Generating Building Exterior Wall Material Estimates Using Google Street View Imagery

Susan Burtner

Research Associate Oak Ridge National Laboratory

AAG Annual Meeting, 2017 Boston, MA

ORNL is managed by UT-Battelle for the US Department of Energy

Overview

Global Building Characterization Project

- Learning about buildings is important
- No global building characterization database with exterior wall material, height, occupancy, etc.
- Several problems with coverage and validation

Google Street View API and Imagery

- Imprecise sampling of buildings to determine building characteristics
- Leveraging current data with Google Street View API to obtain imagery
- Limitations of Google Street View coverage

Image Classification

- Opportunity to concentrate on exterior wall material
- A hypothetical framework for creating building exterior wall material estimates

Future Work and Considerations

- Other exterior wall materials, other building characteristics

Earthquakes don't kill people, buildings do.

- Someone said this

Nepal April 25th, 2015, over 2,000 dead

114

Photo by Athit Perawongmetha via Reuters

i di

URBAN DYNAMICS INSTITUTE Oak Ridge National Laboratory

Japan March 11th, 2011, over 18,000 dead or missing

TOY. IT IS

Photo by Yasushi Kanno, Yomiuri Shimbun, via AP

Haiti January 12th, 2010, approximately 300,000 dead

-

12

500

A Larin .

Rep.

Photo by Logan Abassi, UN Photo

ARE-MEL !!

URBAN DYNAMICS INSTITUTE Oak Ridge National Laboratory

Global Building Characterization

Data Collection

Data sources including IPUMS, PAGER, OSM, and national censuses are checked for relevant building information.

- IPUMS (Integrated Public Use Microdata Series) International provides microdata for countries of interest
- Search for national census data that might be published after or might be more illustrative than IPUMS microdata
- Use PAGER (Prompt Assessment of Global Earthquakes for Response) and OSM (Open Street Map) data where needed

science for a changing v

Global Building Characterization

GENDEXUS working together to assess risk

Data Translation

Though we always try to obtain as much building information for a country as possible, we focus our efforts on key variables:

- Exterior wall material
- Height
- Occupancy

All of the variables of interest are:

- Direction of the building
- Material of the lateral loadresisting system
- Lateral load-resisting system
 Height
- Date of construction/retrofit
 - Occupancy
- Building position within a block
- Shape of the building plan
- Structural irregularities
 - Exterior wall material
- Roof material
- Floor material
- Foundation system

obal Building Characterization

EXAMPLEXUS working togethe to assess risk

Data Translation

Though we always try to obtain as much building information for a country as possible, we focus our efforts on key variables:

Exterior wall material

- Height
- Occupancy

All of the variables of nterest are:

- Direction of the building
- Material of the lateral loadresisting system
- Lateral load-resisting system
- --- Height
- Date of construction/retrofit
- -- Occupancy
- Building position within a block
- Shape of the building plan
- Structural irregularities
- --- Exterior wall matel
- Roof material
- Floor materia
- Foundation sy

Global Building Characterization

Coverage/Validation Issues

When translating building characteristics for a country, we encountered some challenges:

- Unclear translations
- Omission of an area
- Skeptical numbers or data inconsistent with other data sources

Solution?

• Check out Google Maps!

Google Street View API and Imagery

Pros:

- Acts as "ground truth"—can validate census data or microdata
- Imagery is already there, free to access
- Can build distributions of building exterior wall material

Cons:

- Limited by Google Street View coverage
- Limited by API request cap of 25,000 images a day
- Must create a framework for sampling images
 and extracting information
- Create labelled dataset, knowledge of machine learning

Proposed Methodology

- 1. Leverage ORNL resources to create labelled dataset
 - Parcel centroids of all the buildings in the United States
 - High-performance computing for running the model (GPU)
- 2. Run a small Convolutional Neural Network (CNN) to detect exterior wall material
 - Start with open source software—LeNet
 - Concentrate on one building material type at first: brick versus non-brick
- 3. Analyze the results, make changes as necessary
 - Assess the model's performance
 - Consider how to improve the model

Short Introduction into Neural Networks

What is a neural network?

- A neural network is the computer simulation of the human brain: it attempts to "learn things" on its own through copious training.
- A neural network consists of:
 - Input units
 - Layers
 - Output units

What is a convolutional neural network (CNN)?

 A CNN is a neural network that processes input images in portions (performing "convolutions") so that the output is a higher-resolution representation of the original image.

Great resources: <u>Image Classification</u> <u>http://neuralnetworksanddeeplearning.com/chap1.html</u> <u>http://cs231n.github.io/classification/</u> (left text and image below) <u>http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html</u> <u>http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html</u> <u>CNNs and Caffe</u> <u>https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/</u> <u>http://caffe.berkeleyvision.org/gathered/examples/mnist.html</u>

LeNet

Convolution

Non-Linearity (ReLU)

Pooling or Subsampling

Classification

Great resources: <u>Image Classification</u> <u>http://neuralnetworksanddeeplearning.com/chap1.html</u> <u>http://cs231n.github.io/classification/</u> (left text and image below) <u>http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html</u> <u>http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html</u> <u>CNNs and Caffe</u> <u>https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/</u> <u>http://caffe.berkelevvision.org/gathered/examples/mnist.html</u>

LeNet

Convolution

Non-Linearity (ReLU)

Pooling or Subsampling

Classification

Results

- Model creation ~4 hours on 1 GPU
- Model validation < 1 hour

Statistic			Accura	су (%)	
Grand Average			0.57	785	
Minimum		0.46			
Median			0.575		
Maximum			0.6	67	
Encouraging initial results, but still a somewhat low accuracy rate.				URBAN	V DYNAMIG UTE

Considerations

How can we improve this model?

- Modify the learning rate?
- Modify the image size (decrease field of view)?
- Improve images labels?
- Increase number of images?

Lots of room for future work.

- Are there elements in both sets of images (trees) that are confusing the model?
 - Is the binary classification too narrow?

Non brick

Brick

Too similar? -

Future Work

- Multiple classifications, more models
 - Improved image translations and more defined classes
- Way to assess which images Google Street View API pulls
 - Create better distance thresholds
 - Urban model has shorter FOV, rural model has longer FOV
- Explore the use of other neural networks or CNNs
 - AlexNet, GoogleNet, imageNet, etc.
- Estimate building distributions in unknown area using model created from known areas
 - Additional framework for assessing model accuracy

Conclusion

- No global building characteristics database, but not much can be done for areas in which there is no data
- As Google Street View Imagery coverage increases, therein lies an opportunity to characterize buildings
- The results of the LeNet model are encouraging, but there is much more work to be done until building exterior wall estimates can be made

AN DYNAMIC

Acknowledgements

ORNL Staff Scientists and Research Associates

Travis Johnston

Byung Park

David Hughes

Jessica Moehl

Lexie Yang

Jake McKee

Lora Meadows

Jared Cleghorn

Thank you!

Questions?

Susan Burtner <u>burtnersa@ornl.gov</u>

Thank you for listening!

