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Overview

Global Building Characterization Project
— Learning about buildings is important
— No global building characterization database with exterior wall material, height, occupancy, etc.
— Several problems with coverage and validation

Google Street View APl and Imagery
— Imprecise sampling of buildings to determine building characteristics
— Leveraging current data with Google Street View API to obtain imagery
— Limitations of Google Street View coverage

Image Classification

— Opportunity to concentrate on exterior wall material
— A hypothetical framework for creating building exterior wall material estimates

Future Work and Considerations
— Other exterior wall materials, other building characteristics
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Earthquakes don’t kill people,
buildings do.

- Someone said this
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April 25t 2015, over 2,000 dead
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Japan
March 11th, 2011, over 18,000 dead or missing
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Global Building Characterization

Data Collection

Data sources including IPUMS, PAGER, OSM, and
national censuses are checked for relevant building
iInformation.

* IPUMS (Integrated Public Use Microdata Series)
International provides microdata for countries of interest

« Search for national census data that might be published
after or might be more illustrative than IPUMS microdata

* Use PAGER (Prompt Assessment of Global Earthquakes for
Response) and OSM (Open Street Map) data where needed

www.nsi.bg

science for a changing world
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Global Building Characterization

GE M NEXUS workingtogether ~ All of the variables of
to assess risk Interest are:

— Direction of the building
— Material of the lateral load-

Data Translation resisting system
: — Lateral load-resisting system
Though we always try to obtain as much e S
building information for a country as S tg N R
possible, we focus our efforts on key B an shianlbh b
variables: secvaneyNgl
— Building position within a block

« Exterior wall material - — Shape of the building plan

: — Structural irregularities
’ Helght Exterior wall material
° Occupancy — Roof material

— Floor material
I D
~ Foundation system 3¢ iinn




 Exterior wall material -
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Global Building Characterization

Coverage/Validation Issues

When translating building characteristics for a country, we encountered
some challenges:

* Unclear translations
* Omission of an area
« Skeptical numbers or data inconsistent with other data sources

Solution?
« Check out Google Maps!
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Google Street View APl and Imagery

Pros:

* Acts as “ground truth"—can validate census
data or microdata

* Imagery is already there, free to access

« Can build distributions of building exterior
wall material

cons:

Limited by Google Street View coverage

Limited by API request cap of 25,000 images a
day

Must create a framework for sampling images
and extracting information

Create labelled dataset, knowledge of
machine learning
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Image Classification

Proposed Methodology

1. Leverage ORNL resources to create labelled dataset

— Parcel centroids of all the buildings in the United States
— High-performance computing for running the model (GPU)

2. Run a small Convolutional Neural Network (CNN) to detect exterior
wall material

— Start with open source software—LeNet
— Concentrate on one building material type at first: brick versus non-brick

3. Analyze the results, make changes as necessary

— Assess the model’s performance
— Consider how to improve the model
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Image Classification (x0)._

T ]
Short Introduction into Neural Networks (%) ')\Z/,% ()
o -

« What Is a neural network?

— A neural network is the computer simulation of the human brain: it attempts to “learn things”
on its own through copious training.

— A neural network consists of: LY . =
g S o AR
§ Loz
20 ®

* Input units .
* Layer .
ayers ; 7
.
input layer
hidden layer 1 hidden layer 2

« Output units
* What is a convolutional neural network (CNN)?

— A CNN is a neural network that processes input images in portions (performing “convolutions”)
so that the output is a higher-resolution representation of the original image.

\*)-c

output layer
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Image Classification bt

g Image Classification
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.qgithub.io/classification/ (left text and image below)

http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://docs.opencv.org/2.4/modules/ml/doc/neural networks.html

CNNs and Caffe
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
Le N e t http://caffe.berkeleyvision.org/gathered/examples/mnist.html
Convolution Non-Linearity (ReLU) Pooling or Subsampling Classification
Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected
. 1
Dog (0)
Cat (0)
Boat (1)
=-—:-‘

Eiotal = E %[Mr_;,re.f r;ur“;u.'l"}2

'-I.I.' '-III."
Feature Extraction from Image Classification
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http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/classification/
http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://caffe.berkeleyvision.org/gathered/examples/mnist.html

Image Classification

LeNet

Great resources:

Image Classification
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.qgithub.io/classification/ (left text and image below)
http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
CNNs and Caffe
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://caffe.berkeleyvision.org/gathered/examples/mnist.html

Convolution Non-Linearity (ReLU) Pooling or Subsampling Classification
Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU . + RelU Connected Connected
Brick
No brick
=

Feature Extraction from Image

Eiotal = E %[fm'_{,rnf output)*

[
Classification
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http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/classification/
http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
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Results

Training Model Validation Set
(~8,000 images) (~2,000 images)

Statistic Accuracy (%)

Grand Average 0.5785
Minimum 0.46
Median 0.575
Maximum 0.67
Model creation
~4 hours on 1
GPU Encouraging initial
Model validation results, but still a
< 1 hour

somewhat low
accuracy rate.
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Considerations

How can we improve this model?

* Modify the learning rate?

- Modify the image size (decrease field of view)? . Are there elements in both sets of
 Improve images labels? images (trees) that are confusing
: the model?
* Increase number of images?  Is the binary classification too
narrow?

Lots of room for future work.

Non brick

v

T
Too similar” URBAN DYNAMICS
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Future Work

Multiple classifications, more models
— Improved image translations and more defined classes

Way to assess which images Google Street View API pulls

— Create better distance thresholds
— Urban model has shorter FOV, rural model has longer FOV

Explore the use of other neural networks or CNNs
— AlexNet, GoogleNet, imageNet, etc.

Estimate building distributions in unknown area using model created from known
areas

— Additional framework for assessing model accuracy
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Conclusion

* No global building characteristics database, but not
much can be done for areas in which there is no

data

* As Google Street View Imagery coverage

Increases, therein lies an opportunity to

characterize buildings

* The results of the LeNet model are encouraging,

but there iIs much more work to be don
building exterior wall estimates can be

e until
made
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Questions?

Susan Burtner
burtnersa@ornl.gov

Thank you for listening!
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