Copyright (c) 2015, 2016 Sebastian Raschka
Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
%load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib,nltk,sklearn
The use of watermark
is optional. You can install this IPython extension via "pip install watermark
". For more information, please see: https://github.com/rasbt/watermark.
The code for the Flask web applications can be found in the following directories:
1st_flask_app_1/
: A simple Flask web app1st_flask_app_2/
: 1st_flask_app_1
extended with flexible form validation and renderingmovieclassifier/
: The movie classifier embedded in a web applicationmovieclassifier_with_update/
: same as movieclassifier
but with update from sqlite database upon startTo run the web applications locally, cd
into the respective directory (as listed above) and execute the main-application script, for example,
cd ./1st_flask_app_1
python3 app.py
Now, you should see something like
* Running on http://127.0.0.1:5000/
* Restarting with reloader
in your terminal. Next, open a web browsert and enter the address displayed in your terminal (typically http://127.0.0.1:5000/) to view the web application.
Link to a live example application built with this tutorial: http://raschkas.pythonanywhere.com/.
from IPython.display import Image
This section is a recap of the logistic regression model that was trained in the last section of Chapter 6. Execute the folling code blocks to train a model that we will serialize in the next section.
import numpy as np
import re
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
stop = stopwords.words('english')
porter = PorterStemmer()
def tokenizer(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower())
text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '')
tokenized = [w for w in text.split() if w not in stop]
return tokenized
def stream_docs(path):
with open(path, 'r') as csv:
next(csv) # skip header
for line in csv:
text, label = line[:-3], int(line[-2])
yield text, label
next(stream_docs(path='./movie_data.csv'))
The pickling-section may be a bit tricky so that I included simpler test scripts in this directory (pickle-test-scripts/) to check if your environment is set up correctly. Basically, it is just a trimmed-down version of the relevant sections from Ch08, including a very small movie_review_data subset.
Executing
python pickle-dump-test.py
will train a small classification model from the movie_data_small.csv
and create the 2 pickle files
stopwords.pkl
classifier.pkl
Next, if you execute
python pickle-load-test.py
You should see the following 2 lines as output:
Prediction: positive
Probability: 85.71%
If you haven't created the movie_data.csv
file in the previous chapter, you can find a download a zip archive at
https://github.com/rasbt/python-machine-learning-book/tree/master/code/datasets/movie
def get_minibatch(doc_stream, size):
docs, y = [], []
try:
for _ in range(size):
text, label = next(doc_stream)
docs.append(text)
y.append(label)
except StopIteration:
return None, None
return docs, y
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
vect = HashingVectorizer(decode_error='ignore',
n_features=2**21,
preprocessor=None,
tokenizer=tokenizer)
clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
doc_stream = stream_docs(path='./movie_data.csv')
import pyprind
pbar = pyprind.ProgBar(45)
classes = np.array([0, 1])
for _ in range(45):
X_train, y_train = get_minibatch(doc_stream, size=1000)
if not X_train:
break
X_train = vect.transform(X_train)
clf.partial_fit(X_train, y_train, classes=classes)
pbar.update()
X_test, y_test = get_minibatch(doc_stream, size=5000)
X_test = vect.transform(X_test)
print('Accuracy: %.3f' % clf.score(X_test, y_test))
clf = clf.partial_fit(X_test, y_test)
After we trained the logistic regression model as shown above, we know save the classifier along woth the stop words, Porter Stemmer, and HashingVectorizer
as serialized objects to our local disk so that we can use the fitted classifier in our web application later.
import pickle
import os
dest = os.path.join('movieclassifier', 'pkl_objects')
if not os.path.exists(dest):
os.makedirs(dest)
pickle.dump(stop, open(os.path.join(dest, 'stopwords.pkl'), 'wb'), protocol=4)
pickle.dump(clf, open(os.path.join(dest, 'classifier.pkl'), 'wb'), protocol=4)
Next, we save the HashingVectorizer
as in a separate file so that we can import it later.
%%writefile movieclassifier/vectorizer.py
from sklearn.feature_extraction.text import HashingVectorizer
import re
import os
import pickle
cur_dir = os.path.dirname(__file__)
stop = pickle.load(open(
os.path.join(cur_dir,
'pkl_objects',
'stopwords.pkl'), 'rb'))
def tokenizer(text):
text = re.sub('<[^>]*>', '', text)
emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
text.lower())
text = re.sub('[\W]+', ' ', text.lower()) \
+ ' '.join(emoticons).replace('-', '')
tokenized = [w for w in text.split() if w not in stop]
return tokenized
vect = HashingVectorizer(decode_error='ignore',
n_features=2**21,
preprocessor=None,
tokenizer=tokenizer)
After executing the preceeding code cells, we can now restart the IPython notebook kernel to check if the objects were serialized correctly.
First, change the current Python directory to movieclassifer
:
import os
os.chdir('movieclassifier')
import pickle
import re
import os
from vectorizer import vect
clf = pickle.load(open(os.path.join('pkl_objects', 'classifier.pkl'), 'rb'))
import numpy as np
label = {0:'negative', 1:'positive'}
example = ['I love this movie']
X = vect.transform(example)
print('Prediction: %s\nProbability: %.2f%%' %\
(label[clf.predict(X)[0]], clf.predict_proba(X).max()*100))
Before you execute this code, please make sure that you are currently in the movieclassifier
directory.
import sqlite3
import os
if os.path.exists('reviews.sqlite'):
os.remove('reviews.sqlite')
conn = sqlite3.connect('reviews.sqlite')
c = conn.cursor()
c.execute('CREATE TABLE review_db (review TEXT, sentiment INTEGER, date TEXT)')
example1 = 'I love this movie'
c.execute("INSERT INTO review_db (review, sentiment, date) VALUES (?, ?, DATETIME('now'))", (example1, 1))
example2 = 'I disliked this movie'
c.execute("INSERT INTO review_db (review, sentiment, date) VALUES (?, ?, DATETIME('now'))", (example2, 0))
conn.commit()
conn.close()
conn = sqlite3.connect('reviews.sqlite')
c = conn.cursor()
c.execute("SELECT * FROM review_db WHERE date BETWEEN '2015-01-01 10:10:10' AND DATETIME('now')")
results = c.fetchall()
conn.close()
print(results)
Image(filename='../images/09_01.png', width=700)
...
Directory structure:
1st_flask_app_1/
app.py
templates/
first_app.html
!cat 1st_flask_app_1/app.py
!cat 1st_flask_app_1/templates/first_app.html
Image(filename='../images/09_02.png', width=400)
Image(filename='../images/09_03.png', width=400)
Directory structure:
1st_flask_app_2/
app.py
static/
style.css
templates/
_formhelpers.html
first_app.html
hello.html
!cat 1st_flask_app_2/app.py
!cat 1st_flask_app_2/templates/_formhelpers.html
Image(filename='../images/09_04.png', width=400)
Image(filename='../images/09_05.png', width=400)
Image(filename='../images/09_06.png', width=400)
Image(filename='../images/09_07.png', width=200)
!cat ./movieclassifier/app.py
!cat ./movieclassifier/templates/reviewform.html
!cat ./movieclassifier/templates/results.html
!cat ./movieclassifier/static/style.css
!cat ./movieclassifier/templates/thanks.html
Image(filename='../images/09_08.png', width=600)