Pedigree-based
mixed linear models



The Prediction Problem

Model Equation
y=Xb+Zu+e

Other aspects of the model
First moments  E[u] =0, E[e] = 0, therefore E[y] = Xb
Second moments var[u] = G, var[e] = R, cov[u,e'] =0
Distributional Assumptions e.g.u,e ~ MVN

Want to predict u or linear functions like k'u



Original Solution

Generalized Least Squares (GLS)

For estimable q'b, q'lA)O 1S BLUE (Best Linear Unbiased Estimator)
where b’ =(X'V'X) X'V'y  forV=ZGZ'+R

then u = GZ'V" (y - Xb' ), is BLUP (BLU Predictor)

(same as Selection Index/BLP except (y - Xf)o) in place of (y - Xb)

obtained by exploiting (genetic) covariances between animals
In traditional animal breeding practice

G is large and dense and determined by A the numerator relp matrix

V is too big to compute X'V



BLP vs GLS BLUP

y=XB+Zu+e
y-XB=7Zu+e, afully random model
Selection Index Equations Pb = Gv

b =P'Gv, defines the best linear function to predict u
the "weights" are the same for every animal with the same

sources of information (ie same traits observed)
BLP a=b'(y-X3)=vGP"'(y-Xp)
¢f GLSBLUP o= GZ'V"! (y : XBO)



Henderson’s Contributions One

Developed methods to compute G and R from field data
Henderson’s Method | (not his!), Il and Il
Including circumstances that involved selection



Henderson’s Contributions Two

Invented the Mixed Model Equations

XR'X XR'Z X X'R'y
I ZR'X ZR'Z+G! u Z'R'y

, for full rank G

and jointly showed k'b® and & were BLUE and BLUP

Computationally tractable if G and R assumed diagonal or block-diagonal
(eg sire model with relationships ignored)

(Order 40 matrix takes weeks to invert by hand)

MME typically sparse in national animal evaluation



Example NRM or A matrix

Sire1 Dam1 Sire1 Dam1 Sire2 ? Sire2 ?

\VARRVARAVARV/

Offspring, Offspring,  Offspring;  Offspring,

Offspring, 1 /2 0 0
Offspring, /2 1 0 0
Offspring, 0) 0) ] Ya
Offspring, 0 0 Ya 1

Sires and dams unrelated and non-inbred
Simple calculation of A, requires including all ancestors
and would result in a matrix of order 7 not 4



A1 matrix (animal model)

Sire1

Dam1

Sire2 ?

\/Sire1 Dam\/ Sire2 7

Sire, Dam, Sire, Off, Off, Off,
Sire, 2 1 0 -1 -1 0 0
Dam, 1 2 0 -1 -1 0 0
Sire, 0 0 1.667 0 0 -0.667 | -0.667
Off, 1 -1 0 2 0 0 0
Off, -1 -1 0 0 2 0 0
Off, 0 0 -0.667 0 0 1.333 0
Off, 0 0 -0.667 0 0 0 1.333

Ancestors w/out records are fitted for simple A-1 structure




Henderson’s Contributions Three

Invented an algorithm to directly form A™ from a pedigree list

Then G™ can be formed as a scalar product or kronecker product
define d to be "mendelian" sampling variance
d=(1,3/4,1/2) for 0, 1 or 2 parents known
define s'=(-1/2, -1/2, 1) to represent sire (if known), dam (if known)

and individual equations

accumulate sd~'s'in the sire, dam and individual rows/columns

for every trio of animals in the pedigree list



Consequence of Al structure

sire  dam ]

Accumulate for each animal sire I 025 025 —-05 ]
dam | 025 025 —05 |d°

] i 05 05 1 |

When both parents are known
Nonparents (ie terminal offspring)

Own equation (ie row) has 2 on diagonal, -1 in sire column -1 in dam column
Parent with one offspring

Own equation has 2+1/2 on diagonal, -1 in sire and dam columns

in addition to -1/2 in the column of its mate, -1 in column of offspring
Parent with many offspring to different mates

accumulates a large diagonal element, many small negative offdiagonals



Consider rearranging the MME

In general,

[ Z'R'X ZR'Z+G! ]

b fewy]

u
or equivalently [Z'R'IZ +G?! }[ﬁ] = [Z'R'l (y - Xb’ )]

Single trait animal model R =10, G =Ac?, G'=A"0;

2

or multiplying o, [Z'Z + /IA'I][ﬁ] = [Z'(y — XIA)O)}, with A = %;



Consider the MME for a nonparent

22+ A7 ][] =| 2'(y - Xb’)|
Nonparent animal with one record
(1 T 2/’L)I:Zanimal o )’ﬁsire B A’I;\tdam — adjusted_y

A . 22’(1251'7’6 + I;\tdam) + (ddeSted_y)
ainel (1+22)2 (1+22)

1

=(1-w)PA+w(adjusted _y) for w=(1+21)




Consider the MME for a nonparent

1
u . =(1-w)PA+wl(adiusted or w=
animal ( ) ( ] —y) f (1+ 2&)
1_h2 2 .
A= P so for h® =1, A=0,w=1, (no shrinkage)

for h* =low, A= big, w = small, (shrink the deviation)
Two sources of BV information are pooled

The parent average PA

The individual prediction (shrunk deviation)

with heritability influencing shrinkage



Consider the MME for a nonparent

22+ A" |[i]=| Z'(y - Xb°) |

Nonparent animal with one record

u,. . =(1—w)PA+w(adjusted _y)
Nonparent animal with no record

2’A‘I;\tanimal o A’ﬁsire o A’lj\tdam — O

A AMu. +u 1.+ U

0 — ( Szre dam) — ( sire dam) — P A

animal )«2 2



Reliability of nonparents

. n . var(u
Property of BLP/BLUP is cov(u, 1) = var(it) so r* = (1)
var(u)
P I;\tsire I;\tdam .
but U pomparent = + , for nonparent without a record
2 2
2 2
I r 1
SO I.2 _ _sire n dam <

nonparent 4 4 2

Finally AG = ”OnpaL”e”t 2, limiting selection response

when candidates at puberty lack phenotypic information



An option to do better



Solution

* We need a different representation of the
covariance between relatives, that allows
relatives other than parents to directly
contribute to the prediction of nonparents
without records

* The NRM or A-matrix is an expectation of
relationships in the context of repeated
sampling of the pedigree (conditional on
pedigree)



A-matrix

Relationship with self is 1+F (noninbred F=0)

(Additive) relationship of 2 between non-inbred
full-sibs and between parents and non-inbred
offspring

Relationship of 74 between non-inbred half-sibs
and between grandparents and offspring

But particular individuals can have greater or
lesser values
— |If we know their genotype we can compute

relationships conditional on the chromosome regions
they inherited



hnh b b b © =

W b — O

2
3

A matrix
S 5 5
S 5 5
1 5 5
S 1 5
S 5 1
S 5 5

-1 -1 -1 -1
-1 -1 -1 -1

2

0
0
0

A-inverse matrix

0 O

2 0
0 2
0 O

— b b

Relationship matrix

0

0
0
2

Consider a sire, dam and 4 full sibs



hnh b b b © =

W b — O

Relationship matrix

A matrix
S 5 5 5
S 5 5 5
1 5 5 5
S 1 5 5
S 5 1 5
S 5 5 1

A-inverse matrix

2
3

-1 -1 -1 -1
-1 -1 -1 -1
2 0 0 O

0O 2 0 O
0O 0 2 O
0O 0 0 2

3.5
2.5
—1.25
-1.25
-1.25

| 125

2.5
3.5
—1.25
—-1.25
-1.25
—-1.25

G matrix
I 0 5 5 5 5
O 1 5 5 5 5
5 51 6 4 4
5 56 1 4 4
5 5 4 41 6
i 5 5 4 4 6 1

G-inverse matrix

—1.25 -1.25 —1.25

-1.25 -1.25 -1.25

21875 03125 0.3125
-0.3125 2.1875 0.3125
03125 03125 2.1875
03125 03125 -0.3125

-1.25
-1.25
0.3125
0.3125
—0.3125
2.1875




Predict the last animal with no data

[—1.25%6 -1.25a,,, 31254, 31254,, -31250,, 2.18750. }:[0]

- 1.25(u,,, + iy, ) —0.3125(i,, + iy, )+ 031250, ,
candidate 21875

U

But to form G, we needed to know which loci/QTL
contribute to variation in performance



Some MME Results

X'X X7Z T
X 7'7+ AG .

var(g) =G var(@)=G-C* var(g-g)=C” r’, = var(g)

var(k'g) = k'Gk  var(k'g) = k'(G - C? )k

”Cll 012‘
021 022

88

var(g)



