample with income observa-
tions above the minimum income threshold. We have a total of 36 moments based on the
variance of log earnings, one for each age.

5. CDF of Employment Over the Life Cycle. We target the distribution of total number
of years employed (Ỹ i

t�h ≥ Ymin�t) over the life cycle. In particular, we target the cumulative
distribution of total lifetime years employed as shown in Figure 11(b). Thus, in total, there
are 35 such moments targeted in our estimation.

In sum, we target a total of J = 234 + 120 + 800 + 36 + 35 = 1227 moments in our
estimation.10

D.2. 2-State Process

We also estimate a more flexible income process which has two AR(1) components,
denoted by z1 and z2, each subject to innovations from a mixture of two normals with

10The full set of moments targeted in the estimation are reported (in Excel format) as part of an online
appendix available from the authors’ websites.
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FIGURE D.2.—Impulse response moments targeted in the estimation, prime-age workers.

age- and income-dependent shock probabilities. Here is the full specification where t =
(age − 24)/10 denotes normalized age and for j = 1�2:

Y i
t = (

1 − νit
)

exp
(
g(t)+ αi +βit + zi1�t + zi2�t + εit

)
� (D.1)

zi1�t = ρ1z
i
1�t−1 +ηi1t � (D.2)

zi2�t = ρ2z
i
2�t−1 +ηi2t � (D.3)

Innovations to AR(1): ηij�t ∼
{
N (μzj�1�σz�1) with pr. pzj�t�
N (μzj�2�σz�2) with pr. 1 −pzj�t�

(D.4)

Initial value of AR(1) process: zij0 ∼N (0�σj0)� j = 1�2� (D.5)
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FIGURE D.3.—Within-cohort variance of log earnings.

Nonemployment shocks: equation (7)� (D.6)

Transitory shock: equation (6)� (D.7)

Each AR(1) component, z1 and z2, receives a shock drawn from a mixture of two Gaus-
sian distributions as in our benchmark specification. We again normalize the mean of
innovations to the persistent components to zero; that is, μzj�1pzj + μzj�2(1 − pzj ) = 0.11

We also allow for heterogeneity in the initial conditions of the persistent processes, zi1�0
and zi2�0, given in equation (D.6). Since the specifications of z1 and z2 are the same so
far, we need an identifying assumption to distinguish between the two, so, without loss of
generality, we impose ρ1 < ρ2.

The age and income dependence of moments is captured by allowing the mixture prob-
abilities to depend on age and the sum of persistent components (z1 + z2):12

pizj�t =
exp

(
ξij�t−1

)
1 + exp

(
ξij�t−1

) � (D.8)

ξijt = azj + bzj × t + czj ×
(
zi1�t + zi2�t

) + dzj ×
(
zi1�t + zi2�t

) × t�
for j = 1�2. The equation for pνt is the same as (D.8) but ξij�t−1 is replaced with ξijt . This
completes the description of the 2-state process.

This 2-state process provides a significantly better fit to the targeted moments and
matches top income inequality as well as the income variation in nonemployment risk
(Figures D.4(b) and D.4(a)). We find that the two AR(1) components are quite different
from each other, especially in terms of their persistence with ρ2 = 0�98 versus ρ1 = 0�79
(Table D.I). We report the probability of drawing a nonemployment shock for various age
and RE percentile groups for workers who satisfy the conditions of the base sample in Ta-
ble D.II. The composition of large negative shocks changes from (hard-to-insure) more

11We do not have to make the identification assumption of μzj�1 < 0 as we did for the benchmark process,
because the first Gaussian, N (μzj �1�σz�1), is already different than the second one, N (μzj �2�σz�2), by having a
mean μzj�1 constant over age and income, whereas μzj�2 varies by income and age. The latter is because pzj is
a function of persistent components and age.

12We have also considered an alternative specification where the innovation variances are functions of earn-
ings and age. After extensive experimentation, we have found it to perform poorly.
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FIGURE D.4.—Model fit: nontargeted statistics.

persistent innovations to the less persistent ones over the life cycle. The probability of
receiving at least one large shock to one of the two AR(1) components or a nonemploy-
ment shock in a given year is declining in recent earnings, ranging from 29% at the low
end to 9% for individuals above the 90th percentile. Finally, the age and income variation
of nonemployment risk in the 2-state specification is qualitatively similar to that in the
benchmark process.

TABLE D.I

PARAMETER ESTIMATES FOR 2-STATE BENCHMARK PROCESSa

Specification Parameters est. se. Parameters est. se.

AR(1) Component 2 mixtures Persistent Components Normal Mixture Probability
↪→Probability age/inc. yes/yes ρ1 0�791 0.0006 az1 × 1 −1�927 0.0052
↪→Probability age/inc. yes/yes ρ2 0�976 0.0006 bz1 × t 0�778 0.0033
Nonemployment shocks yes μη1�1 −0�393 0.0013 cz1 × zt−1 −1�432 0.0040
↪→Probability age/inc. yes/yes μη2�1 −0�215 0.0007 dz1 × t × zt−1 −1�445 0.0044
Transitory Shocks mix ση1�1 0�561 0.0012 az2 × 1 −0�099 0.0049
HIP yes ση1�2 0�078 0.0005 bz2 × t −0�915 0.0028

ση2�1 0�591 0.0007 cz2 × zt−1 −1�122 0.0027
ση2�2 0�002 0.0006 dz2 × t × zt−1 0�632 0.0018

Objective value 19.59 σz1�0 0�200 0.0008
Decomposition: σz2�0 0�693 0.0007 Nonemployment Shocks
(i) Standard deviation 5.05 Transitory Shocks λ 0�001 0.0004
(ii) Skewness 6.93 probε 7�8% 0.0002 aν × 1 −2�992 0.0043
(iii) Kurtosis 4.73 με�1 0�467 0.0011 bν × t −1�036 0.0033
(iv) Impulse response-short 6.22 σε�1 0�420 0.0010 cν × zt −3�391 0.0040
(v) Impulse response-long 12.70 σε�2 0�020 0.0004 dν × t × zt −2�120 0.0043
(vi) Lifetime inc. growth 6.98 Individual Fixed Effect Deterministic Lifecycle Profile
(vii) Within cohort ineq. 2.28 σα 0�274 0.0008 a0 × 1 2�492 0.0013
(viii) Nonemployment CDF 5.83 σβ 0�160 0.0002 a1 × t 0�600 0.0011

corrαβ 0�826 0.0010 a2 × t2 −0�135 0.0003

aNote: We define the deterministic lifecycle profile as a quadratic function of t , g(t)= a0 + a1t + a2t
2, where t = (age − 24)/10.

yt = zt for the 1-state income process with one AR(1) component and yt = z1 + z2 for 2-state income process with two AR(1)
components.
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TABLE D.II

MIXTURE PROBABILITIES FOR 2-STATE PROCESSa

Age groups RE (Percentile) groups

25–34 35–49 45–60 1–10 21–30 41–60 71–80 91–100

pz1 (ρz1 = 0�79) 0.122 0.140 0.167 0.399 0.204 0.114 0.053 0.013
pz2 (ρz2 = 0�98) 0.251 0.162 0.111 0.205 0.184 0.174 0.163 0.158
pν (nonemp.) 0.067 0.054 0.052 0.188 0.080 0.040 0.017 0.004
Pr (any large shock) 0.337 0.279 0.266 0.531 0.353 0.270 0.208 0.169

aNotes: This table reports how the probabilities of innovations with large standard deviations vary by age and past income. In
particular, the first row reports the probability of drawing innovations to the z1 persistent component from the first normal distribution,
z1�1 ∼N (−0�393�0�561). And similarly, the second row presents the probability of drawing innovations to the z2 persistent component
from the first normal distribution, z2�1 ∼N (−0�215�0�591). The last row reports the probability of any one of the events happening in
the first three rows.

D.3. Numerical Method for Estimation

Objective Function. Let dj for j = 1� � � � � J = 1227 denote a generic empirical moment,
and let d̃j(θ) be the corresponding model moment that is simulated for a given vector of
earnings process parameters, θ. We simulate the entire earnings histories of 100,000 in-
dividuals who enter the labor market at age 25 and work until age 60. When computing
the model moments, we apply precisely the same sample selection criteria and employ the
same methodology with the simulated data as we did with the actual data. To deal with
potential issues that could arise from the large variation in the scales of the moments, we
minimize the scaled arc-percent deviation between each data target and the correspond-
ing simulated model moment. For each moment j, define

mj(θ)= d̃j(θ)− dj
0�5

(∣∣d̃j(θ)∣∣ + |dj|
) +ψj

� (D.9)

where ψj > 0 is an adjustment factor. When ψj = 0 and dj is positive, mj is simply the
(arc-) percentage deviation between data and model moments. This measure becomes
problematic when the data moment is very close to zero, which is not unusual (e.g., im-
pulse response of arc-percent earnings changes close to zero). To account for this, we
choose ψj to be equal to the 10th percentile of the distribution of the absolute value of
the moments in a given set. The MSM estimator is

θ̂= arg min
θ

m(θ)′Wm(θ)� (D.10)

where m(θ) is a column vector in which all moment conditions are stacked, that is,

m(θ)= [
m1(θ)� � � � �mJ(θ)

]′
�

We choose a weighting matrix that corresponds to essentially first averaging the mo-
ments within each of the seven sets, and then assigning equal weight (1/7) to each set
of moments. For example, each of the 117 cross-sectional moments (standard deviation,
skewness, kurtosis) of one-year earnings growth receives a weight of 1/(7 × 117), each of
the 480 short-term impulse response moments receives a weight of 1/(7 × 480), and so
on. Recall again that the seven sets of moments are as follows: (i) the standard deviation,
skewness, and kurtosis of one-year and (ii) five-year earnings growth; (iii) impulse re-
sponse moments over short (at one-, two-, and three-year) horizons and (iv) long (at five-
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and ten-year) horizons; (v) average earnings of each LE group over the life cycle; (vi) the
cumulative distribution of nonemployment; and (vii) the age profile of the within-cohort
variance of log earnings.

Numerical Method. The global stage is a multi-start algorithm where candidate param-
eter vectors are uniform Sobol (quasi-random) points. We typically take about 250,000 ini-
tial Sobol points for pre-testing and select the best 1000 (i.e., ranked by objective value)
for the multiple restart procedure depending on the number of parameters to be esti-
mated. For processes with a large number of parameters to be estimated (e.g., the bench-
mark process or the 2-state process), we also tried using 300,000 initial Sobol points and
used the best 2000 of them. We found this wider search for parameter values to be incon-
sequential for our estimates. The local minimization stage is performed with a mixture of
Nelder-Mead’s downhill simplex algorithm (which is slow but performs well on difficult
objectives) and the DFNLS algorithm of Zhang, Conn, and Scheinberg (2010), which is
much faster but has a higher tendency to be stuck at local minima. We have found that
the combination balances speed with reliability and provides good results.

D.4. Model Selection

Clearly, income processes with more parameters deliver a better fit to the data. To
what extent should we prefer the richer parameterized processes in Table IV? To answer
this question, we now implement a procedure for model selection to the specifications in
Table IV. Specifically, we carry out two tests.

Test 1. The first procedure tests the null hypothesis that a given specification is the
true data-generating process. It does so, as in existing specification tests in the literature,
by using the asymptotic distribution of the objective value—the J-statistic in the GMM
context. Our objective value is different than the traditional J-statistic, since we do not use
the efficient weighting matrix, and therefore it does not follow the chi-squared distribu-
tion. Therefore, we first derive analytically the asymptotic distribution of our objective
value, which we label as the pseudo-J statistic.

Let W denote the weighting matrix and m(θ) the moment conditions defined by d̃(θ)
and d (equation (D.9)) for sample size N . Let the matrix L be the Cholesky decomposi-
tion of the variance-covariance matrix of moment conditions, S = Emm′ so thatLL′ = S:13

pseudo-Jn =Nm′Wm (D.11)

= (√
NL−1m

)′
L′WL

(√
NL−1m

)
∼ z′L′WLz� z ∼N (0� I)� (D.12)

The last line holds because
√
NL−1m →d N (0� I) (per the central limit theorem). (If W

is the efficient weighting matrix, that is,W = [Emm′]−1, equation (D.12) boils down to the
commonly used chi-squared J-statistic in Hansen (1982).)

13If S is positive semi-definite instead of positive definite, such a decomposition can be obtained from the
LDL decomposition, which exists for semi-definite matrices. To see this, let L̃ and D be such that L̃DL̃′ = S

and define L= L̃
√
D, where

√
D is the diagonal matrix containing the square root of the diagonal elements

of D.
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FIGURE D.5.—Distribution of test statistics.

To calculate the distribution of this statistic, we take 5000 draws of the moment condi-
tions (m) from the benchmark process by repeatedly simulating data with different seeds
of random variables. We use these draws to compute S = Emm′, which is then used to con-
struct L. Then, we simulate random draws from a standard normal distribution, compute
pseudo-J for each draw using (D.12), and use these to obtain the distribution of pseudo-J
(see Figure D.5(a)). Let F1 denote the CDF of this distribution.

Our test computes the probability that the pseudo-J obtained from a given specification,
denoted as ζ, comes from this distribution; that is, 1−F1(ζ). We apply this test to the eight
specifications in the main part of the draft and, as explained in Section 6.2, reject all of
them (see the bottom panel of Table IV).

Test 2. We develop a second procedure that tests a specification against a benchmark
(in this case, column (8) in Table IV). First, we obtain the distribution of the objective val-
ues that can be attained from the 1-state distribution via Monte Carlo methods. Specif-
ically, we draw 100 seeds of random variables and estimate our benchmark process by
running a local minimization around the current estimates. We then use these objective
values to construct the nonparametric distribution denoted by F2 (see Figure D.5(b)). Our
test compares the objective value of the specification at hand (ζ) against this distribution
and reports 1 − F2(ζ) (see the bottom panel of Table IV).

To sum up, our investigation reveals that the benchmark process offers the best fit to
the data in a statistical sense. The data reject the hypothesis that the simpler versions
analyzed in this paper can provide a similar fit.

Bootstrap Standard Errors. The last column in Table IV reports the standard errors of
our benchmark process using a parametric bootstrap. In calculating the bootstrap stan-
dard errors, we first simulate data using the parameter estimates reported in Table IV
and create moments from simulated data. We then run the estimation for 100 different
seeds of random variables by targeting these moments obtained in the previous step. For
each seed of random variables, we run the estimation once by employing a simplex algo-
rithm around the original parameter estimates. We compute the standard errors using the
resulting 100 parameter vectors.
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FIGURE D.6.—Model fit to cross-sectional moments of one-year earnings changes.

D.5. Additional Estimation Results

This section contains estimation results not reported in the main text. We first report
the estimates of additional specifications. Then, for all of the estimated income processes,
we report some of the parameters that were not reported in Table IV. A comprehensive
set of parameters for all income processes are available online for download as an Excel
file on authors’ websites.

Model Fit: Additional Figures. Figure D.6 plots the fit on cross-sectional moments of
one-year earnings changes against recent earnings, averaging over the life cycle. Fig-
ures D.7 and D.8 show how the estimated models fit the lifecycle variation in the cross-
sectional moments of one- and five-year earnings changes (averaging over recent earn-
ings). Figures D.9 and D.10 show the fit on the variation by both recent earnings and
age.

Deviations of Estimated Models From Targeted Values. In the main text, we compared
the model counterparts of targeted moments to the data. In this section, we show how the
fit looks through the lens of our objective function in (D.9). Figure D.11 shows these for
several key moments. More specifically, we plot equation (D.9) for each set of moments,
with the exception of income growth moments. Recall that in our estimation, we target
the levels of income at various ages of different LE percentiles and not the lifecycle growth
rates.

Models (3) and (4)’s Fit to the Data. Figures D.12 and D.13 show how models (3) and
(4)—that were omitted in the main text—fit selected moments of the data.

FIGURE D.7.—Fit on cross-sectional moments of one-year earnings changes by age.
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FIGURE D.8.—Fit on cross-sectional moments of five-year earnings changes by age.

Additional Parameter Estimates. Table D.III contains several parameters that were not
reported in the main text in Table IV due to space constraints. These parameters include
deterministic lifecycle profiles and the coefficients on age and income in the probabil-
ity functions. Since it is difficult to interpret the magnitudes of the coefficients on shock
probabilities, in Figure D.14 we show the 3D figure for the estimated relationship be-
tween the nonemployment shock probability and age and the persistent component for
the benchmark specification.

Results for Uniform Nonemployment Risk and Non-Gaussian Persistent Shocks. Ta-
ble D.IV shows estimates of two specifications that appeared in the previous version of
the paper. Model (1b) is an intermediate case between Models (1) and (2): It adds uni-
form nonemployment risk to the Gaussian process in (1). The estimates from this model
implies that 2.1% of workers are hit with a nonemployment shock each year, and about
42% of those experience full-year nonemployment. The nonemployment shocks soaks up
some of the transitory variation in earnings, especially in the tails, in turn reducing the
estimated standard deviation of ε relative to Model (1). The improvement in the objec-
tive value is quite limited (73.39 versus 74.87), mainly because this model manages to
generate some excess kurtosis but very little negative skewness, and it largely misses the
age and income variation in the moments. Furthermore, the estimated persistence is even
higher (ρ= 1�015) than in Model (1), moving the model further away from stationarity.
It also implies an unusually large initial heterogeneity (σα = 1�26). As a result, the fit
deteriorates slightly for the impulse response and lifecycle income growth moments.

FIGURE D.9.—Cross-sectional moments of one-year earnings changes by age and recent earnings: bench-
mark, gaussian, and data.
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FIGURE D.10.—Cross-sectional moments of five-year earnings changes by age and recent earnings: bench-
mark, gaussian, and data.

Model (3b) investigates the relative importance of having a mixture component in only
persistent innovations. In that sense, it serves as a bridge between models (1) and (3),
which features normal mixtures for both transitory and persistent shocks. The objective
value falls from 74.9 to 62.1, about two thirds of the improvement of Model (3) relative
to (1), indicating that the data demand non-Gaussian features in persistent innovations
more than in transitory ones.

Results for Additional Specifications. Table D.V presents estimates from an earlier ver-
sion of the paper that used a slightly different weighting matrix in the estimation. In par-
ticular, the weighting matrix used in this table first assigns 15% relative weight to the
employment CDF moments. The rest of the moments share the remaining 85% weight ac-
cording to the following scheme: the cross-sectional moments (standard deviation, skew-
ness, kurtosis) collectively receive a relative weight of 35%, the lifecycle earnings growth
moments and impulse response moments each receive a weight of 25%, and the variance
of log earnings by age receives a weight of 15%.

The columns 7 to 15—report the estimates of eight different specifications that are not
reported in the main text. Columns (7), (8), and (9) are different versions of Column
(5) of Table IV. Namely, we model nonemployment probability as a logistic function of a
number of combinations of individual fixed effect α and persistent component z (similar
to equation (8)). In particular, in column (7), nonemployment probability is a quadratic
function of α. In column (8), nonemployment probability pν is assumed to be a linear
function of α+z and age and their interaction. In column (9), nonemployment probability
depends linearly on α and z and their interaction.

Columns (10) and (11) are similar to our benchmark specification. Again they only
differ in how the nonemployment shock probability is modeled. In column (10), pν is a
quadratic function of z. In column (11), pν depends on z, z2, and age, and the interaction
of z and age.

In column (12), we introduce variance heterogeneity to the 1-state benchmark process.
In particular, we allow the variance of each innovation from N (μz�1�σiz�1) to the persistent
component be individual-specific, with a lognormal distribution with mean σz�1 and a

standard deviation proportional to σ̃z�1, that is, log(σiz�1)∼N (logσz�1 − σ̃2
z�1
2 � σ̃z�1).

In the next income process (column (13)), in the 1-state benchmark process we incor-
porate age and income dependence into the mixture probability in innovations to the
persistent component similar to equation (D.8).
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FIGURE D.11.—Deviations of model moments from data moments.
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FIGURE D.12.—Estimated model versus data: key moments (Models 3 and 4).
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FIGURE D.13.—Fit of Models 3 and 4 on selected impulse response moments.

In column (14), we introduce ex ante variance heterogeneity in the 2-state benchmark
process. Thus, the variance of each innovation from N (μzj�1�σizj�1) to the persistent com-
ponent j is individual-specific, with a lognormal distribution with mean σzj�1 and a stan-

dard deviation proportional to σ̃zj �1, that is, log(σizj�1)∼N (logσzj�1 − σ̃2
z�1
2 � σ̃zj�1).

The last column (column (15)) shows the parameter estimates for the specification pre-
sented in column (3) but without imposing a lower bound for the mean of persistent
shocks.

FIGURE D.14.—Benchmark process: 3-D Plot of nonemployment shock probability pν .
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TABLE D.III

ADDITIONAL PARAMETER ESTIMATES FOR PROCESSES IN TABLE IVa

Model: (1) (2) (3) (4) (5) (6)

Gaussian
process

Benchmark Process

Parameters Parameters Std. Err.

AR(1) Component G G mix mix mix mix mix
↪→Probability age/inc. — — no/no yes/yes no/no no/no no/no
Nonemployment shocks no yes no no yes yes yes
↪→Probability age/inc. — yes/yes — — yes/yes yes/yes yes/yes
Transitory Shocks G G mix mix mix mix mix
HIP no no no no no yes yes

Deterministic Lifecycle Profile Parameters
a0 ×1 0.740 2.569 2.547 2.176 2.746 2.581 0.0018
a1 ×t 0.337 0.766 −0.144 0.169 0.624 0.812 0.0011
a2 ×t2 0.070 −0.152 −0.059 −0.100 −0.167 −0.185 0.0003

Nonemployment Shock Probability Function Parameters
aν ×1 −3.036 −2.495 −3.353 0.0039
bν ×t −0.917 −1.037 −0.859 0.0031
cν ×zt −5.397 −5.051 −5.034 0.0064
dν ×t × zt −4.442 −1.087 −2.895 0.0036

Normal Mixture Probability Function Parameters
az1 ×1 0.05 −0.474 0.176 0.407 0.0005
bz1 ×t 1.961
cz1 ×zt−1 −3.183
dz1 ×t × zt−1 −0.187

aNotes: We define the deterministic lifecycle profile as a quadratic function of t , g(t)= a0 + a1t + a2t
2, where t = (age − 24)/10.

yt = zt for the 1-state income process with 1 AR(1) component, and yt = z1 + z2 for the 2-state income process with two AR(1)
components.

TABLE D.IV

UNIFORM NONEMPLOYMENT RISK AND NON-GAUSSIAN PERSISTENT SHOCKS

Model: (1b) (3b) Model: (1b) (3b)
Uniform Mix. Uniform Mix.
Nonemp. Trans. Nonemp. Trans.

AR(1) Component G mix Objective value 73�39 62�11
↪→Prob. age/income — no/no Decomposition:
Nonemployment shocks yes no (i) Standard deviation 8�53 7�56
↪→Prob. age/inc. no/no — (ii) Skewness 39�78 21�14
Transitory shocks G G (iii) Kurtosis 19�15 17�99
HIP no no (iv) Impulse resp. short 20�72 22�74
Parameters (v) Impulse resp. long 32�24 37�73
ρ 1.015 0.998 (vi) Lifetime inc. growth 39�63 26�60
pz 5.9% (vii) Age-ineq. profile 17�63 16�64
μη�1 −1�0 (viii) Nonempl. CDF 3�96 10�29
ση�1 0.085 1.580 Model Selection p-val.
ση�2 0.0291 Test 1 0�000 0�000
σz0 0.183 0.340 Test 2 0�000 0�000
λ 0.547
σε�1 0.488 0.371
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TABLE D.V

ADDITIONAL SPECIFICATIONSa

Specification: (7) (8) (9) (10) (11) (12) (13) (14) (15)

Nonemp. Nonemp. Nonemp. Nonemp. Nonemp. 1-state 1-state 2-state Column (3)
depends depends depends depends depends Benchmark Benchmark Benchmark No Bound

on α on α+ z & age on α and z on z and z2 on z, z2, & age w/ var. het. w/ η het. w/ var. het. for μz�1

AR(1) Component mix mix mix mix mix mix mix 2 mixtures mix
↪→Probability age/inc. no/no no/no no/no no/no no/no no/no yes/yes yes/yes no/no
Nonemployment shocks yes yes yes yes yes yes yes yes no
↪→Probability age/inc. yes/α yes/α+ z no/α, z no/z, z2 yes/z, z2 yes/yes yes/yes yes/yes —
Transitory Shocks mix mix mix mix mix mix mix mix mix
HIP no no no yes yes yes yes yes no
Variance Heterogeneity no no no no no yes no yes no

Parameters
ρ1 0�847 0�978 0�976 0�968 0�964 0�960 0�965 0�824 1�005
ρ2 0�979
pz1 0�044 0�150 0�091 0�219 0�427 0�274 0�0124
μη1�1

−0�961 −0�327 −0�576 −0�335 −0�120 −0�107 −0�436 −0�393 −5�63
μη2�1

−0�270
ση1�1

1�396 0�689 0�575 0�304 0�345 0�433 0�788 0�620 0�471
ση1�2

0�066 0�083 0�168 0�174 0�061 0�0827 0�195 0�116 0�148
ση2�1

0�564
ση2�2

0�001

σi
η1�1

0�162 0�002

σi
η2�1

0�013

σz1�0
0�339 0�154 0�193 0�719 0�689 1�5042 0�530 0�189 0�227

σz2�0
0�603

λ 0�196 0�104 0�022 0�001 0�002 0�005 0�014 0�001
aν× 1 −3�875 −2�399 −3�191 −4�131 −3�115 −2�958 −3�773 −3�045
bν× t, α −5�366 −1�241 −1�932 −1�108 −1�341 0�468 −1�092
cν× [zt �α� (α+ zt )] −3�550 −5�528 −5�477 −3�914 −4�222 −3�635 −3�219
dν× α2, z2 0�293 1�611 0�832
eν× t[zt � (α+ zt )] −1�837 0�700 −2�403 −3�450 −3�560 −2�240
probε 0�227 0�104 0�239 0�290 0�105 0�130 0�115 0�095 0�210
με�1 0�115 0�249 0�146 0�159 0�296 0�223 0�340 0�340 −0�09
σε�1 0�449 0�562 0�239 0�142 0�247 0�384 0�283 0�438 1�024
σε�2 0�061 0�042 0�072 0�022 0�064 0�048 0�081 0�025 0�024

σα 0�808 0�520 0�640 0�289 0�274 0�313 0�267 0�273 0�4367
σβ 0�194 0�205 0�217 0�204 0�182
corrαβ 0�630 0�676 0�489 0�974 0�435

Objective value 40�33 28�28 26�19 23�32 22�11 21�81 21�74 18�43 47�9
Decomposition:
(i) Standard deviation 4�86 4�81 5�31 5�86 5�93 5�09 5�95 4�95 7�92
(ii) Skewness 21�15 15�76 14�67 12�760 10�65 10�09 9�52 7�06 22�99
(iii) Kurtosis 6�67 6�04 4�80 5�63 5�88 6�32 6�70 4�70 13�99
(iv) Impulse resp. 27�98 18�19 15�82 13�54 13�50 13�25 13�70 11�58 36�40
(v) Inc. growth 15�10 10�81 10�39 9�21 8�39 8�24 7�84 8�37 8�94
(vi) Inequality 7�70 3�38 1�66 3�36 3�47 3�68 3�16 2�23 4�99
(vii) Nonemployment 6�46 5�71 7�66 5�94 6�43 7�14 6�52 5�86 8�91

CDF

aNote: In this table, we present estimates from an earlier version of the paper for which we use a slightly different weighting
matrix in the estimation. In particular, the weighting matrix used in this table first assigns 15% relative weight to the employment
CDF moments. The rest of the moments share the remaining 85% weight according to the following scheme: the cross-sectional
moments (standard deviation, skewness, kurtosis) collectively receive a relative weight of 35%, the lifecycle earnings growth moments
and impulse response moments each receive a weight of 25%, and the variance of log earnings by age receives a weight of 15%.
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D.6. Autocovariance Structure of Earnings

Another set of moments that has been widely used for decades to estimate income
processes is the autocovariance of earnings in level and changes (e.g., Abowd and Card
(1989)). In this section, for completeness with the earlier literature, we document these
moments from data along with their simulation counterparts from our benchmark speci-
fication. Tables D.VI and D.VII show autocovariance matrix of log earnings over the life
cycle in levels and changes, respectively.

Following Abowd and Card (1989), MaCurdy (1982), in Figure D.15, we show the au-
tocovariance of 1-year log earnings growth at several lags:

cov
[
log(yh+1)− log(yh)� log(yh+k+1)− log(yh+k)

]
for k > 1� (D.13)

where log(yh) is log earnings at age h. As usual, we only include observations that are
above the minimum income threshold, Ymin. The left panel of Figure D.15 shows that in
our data, consistent with earlier work using survey data (Meghir and Pistaferri (2004)), the
autocovariance of earnings growth is small and approaches to zero quickly after a couple
of lags. Our model generates a similar pattern, although the autocovariance for k = 1
tends to be smaller and the lags k > 1 approach to zero (right panel of Figure D.15).
Similar patterns are also clearly seen in autocorrelations of earnings from the data and
our benchmark process (Figure D.16). Both in the data and in our benchmark process,
the autocorrelations of earnings growth starts around −0�20 and approaches quickly to
zero after a couple of lags (in the benchmark process for k > 1). The small discrepancy
between our process and the data for shorter lags k can be addressed by modeling the
transitory component as a moving average of order q (MA(q)) process (see Meghir and
Pistaferri (2004)).

MaCurdy (1982) noted that if a HIP component is present (σ2
β > 0), the autocovariance

of one-year log earnings growth should turn positive at longer lags. Figure D.15 shows
that in the data, the autocovariance of log earnings growth does not increase above zero
even after 35 years (left panel). Therefore, this test would not reject σ2

β = 0 in the data.
Interestingly, MaCurdy’s test reaches a similar conclusion when applied to data simulated
from our benchmark specification, which features a sizable HIP component (right panel
of Figure D.15).

Guvenen (2009) discussed why MaCurdy (1982) may reject σ2
β > 0 even if the true

process features a HIP component. If the variance of the persistent component is large
enough, the autocovariance of earnings growth may not be significantly greater than zero
even after 20–30 years. This is indeed the case in our model. The theoretical autocovari-
ance of earnings growth given by equation (D.13) for the estimated parameter values of
our benchmark process becomes positive, and barely so, only with a 35 year lag. Fur-
thermore, as Karahan, Ozkan, and Song (2019) and Guvenen (2009) showed, the HIP
component may have a Pareto distribution, which would imply that β heterogeneity is
negligible for most of the population, but the top of the distribution has a much larger β
than the rest.
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FIGURE D.15.—Autocovariance of earnings growth: data versus model.

FIGURE D.16.—Autocorrelation of earnings growth: data versus model.
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