
Real-Time capable Noise Reduction Methods

Maximilian Luz
luzmaximilian@gmail.com

Abstract

Speech enhancement plays a fundamental role in modern voice communi-
cation and interaction. It is often used in automatic speech recognition
systems or communication applications, where real-time constraints are
required and it is desirable to have a technique that is robust to changes
in noise and environment. In this paper, we will present multiple noise
reduction techniques, with the goal of finding a method fulfilling both of
these properties. To this end, we look at simple spectral subtraction and
improvements thereof, such as over-subtraction and spectral flooring, com-
bined with some basic noise estimation techniques, as well as more complex
methods, based on stochastic models. The latter techniques are based on
minimum mean-square error estimation, which ultimately will lead us to
the optimally-modified log-spectral amplitude estimation method. We find
that, when combined with the minima controlled recursive averaging noise
estimator to obtain a robust and adaptive noise estimate, this technique
provides a successful solution to our problem.

1 Introduction

Speech processing is omnipresent in our current everyday life: From phone calls and voice
messaging, digital assistants like Apple’s Siri or Google Now, to many of the videos and
movies we watch, speech processing, and especially speech enhancement, is a core component
empowering these technologies. An integral part of such enhancement procedures is noise
reduction, or suppression, in which the goal is to recover a desired speech signal from a
signal that was corrupted by additive noise. As such, we will, in the following, use these
two terms, speech enhancement and noise reduction, interchangeably. Even though the
quality of microphones themselves has greatly improved over the past decades, noise is still
a considerable source of speech degradation, be it from man made machinery, such as cars
and planes, other speakers in the background, or even nature itself, e.g., from wind and
waters. To this end, many modern devices, such as mobile phones and digital assistants,
include multiple microphones for techniques like dual-microphone speech enhancement (see
e.g., Jeub et al. [12] and Yousefian and Loizou [26]) and beamforming (see e.g., Habets and
Benesty [10]). Generally, the use of multiple microphones is preferable over single-microphone
solutions, due to better quality achieved while having significantly less to no distortion in
speech [2, 16].

In some cases, however, there may only be a single audio signal. Many examples for this can
be found in scenarios where product vendors do not have control over the hardware, such
as voice-over-IP software, where speech enhancement may be a wanted feature to set ones
product apart from other competitors. Other examples can be found in settings where noise
reduction is only an afterthought or a convenient feature: Even today, while most mobile

mailto:Maximilian%20Luz<luzmaximilian@gmail.com>
luzmaximilian@gmail.com

phones do use multiple microphones, headsets or microphones intended for use on a PC, and
even many modern laptops and notebooks, do not.

Additionally, the choice of speech enhancement technique may further be impaired by the
requirement of a real-time guarantee. First, this means that we have only access to past and
current information and we cannot use future information to, for example, estimate the noise
or adapt to changes in it. Secondly, this means that we only have a limited time to process
the signal. Studies, e.g., by Egger, Schatz, and Scherer [5], suggest that one-way delays in
communication up to 600 ms are still acceptable, whereas the official recommendation of the
International Telecommunication Union [11] notes strong dissatisfaction of users at the same
latency. Further raising this delay may eventually lead to an increase in double talking, i.e.,
speakers talking over each other, severely impacting intelligibility. Studies agree that delays
up to 200 ms generally have a low to negligible impact on perceived quality [5, 11]. Note,
however, that these numbers do not factor in any transport delay, reducing the time left for
processing, and even slight delays may be considered annoying by some users.

In this paper, we will discuss algorithms suitable for use in single-microphone real-time
scenarios. Before we begin with this, we will define the goals of this paper and the accompa-
nying project in the next subsection. After that, we will quickly look at the noise-reduction
problem and thereafter present an overview of speech enhancement techniques, providing a
short introduction to the foundations of many contemporary methods. We will next highlight
some common techniques used throughout the algorithms described in this paper, beginning
with the short-time Fourier transform (STFT) and its inverse via the weighted overlap-add
(WOLA) method. Following this, we will discuss the actual algorithms, starting with simple
spectral subtraction, from which we will present a generalized view of short-time spectrum
based techniques with references to the Wiener filter and the maximum likelihood estimation
based method by McAulay and Malpass [18]. As these algorithms heavily rely on noise
estimation, we will discuss some basic ideas for this thereafter, with an improved method in
a later section. Next, we will discuss some enhanced noise reduction methods, specifically the
minimum mean-square error short-time spectral amplitude estimation (MMSE) algorithm
by Ephraim and Malah [7] and a modified version thereof, minimum mean-square error
log-spectral amplitude estimation (log-MMSE)[6]. We will build on the log-MMSE method
by incorporating speech presence uncertainty, leading to the optimally-modified log-spectral
amplitude estimation (OM-LSA) algorithm by Cohen and Berdugo [4]. Thereafter, we will
highlight the minima-controlled recursive averaging (MCRA) method as an improvement
over the basic noise estimation methods presented previously, before we, lastly, discuss our
findings and compare the behavior and performance of the algorithms.

1.1 Goals and Implementation

As stated above, the main goal of this paper and the corresponding project1 is to explore
algorithms for real-time noise reduction in settings with a single microphone. A resulting
final algorithm should furthermore be capable of handling and adapting to different noise
situations, e.g., changing signal-to-noise ratio or changes in frequency of signal, i.e., speech,
and/or noise. These goals essentially form the requirements for an algorithm usable for real-
time voice communication. In addition, we also limit ourselves to unsupervised techniques in
which the processing takes place in frequency domain, substantially reducing the number
algorithms to consider. This means, that we will not consider algorithms that require any
kind of supervised pre-training step, such as neural network based solutions.

For the implementation itself we chose the Rust programming language [23]. Rust was
originally developed by Mozilla Research with the goal of creating a safe and fast language for
use in their Firefox browser. The main design goals of this language are memory safety and
concurrency guarantees, that eliminate the possibility of segmentation faults and data races

1The source-code for the project can be found at https://github.com/qzed/noisereduce/.

2

https://github.com/qzed/noisereduce/

through a strong type system, all while rivaling the speed of other compiled languages such
as C or C++[17]. While those safety guarantees are a considerable argument in favor of Rust
themselves, we, however, chose Rust mainly for other reasons: its modernity and flexibility.
The standard Rust compiler is based on the LLVM toolchain and a significant effort has been
made to bring Rust to many devices and even browsers via WebAssembly. This provides
great flexibility for potential uses, e.g., in voice-over-IP (VoIP) web applications, standard
desktop applications, mobile devices, or even embedded systems. Another benefit of Rust is
the modern ecosystem it brings with it: In contrast to C and C++, Rust, like many other
modern languages, focuses on a standardized build system with integrated package manager,
Cargo. Due to this, setting-up and managing projects gets, in general, significant easier,
making it possible to focus more on the application being built itself, than on managing its
build system. Furthermore, Rust allows integration of pre-existing C libraries in a fairly
straight-forward and simple fashion.

Additionally, we would like to highlight our use of the GNU Scientific Library (GSL), a free
and open-source C library for numerical computations in mathematics and science, originally
developed by physicists of the Los Alamos National Laboratory [8]. This library provides us
with well-tested implementations of the more complex and tricky to implement numerical
functions used in some of the techniques described in this paper, specifically Bessel functions
and the exponential integral.

2 The Noise-Reduction Problem

As with all tasks, it is crucial to understand the problem before attempting to solve it.
Auditory noise may come in various forms, each with different characteristics, and can be
described by a set of key properties. By understanding these properties, we can build a
model of the type of noise we want to reduce and via that a corresponding algorithm. In this
section, we will have a brief look at the noise-reduction problem via some of the properties
that can be used to describe noise.

A first characterization can be drawn in the way the noise d(t) is mixed with the clean speech
signal x(t) to produce the noisy signal y(t). Here, we can differentiate between additive,
convolutive, and multiplicative noise, which are applied according to their respective name.

Additive noise assumes that the noisy signal is simply the sum of the clean signal and the
noise signal, i.e.,

y(t) = x(t) + d(t). (2.1)

This is by far the most common form that we encounter when dealing with audio, as it
encompasses almost all occurrences of noise in our everyday lives, including car noise, wind
noise, other people speaking in the background, etc. Most methods dealing with speech
enhancement target this type of degradation, such as, for example, the spectral subtraction
method (see Section 5.2) in which the spectral amplitude D(ω) of the noise signal is estimated
and subtracted from the spectral amplitude Y (ω) of the observed noisy signal. Further
examples are the short-time spectral amplitude methods discussed throughout this paper
and noise-cancellation algorithms as, for example, used in the homonymous headphones.

Convolutive noise assumes that the noise signal is computed by convolving clean speech and
noise signals, i.e.,

y(t) = x(t) ∗ d(t). (2.2)

Note that this is equivalent to a multiplication in the Fourier domain. Convolutive noise
is often encountered as reverberation or echo. This type of noise can, for example, be
targeted by approximating the convolutive transfer function of a room, e.g., via microphone
arrays as done in the technique by Talmon, Cohen, and Gannot [22], or blind multi-channel
identification, such as the method by Li, Gannot, and Horaud [15]. The aim of the blind
multi-channel identification approach is to detect the multiple audio sources in a room by use

3

of a microphone array and reconstruct their original individual signals from the observation
signals. In case of reverberation and echos, each reflection is interpreted as a separate source
to be reconstructed, which then, combined with the identification of the original source of
the clean speech signal, can be used to estimate the undegraded speech.

Multiplicative noise, on the other hand, is by far the least common type of noise when dealing
with audio. It is applied by multiplying clean and noise signals, i.e.,

y(t) = x(t) · d(t), (2.3)

and can occur when processing analog audio signals or via interference during such processing.
As this type of noise is, in general, fairly uncommon and rather a matter of the technical
equipment used, it is rarely discussed and we will not consider it further.

Another major distinguishing factor between different noise types is the correlation of the
noise signal with the clean speech signal. Most common forms of noise are uncorrelated, such
as car noise, wind noise, etc., however, some types, such as echos and reverberation, directly
correlate with the clean speech signal. When dealing with noise caused by other speakers
in the background, there may also be psychological effects which can cause a more indirect
correlation, e.g., by the others lowering or raising their volume during parts in which the
main speaker speaks. In general, correlated signals pose a more difficult problem for speech
enhancement techniques.

Lastly, there is the variation, both in frequency and volume, of the noise signal over time.
This variation is, for example, inherent in background speakers, but can also be observed in
noise caused by nature or cars passing by, whereas other machinery often generates fairly
stationary noise. Apart from the changes in frequency and volume themselves, the duration
in which these changes occur is of importance: Statistical-model-based single microphone
techniques, such as the ones discussed in this paper, assume that the noise signal varies
considerably slower than the clean speech signal. This assumption is required to successfully
discriminate between the two signals and is thus central to those methods.

With that in mind, we can finally look at some of the more known forms of auditory noise.
For this, let us first look at some of the stochastic noise prototypes, specifically white, red,
and gray noise. These types are stationary, but can be modified in volume, pitch shifted,
or blended together to incorporate variation over time. The key difference between these
so-called colors of noise is their distribution in frequency. White noise is characterized by
equal intensity of different frequencies, i.e., each frequency is represented in equal parts.
Grey noise follows a similar approach, however, here equality is defined via a psychoacoustic
loudness curve, i.e., the goal of gray noise is to represent equal intensity in frequencies as
observed by humans. Red noise, often also referred to as Brown or Brownian noise, on the
other hand has a logarithmic (linear in decibel) decrease of power density with respect to
increasing frequencies, i.e., lower frequencies have a higher volume and higher frequencies
a lower volume. Further colors, such as pink, blue, violet, and green describe additional
frequency distributions. While these models are first and foremost of theoretical nature,
many noise types observed in the real world can be approximated by mixtures of them,
applied additively to the clean speech signal. On the subject of real world noise, common
convolutive examples are, as previously mentioned, echo and reverberation. These can be
described by multiple different mathematical models as well, e.g., based on convolutive
transfer functions, which describe the properties of the room causing these degradations. A
further important type of additive noise when considering speech enhancement techniques is
noise caused by other speakers in the background, so-called babble noise. Babble noise is more
difficult to deal with than other additive noise types, especially in single-microphone settings,
and even in multi-microphone settings often considered as one of the most challenging types
of speech degradations. This is due to the fact that it expresses the same or very similar
characteristics as the clean signal, as both are spoken by humans. It is also more difficult
to model, due to its relatively high variations in both frequency and volume. For a more

4

in-depth analysis and a corresponding model representing this type of noise, see for example
the paper by Krishnamurthy and Hansen [14].

3 An Overview of Speech Enhancement Algorithms

Real-time speech enhancement is a long-standing topic in modern communication. As
such, many techniques have been developed over the past decades. With the insights into
noise given in the previous section, we can now present an overview of speech enhancement
methods, with a more detailed look at statistical-model-based noise reduction algorithms
later in Section 5.

In addition to the type of noise they target and the model they assume for it, which we
have discussed at length in the previous Section, we can distinguish algorithms by the
number of microphones they use for processing. While, we focus on single-microphone
solutions only in this paper, the use of multiple microphones or microphone arrays can
improve performance and significantly reduce distortion of speech [2, 16], and even be
essential to techniques like blind source separation (see e.g., Li, Gannot, and Horaud [15]),
beamforming (see e.g., Habets and Benesty [10]), or spatio-temporal filtering methods. In
terms of actual differences in the algorithms, this means that single-microphone methods need
to rely on an inherently stochastic model to differentiate between speech and noise, whereas
multi-microphone solutions can also make use of spatial information. In blind multichannel
separation, this spatial information is used to divide the observed signal into one channel
per source contributing to said observed signal, via which the unwanted noise-sources can
be discarded. In beamforming, on the other hand, the goal is to spatially focus on the
direction from which the clean source signal originates, blending out noises from different
directions. There are also techniques, such as the dual-microphone methods often observed
on smartphones, that rely directly on a fixed orientation of the microphones. In this case, one
microphone is oriented towards the source of the clean speech signal (e.g., the mouth of the
speaker) and another microphone is oriented toward the area from which we assume the noise
originates (e.g., it may be located on the back of the phone), to make use of spatio-temporal
information and serve as a reference for the noise signal.

A further differentiation can be made in the way algorithms process the signals: On the
top-level, we can discern between processing in time and frequency domain. Processing
in frequency domain can make the design of speech enhancement techniques significantly
easier, but involves more overhead as we need to transfer the signal from the time-domain
to the frequency domain and back. This is usually done by use of the Fourier transform or
one of its variations. As it is impractical to apply the Fourier transform on the complete
signal, which might not be available, we usually rely on a specialized application scheme of
it: the short-time Fourier transform (STFT). The STFT, separately discussed in Section 4.1,
essentially splits the signal into multiple overlapping slices and then computes the Fourier
transform on each slice. This provides a set of time-localized spectra, i.e., a spectrogram,
and has the additional advantage of this localization. Whereas slow changes of the signal
over time are directly encoded as frequencies when applying the Fourier transform on the
complete signal, with the STFT they are encoded as changes over the spectrum slices. Thus,
with the right length of the slices (usually 20 ms to 40 ms [7]), we can focus the spectra
on the frequencies relevant to humans and human speech. Banded processing techniques
can be seen as a mixture of both categories. In these techniques the signal is split into
different frequency bands, e.g., by use of band-pass filters, with each signal being processed
individually. Such banded techniques can, for instance, use the psychoacoustic Bark scale
[28] as a reference to obtain frequency bands that better represent human perception.

Finally, we should also discuss some of the different strategies that can be chosen to address
the speech enhancement problem, for which we will follow the categorization given by Loizou
[16]. An, at least on the first look, very simple option are spectral subtractive algorithms.

5

These techniques are directly based on the assumption that the noise is mixed additively
with the clean speech signal. Specifically, these methods try to estimate the noise signal,
e.g., via secondary microphones or statistical techniques, and then subtract this estimation
from the corrupted speech signal, either in time or frequency domain. The somewhat hidden
complexity of these methods stems from the noise estimation problem, which is common
to a wide variety of speech enhancement algorithms. This problem can be tackled in many
different ways, for instance we could update our noise estimate in times when the speech
signal is absent. Throughout this paper, we will discuss various different ways to estimate the
noise signal using a single microphone, as this issue is also central to the techniques presented
herein. Spectral subtractive techniques will be discussed more extensively in Section 5.2, as
they provide a convenient introduction into the statistical-model-based-techniques presented
thereafter.

Statistical-model-based algorithms are a second category of techniques. As the name implies,
these methods rely on an underlying statistical model, through which they define a cost-
or objective-function, which is then subsequently optimized to obtain the final algorithm.
Examples for this include many neural-network based techniques, the Wiener filter (see
e.g., Chen et al. [2] and Loizou [16]) — both in time and frequency domain — where the
minimum mean-square error (MMSE) between clean and estimated signal is minimized, the
method of McAulay and Malpass [18], in which the the likelihood of the Fourier coefficients
of the clean signal is maximized, as well as most algorithms discussed in this paper, i.e.,
the MMSE technique by Ephraim and Malah [7], its improvement, log-MMSE [6], and
derivations. Another noteworthy group of techniques that we should mention here are based
on actively reconstructing the clean signal by re-synthesizing speech components, such as
for example the method by Xiao and Nickel [25]. In these methods, features are extracted
from the pre-processed noisy signal which are then used to reconstruct potentially missing
or occluded speech components while reducing noise to create an enhanced version of this
signal. Via this, these methods try to avoid or reverse the destruction of speech components
that is common in conventional noise-reduction methods. Usually, the generated signal is not
a complete artificial reconstruction, but rather blended with an enhanced or pre-processed
input signal. While these methods can be seen as a separate group, their foundations are
largely rooted within statistical models.

A somewhat less statistical approach are subspace algorithms. These methods are derived
from linear algebra, with the fundamental idea that the space of all possible signals can
be divided into a subspace that is occupied primarily by the clean speech signal and a
subspace that is occupied primarily by the noise signal. We can thus enhance the signal by
identifying these two subspaces and zeroing the noise subspace, so that only the subspace
containing the clean speech signal remains. For this decomposition, the usual methods,
such as singular-value decomposition, eigendecomposition, and other matrix factorization
techniques can be used and, for example, applied to the covariance matrix of the signal [16].

A final category worth noting is formed by binary mask algorithms. In contrast to most of
the methods discussed above, these algorithms do not attempt to estimate a real-valued
correction, but rather mask out noisy parts of the signal completely, e.g., by removing
channels or zeroing frequency bins in the short-time spectral amplitude. Due to this binary
nature, they can be seen as transforming the speech enhancement problem into a classification
problem, that can, for example, be solved via neural networks. This can be seen as a similarity
to subspace algorithms, however, instead of identifying subspaces, we here identify the parts
corresponding to the speech signal directly, and the bins or components to remove may
change with every frame. In this sense, it is more closely related to the voice activity
detection (VAD) problem. In fact, it can be seen as an extension of this problem to speech
enhancement. As these algorithms do not attempt to improve the segments containing speech
themselves, they do not degrade speech as much as other algorithms might do. This can, at
least in theory, be better suited for speech enhancement in high signal-to-noise ratio (SNR)

6

conditions [16] and also be of particular interest to automatic speech recognition (ASR)
systems, of which the performance may be impacted by said degradation. In the following,
we will only concern ourselves with algorithms based on statistical models, but may also
look at other techniques for comparison, specifically spectral subtractive methods due to
their simplicity.

4 Common Processing Methods for Real-Time Noise Reduction

Before we further work towards specific speech enhancement methods, it is advisable that
we discuss some of the methodology and tricks fundamental to real-time noise reduction
and real-time signal processing in general. While processors have seen a significant increase
in computing power and decrease in size and power-consumption over the last couple of
decades, real-time programming still needs special considerations, especially when we concern
ourselves with embedded or low-power devices, as, for example, in an ASR setting. But not
only technical aspects have to be considered: Arguably the biggest impact on performance
stems from the algorithms we use. Simple operations, such as computing a minima or an
average over n time-steps require, using a naive implementation, O(n) in both time and
space. With some fairly trivial changes, we can bring this down to O(1). In this section, we
will discuss such considerations and tricks that help achieve real-time performance, beginning
with the short-time Fourier transform and its inverse via the (weighted) overlap-add method.
Following this, we will look at the exponentially weighted moving average as a technique
for tracking lower-frequent changes over time as well as windowed extrema computation
to obtain extremas in a limited time-frame leading up to the current sample. Finally, we
will examine some of the more technical aspects when programming for real-time audio
processing.

4.1 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is essential to all real-time capable speech enhance-
ment algorithms processing data in the spectral domain, as, in contrast to the normal Fourier
transform, the STFT does not require the full input signal to be known. Instead, the STFT
processes overlapping slices of the signal by computing a Fourier transform independently
on each slice, allowing it to handle potentially infinite signals in real-time (i.e., it is able to
satisfying our real-time constraints as elaborated in Section 1). Due to this sliced processing,
the STFT computes a series of time-localized spectra. By localizing the spectra we now
encode low-frequent changes, such as changes in acoustic cues of the speech (e.g., vowels,
nasals, stops, etc.), as changes between the spectra, rather than in the spectra themselves.
Inherent with this adaption of the Fourier transform, however, is the problem of how we
should choose the size of such slices. Note that, in the discrete setting, this has a direct
impact on the frequency resolution of the resulting spectra. If we choose a larger slice, the
spectra spans a larger interval in time leading to a worse localization, but we also get a
higher resolution in frequency. This is then often referred to as narrow-band spectrum due
to the narrow frequency bands. If, in contrast, we choose a smaller slice, we get a better
localization in time due to the smaller interval covered, but we also get a worse resolution
in frequency. This is often referred to as wide-band spectrum. The aforementioned idea of
encoding these low-frequent changes of the non-stationary speech signal as changes between
adjacent spectra directly presents us with an answer to this problem: By choosing the size
of a slice such that this encoding holds, as well as via practical testing, we can constrain the
length to 20 ms to 40 ms per slice [16].

Mathematically, the STFT is defined as

X(τ, ω) =
∫ ∞

−∞
x(t) w(t− τ) e−jωt dt, (4.1)

7

where x represents the input signal in time-domain, X the complex spectrum of x depending
on time τ and angular frequency ω = 2πf , e−jωt the complex root as used in the normal
Fourier transform, and w a window function centered around τ . This windowing process
essentially computes the time-localization as mentioned above, as we assume that the window
function w is non-zero only on a finite interval centered around zero. The window function
does not only play an important role for the slicing process, but, similar to the standard
Fourier transform, is also used to avoid introducing unwanted artifacts in the frequency
domain. Discretization in time is done mostly analogously to the standard Fourier transform,
yielding

X [m](ω) =
∞∑

n=−∞
x[n] w[n−mR] e−jωn. (4.2)

In addition to the discretization, we also introduce a hop-size R which allows us to move R
samples forward with each slice. We will see shortly that, depending on the window function,
this, in fact, is required to guarantee inversibility of the discrete STFT. The relationship
between hop-size R to overlap M and slice length N can be directly given via R = N −M .
Further, note the connection to the discrete-time Fourier transform (DTFT)

X(ω) =
∞∑

n=−∞
x[n] e−jωn. (4.3)

By introduction of the windowing term, however, we introduce an additional time dimension
in the output of the STFT. Also note, that, in this discretized form, we can split the sum
and compute individual DTFTs for each slice, which is essential for the final algorithm. The
algorithmic computation of this process is illustrated in Figure 1.

A fundamental property with regards to window functions for the STFT is the fulfillment of
the (general) constant overlap-add (COLA) constraint

∃cola ∈ R : ∀n ∈ Z :
∞∑

m=−∞
w[n−mR] = cola. (4.4)

This constraint states that, when overlapping a suitable window function w with itself using
a hop-size of R, summing up the overlapping parts should yield the same constant cola for
each fixed time-step n. Essentially, this constraint ensures that no new frequencies, i.e.,
frequencies that are not present in the original input signal, are introduced when adding
up the individual spectra produced by the STFT. In fact, we can show that, if the COLA
condition is fulfilled, computing this sum yields the DTFT of the whole signal x, scaled by
the constant cola [21]:

∞∑
m=−∞

X [m](ω) =
∞∑

m=−∞

∞∑
n=−∞

x[n] w[n−mR] e−jωn (4.5)

=
∞∑

n=−∞
x[n] e−jωn ·

∞∑
m=−∞

w[n−mR]︸ ︷︷ ︸
cola iff w fulfills COLA(R)

= cola ·
∞∑

n=−∞
x[n] e−jωn (4.6)

= cola · [DTFT(x)] (ω) (4.7)
= cola ·X(ω) (4.8)

As the DTFT is reversible, this should already give us an indication that, if the COLA
constraint is fulfilled, the STFT can also be reversed. In the next subsection, we will look at
the inverse method.

8

As window function w, we can use the common window functions, such as for example the
Hamming, Hann. Blackman, or Blackman-Harris functions. Additionally, one might want to
consider padding the input signal at start and end, e.g., via mirroring, so that the full signal
can be reconstructed. If this is not done, the windowing process can introduce fade-in and
fade-out effects, as illustrated in Figure 1 and Figure 2.

4.2 Weighted Overlap-Add Method

The weighted overlap-add (WOLA) method provides an inverse to the STFT discussed in
the previous subsection. Mathematically, the inverse short-time Fourier transform (ISTFT),
discretized in time only, can be written as

x[n] = 1
2π

∫ π

−π

∞∑
m=−∞

X [m](ω) ejωn dω, (4.9)

=
∞∑

m=−∞

1
2π

∫ π

−π

X [m](ω) ejωn dω, (4.10)

=
∞∑

m=−∞
x[m][n]. (4.11)

This set of equations is simply derived by applying the inverse DTFT (IDTFT) to Equa-
tion (4.8), under the assumption that cola = 1. Note that this assumption does not cause any
loss of generality, as we can scale the window function w accordingly. Equation (4.11) directly
represents the key aspect of the overlap-add (OLA) method, which forms the basis of the
WOLA method. Given this equation, the idea of the OLA method is fairly straightforward:
First, we reconstruct the individual time-domain signals x[m] from their corresponding
complex spectrum X [m] using an IDTFT, then align (i.e., overlap) them by their respective
original position via the hop-size R, i.e.,

x[m] = shiftmR

(
IDTFT

(
X [m]

))
,

and finally add the individual segments together (cf., Equation (4.11)).

The WOLA method can now be derived from this by applying an additional so-called
synthesis window h (also referred to as output window or postwindow [21]) to the individual
time-signal frames before adding them up, i.e.,

x[n] =
∞∑

m=−∞
x[m][n] h[n−mR]. (4.12)

While, as we have seen in Equations (4.9) to (4.11), applying a secondary window function h
here is not required to reconstruct the signal, it has a significant benefit. Applying a window
function here reduces blocking effects, i.e., suppresses audible discontinuities, by fading out
any spectral errors on the frame boundaries. These errors may occur due to the processing
in frequency domain, especially when dealing with nonlinear techniques [21].

Introducing this new window, however, comes with new constraints for the reconstructability
of the signal: Expanding equation Equation (4.12) by Equation (4.2) at some fixed time n
for an arbitrary signal x and hop-size R, i.e., a round-trip from time- to frequency-domain
and back, yields

x[n] =
∞∑

m=−∞
x[n] w[n−mR] h[n−mR]

= x[n]
∞∑

m=−∞
w[n−mR] h[n−mR],

9

M
overlap

N
segment length

Window Function w[n]

…

x[t]

x[1][t]

x[2][t]

x[3][t]

∣∣X[m](ω)
∣∣

Se
gm

en
ta

ti
on

D
F

T

Figure 1: Short-Time Fourier Transform. The discrete input signal x in time-domain is first
split into slices of N samples with an overlap of M samples. Each slice is then multiplied
with a window function w to avoid introducing unwanted artifacts in the frequency domain,
resulting in the individual x[k]. Finally, a discrete Fourier transform is computed for each
x[k], e.g., via FFT, to obtain the resulting series of complex spectra X, here illustrated by
their magnitude.

R
hop size

∣∣X[m](ω)
∣∣

x̂[1][t]

x̂[2][t]
x̂[3][t]

x̂[t]

ID
F

T
W

ei
gh

ti
ng

Su
m

Window Function h[n]

Figure 2: Weighted Overlap-Add Method. First, the series of complex input spectra X, here
represented by their magnitude, is transformed into the time-domain by use of the inverse
discrete Fourier transform, e.g., via IFFT. In this process, each spectrum in the series is
transformed independently, resulting in one time-domain signal per spectrum. In the weighted
overlap-add method, a synthesis window h is applied to each signal afterwards. In case of
the non-weighted overlap-add method, this step is skipped. Finally, the individual signals
are shifted via the hop-size R and added up to compute the resulting signal x̂. Note that we
need pad the original signal before performing the STFT if we want to fully reconstruct this
signal, as, due to windowing, fade-in and fade-out effects may occur on start and end.

10

constraining both window functions, w and h. From this, we can generalize the WOLA
method similarly to the COLA constraint in Equation (4.4) by introducing a normalization
factor cwola, leading to the constraint

∃cwola ∈ R : ∀n ∈ Z :
∞∑

m=−∞
w[n−mR] h[n−mR] = cwola. (4.13)

This observation leads to a common choice of window functions w = h =
√

f for some
arbitrary window function f that fulfills the COLA constraint (i.e., Equation (4.4)) with
overlap R. Note, that setting h = 1 results in the OLA method and the COLA constraint
required for w.

4.3 Exponentially Weighted Moving Average

The exponentially weighted moving average (EWMA or EMA), also referred to as recursive
average, is an averaging method commonly used in time-series- and signal-processing. In
these settings, there often arises a need for an average over some time-period leading up
to the current element, for example to filter out high-frequent noise or to observe more
low-frequent trends. While we could store the n latest data-points and simply average over
them, doing so may not be feasible for large n, as this comes with the costs of O(n) in both
time and space. The solution for this problem lies with the recursive formulation of the
normal average. We can derive this by

x̃t := x1 + x2 + . . . + xt

t

= x1 + x2 + . . . + xt−1

t
+ xt

t

= t− 1
t
· x1 + x2 + . . . + xt−1

t− 1 + 1
t
xt

= t− 1
t
· x̃t−1 + 1

t
xt, (4.14)

with a base-case of x̃1 = x1 for the recursion. If we now replace the time-varying multiplier
t−1

t in Equation (4.14) with a constant α, we obtain the EWMA, defined as

x̄t :=
{

x1, t = 1
αx̄t−1 + (1− α)xt, t > 1.

(4.15)

This formulation already gives us a hint at the exponential nature of this average, which
becomes explicit by recursively expanding it to

x̄t = (1− α)
(
xt + αxt−1 + α2xt−2 + . . . + αkxt−k

)
+ αk+1x̄t−k−1.

The EWMA thus averages elements in a time-series, strongly preferring the current element
with an exponential decay for past elements, where α as a parameter defines a trade-off
between how much of the history is kept and how big the impact of the current element is
going to be.

4.4 Windowed Extrema Computation

In addition to averaging, discussed in the previous subsection, we may also need to compute
extremas over the last n element of a time-series. A naive implementation of this, however,
has the same issue: We will, again, need both O(n) time and space. While we can not solve
this exact problem in O(1), we can approximate it. Specifically, we can start by resetting
the stored extrema value every n steps by setting it to the current element. This by itself
is not very useful, as we would usually need a certain minimum number of elements to

11

compute the extrema over. For example, if we want to track the noise floor of a signal by
tracking the minimum of the spectral magnitude frames computed from this signal, resetting
the minimum to the current frame would have drastic effects if the current frame contains
speech, as we would now assume that the this frame, and thus the speech, represents the
noise floor. However, we can use this to reset a second extrema value, by, every n elements,
setting the second extrema value equal to the first extrema value and then resetting the
first extrema value to the current element, as done in Algorithm 1 for minima computation.
Note that adapting this algorithm for maxima computation is straightforward by modifying
the initialization step to use negative infinity and replace the minimum operations with
maximum operations. This gives us an algorithm that computes the extrema over at least
the last n and at most the last 2n elements. Note that, if this range is too large, we could
extend this algorithm to compute the minima of at least the last (k − 1) · n and at most the
last kn elements, by storing k extrema values, leading to costs of O(k) in time and space.

Algorithm 1: Constant-Time Windowed Minima Approximation
Data: Sequence x = (x1, x2, . . .), window size n
Result: min ≈ min{xt, xt−1, xt−2, . . . xt−n+1}

1 tmp←∞ /* stores minima of up to last n elements */
2 min←∞ /* stores minima of n to 2n last elements */

3 foreach xt ∈ x do /* for each element in x, ordered */
4 tmp← min{tmp, xt} /* update minima normally */
5 min← min{min, xt}
6 if t ≡ 0 mod n then /* every n elements */
7 min← tmp /* set to minimum of last n elements */
8 tmp← xt /* reset completely */

9 yield min /* minima of at least n and at most 2n last elements */

4.5 General Technical Considerations

Even though, in this paper, we focus on the mathematical and algorithmical aspects of speech
enhancement, we should, due to its relevance to the topic, also discuss some considerations
that have to be made when programming for real-time applications. Real-time audio
processing, such as in direct voice communication, poses hard constraints on processing time,
that, when violated, have a direct impact on audio quality and can usually be heard as
crackling or popping noises. To avoid such degradations, it is imperative that we meet these
constraints at all times. In other words, we have, for each audio sample to be processed, a
fixed time budget that we need to adhere to. This, in turn, means that we should do our
utmost to avoid any operations with a non-deterministic execution time inside the processing
thread or callback function, first and foremost dynamic memory allocations. However, also
other functions such as semaphores and locking should be avoided, and in general everything
that involves switching into the operating-system (OS) kernel context (at least if running on
a non-real-time OS). Common concepts in audio processing to deal with these restrictions
are fixed-size lock-free and wait-free queues as well as ring-buffers, in combination with
pre-allocating any memory required for processing, if necessary in the form of memory pools
with designated blocks having pre-defined sizes, depending on their usage. Further, it is
common practice to process blocks of samples at a time. While this increases the latency, it is
generally faster than processing samples individually: First of all, this reduces overhead, e.g.,
associated with obtaining or relaying samples. Secondly, this makes better use of caching,
both for code and data, and third, we can use better optimizations, such as vector operations
(e.g., SSE, AVX, etc.) and loop-unrolling. Together, this generally leads to sub-linear scaling
in performance for block-sizes up to a certain length. Additionally, outliers in processing

12

time, to a limited amount, may not have as huge of an impact, as they are now averaged over
the whole block size. The choice of block-size directly implies a trade-off between latency
and performance, which has to be tuned individually for each application, hardware, and
usage scenario.

5 Noise Reduction based on the Short-Time Spectral Amplitude

A particular class of speech enhancement methods suitable for real-time performance are
based on processing the short-time spectral amplitude. The short-time spectrum is, as
previously discussed in Section 4.1, obtained by use of the STFT, with the individual
spectrum representing a localized time-window. Back-transform from frequency- into time-
domain is generally performed by the WOLA method, discussed in Section 4.2. In the
processing step, only the magnitude (i.e., amplitude) of the spectra is modified to enhance
the signal, while the phase remains untouched. These methods, in general, also include
multi-microphone techniques, but we will, due to the scope of this paper, content ourselves
mostly with single-microphone statistical-model-based algorithms (as outlined in Section 4)
throughout this section. First, however, we will highlight some basic assumptions on the
signal, that we will thereafter use to introduce a fairly simple idea: spectral subtraction.
Next, we will discuss the statistical estimation of the spectral components of the clean
speech signal, with Wiener filtering in frequency domain as example. We will further discuss
the connection between the Wiener filter and spectral subtraction and finally introduce
the a priori and a posteriori signal-to-noise ratios, leading to a general formulation of all
algorithms discussed in this paper.

5.1 Assumptions on the Signal

Following the fundamental assumption of all speech enhancement techniques discussed in
this paper, we, first of all, assume that the corrupted speech signal y(t) is based on the clean
speech signal x(t) and an additive noise signal d(t), i.e.,

y(t) = x(t) + d(t). (5.1)

Note that due to the addition theorem of the Fourier transform, this directly implies additivity
in Fourier coefficients:

Y (ω) = X(ω) + D(ω). (5.2)

Many techniques further assume that the noise signal d(t) has zero mean and is generated by
a stochastic process that is uncorrelated with, i.e., independent from, the clean speech signal
x(t). With this second assumption applied to the expected power spectrum, we obtain

E
{
|Y (ω)|2

}
= E {Y (ω) · Y ∗(ω)}

= E {(X(ω) + D(ω)) · (X∗(ω) + D∗(ω))}

= E
{
|X(ω)|2

}
+ E

{
|D(ω)|2

}
+ E

{
X(ω) ·D∗(ω)

}
+ E

{
X∗(ω) ·D(ω)

}
where Y ∗ is the complex conjugate of Y . Independence between clean speech X and noise
D lets us rewrite the cross-terms as

E {X(ω) ·D∗(ω)} = E {X(ω)} · E {D∗(ω)} and
E {X∗(ω) ·D(ω)} = E {X∗(ω)} · E {D(ω)} .

Assuming zero mean for the noise signal d(t) leads to E {D(ω)} = E {D∗(ω)} = 0 and thus
the final result

E
{
|Y (ω)|2

}
= E

{
|X(ω)|2

}
+ E

{
|D(ω)|2

}
, (5.3)

13

which serves as a useful basis for approximations, for example as in the power spectrum
subtraction algorithm discussed below.

As mentioned above, we do, however, not process the complete spectrum Y (ω), but rather
we handle each spectra in the series computed by the STFT individually, i.e., spectra of
short overlapping time-slices, as discussed more extensively in Section 4.1. This then leads
to the actual assumptions

Y [t](ω) = X [t](ω) + D[t](ω) (5.4)

and
E

{∣∣∣Y [t](ω)
∣∣∣2

}
= E

{∣∣∣X [t](ω)
∣∣∣2

}
+ E

{∣∣∣D[t](ω)
∣∣∣2

}
, (5.5)

respectively. Again note the connection between discrete-time STFT and DTFT, described by
Equation (4.8) (here assuming cola is one, e.g., by scaling the window function appropriately).

5.2 Spectral Subtraction

Spectral subtraction is directly based on Equations (5.2) and (5.4) and the idea that we can
subtract the noise from the noisy signal in the spectral domain to obtain the clean signal,
hence the name. Again, all operations are performed on the short-time spectrum, however,
due to readability, we will omit indexing them in this subsection. To be able to subtract the
complex spectral coefficients, we need to estimate them, due to them being unknowns. As
estimating the complex noise coefficients is rather tricky, we, in typical computer science
fashion, divide this problem into two sub-problems. By splitting the complex spectral
coefficients D(ω) of the noise into magnitude |D(ω)| and phase φd(ω) using the polar form

D(ω) = |D(ω)| ejφd(ω), (5.6)

we can estimate them separately. Henceforth, we denote estimates with a hat, e.g., D̂(ω).
Let us assume for now that we have an oracle which can determine if speech is present
given some spectral frame of the signal, i.e., some voice activity detection (VAD) algorithm.
With this, we can estimate the noise magnitude |D̂(ω)| by simply averaging over the last
couple of frames that did not contain speech. We will look at this in more detail in the next
subsection. For the phase, we follow a much simpler approach: Instead of trying to estimate
it, we simply assume that the phase φx(ω) of the clean signal can be approximated directly
by the phase φy(ω) of the noisy signal. While the phase does provide significant information
impacting the quality of the speech signal, the impact on speech intelligibility is, for small
frame lengths as commonly used in speech enhancements, little [19]. Estimating the phase
of the clean speech is difficult and comes with a significant increase in complexity of the
resulting technique [16]. Furthermore, it is possible to (geometrically) bound the difference
between the noisy and the clean signal phase by the (a priori) signal-to-noise ratio (SNR),
see, for example, Loizou [16]. This means that, as long as the SNR is large enough, the phase
difference is inaudible, which leads to good results in practice. Combining these estimations
finally leads to the mathematical formulation of spectral subtraction as

X̂(ω) =
∣∣X̂(ω)

∣∣ ejφy(ω) (5.7)

where ∣∣X̂(ω)
∣∣ =

∣∣Y (ω)
∣∣− ∣∣D̂(ω)

∣∣, (5.8)

meaning we estimate the magnitude spectrum |X̂(ω)| of the clean speech signal by subtracting
the estimated magnitude spectrum |D̂(ω)| from the noisy input signal magnitude spectrum
|Y (ω)| (Equation (5.8)) and then use the noisy phase spectrum to reconstruct the clean
signal with it (Equation (5.7)).

While this may, at first, seem sound in theory, in practice we are susceptible to a significant
issue. Inaccuracies in the prediction of the noise magnitude spectrum can lead to negative

14

STFT

ISTFT

Y [k]

φ
[k]
y

|.|p

Noise Estimation

+

∣∣D̂[k]
∣∣p

−

|.|1/p

Figure 3: Generalized Spectral Subtraction Algorithm. The short-time spectrum provided
by the STFT is divided into magnitude- and phase-spectrum. A noise estimate is computed
based on current and past spectra of the noisy signal, which is then subtracted from the
magnitude spectrum of the input signal (p = 1). The clean signal spectrum estimate is then
obtained by combining the noisy phase spectrum with the result of this subtraction, which
has been rectified to ensure its non-negativity. Optionally, the subtraction is performed on
the power spectrum (p = 2).

values in the estimation of the clean magnitude spectrum. We thus have to ensure that,
either after subtraction or during noise estimation, the final spectrum |X̂(ω)| is always
non-negative. The easiest solution for this is to half-wave-rectify the spectral magnitude, i.e.,
set the negative components of it to zero, leading to∣∣X̂(ω)

∣∣ = max
{∣∣Y (ω)

∣∣− ∣∣D̂(ω)
∣∣, 0

}
. (5.9)

There are many other techniques addressing this problem (see e.g., Loizou [16]), for example
it may make sense to retain a spectral noise floor which may improve the perceived quality
of the resulting signal, as shown by Berouti, Schwartz, and Makhoul [1].

By taking equation Equation (5.3) into account, we can extend the idea of spectral subtraction
to the power-spectrum subtraction method. In some cases, it might be better to work with the
power spectra rather than the magnitude spectra [16]. Both forms can then be mathematically
represented by ∣∣X̂(ω)

∣∣p =
∣∣Y (ω)

∣∣p −
∣∣D̂(ω)

∣∣p
, (5.10)

with p ∈ {1, 2}. The complete algorithm is illustrated in Figure 3. Note that, based on
Equation (5.3), the power-spectrum subtraction, in addition to additivity of noise, also
assumes statistical independence of speech and noise signals as well as zero mean for the
noise signal.

Another very simple modification of this algorithm is over-subtraction, i.e., subtracting a
small multiple of the noise estimate. As the estimate of the spectral noise magnitude is
usually some sort of average, this can significantly increase the amount of noise eliminated.
Combined with a spectral noise-floor rectifier, this leads to

∣∣X̂(ω)
∣∣p =

{∣∣Y (ω)
∣∣p − α

∣∣D̂(ω)
∣∣p if

∣∣Y (ω)
∣∣p

> (α + β)
∣∣D̂(ω)

∣∣p

β
∣∣D̂(ω)

∣∣p else,
(5.11)

with parameters α ≥ 1 as over-subtraction factor and β with 0 ≤ β � 1 as spectral floor
parameter. The spectral noise floor can be useful to somewhat mask peaks which can improve
the perceived quality of the signal. For p = 2 this equals the technique proposed by Berouti,
Schwartz, and Makhoul [1]. A drawback of over-subtraction, however, is additional speech
degradation. By removing more than our current estimate of the noise, we are inevitably

15

bound to remove parts of the speech signal as well, making α an important parameter for
the trade-off between distortion in speech and the amount of noise removed.

Lastly, we can rewrite spectral subtraction using a so-called gain function H(ω), which may
make sense when implementing these algorithms in a modular framework, via∣∣X̂(ω)

∣∣p = Hp(ω)
∣∣Y (ω)

∣∣p (5.12)

where

Hp(ω) = 1−
∣∣D̂(ω)

∣∣p∣∣Y (ω)
∣∣p , (5.13)

again p ∈ {1, 2}. As we will see in the remainder of this paper, all algorithms presented here
can be characterized by their respective gain function H(ω). Note that for p = 1, we can
directly estimate the complex spectral components of the clean signal by incorporating the
noisy phase information via

X̂(ω) = H1(ω) Y (ω), (5.14)
using H1 as defined above, due to Hp ∈ R. By taking square-roots on both sides, we can
also express the power-spectrum based variant in this fashion, leading to

X̂(ω) =
√

H2(ω) Y (ω), (5.15)

which, as can be seen, is directly applicable to the magnitude spectrum.

5.2.1 Basic Noise Estimation

As previously mentioned, a basic idea to estimate the noise magnitude spectrum is to average
over the last couple of frames that do not contain speech. In this subsection, we will concretize
and extend this idea, and provide some basic algorithms founded on a simple thresholding
scheme for the detection of speech presence. Let us for simplicity denote

Y [t] = R[t]
y ejφ[t]

y , D[t] = R
[t]
d ejφ

[t]
d

and the power spectra
λ[t]

y =
(

R[t]
y

)2
, λ

[t]
d =

(
R̂

[t]
d

)2

where λ
[t]
d ∈ Rn, R

[t]
y ∈ Rn, φ

[t]
y ∈ Rn, R

[t]
d ∈ Rn, φ

[t]
d ∈ Rn, are all vectors with one element

per spectral component. Note that for λd we use the power spectrum estimate, as we cannot
determine it directly but rather want to estimate it.

A first attempt of this can be made via a the energy. By thresholding the energy of the
spectral frame of the noisy signal we can derive a simple indicator for speech presence.
Using this indicator in combination with an exponentially weighted moving average yields a
technique that can adapt to slight changes in noise. The update rule for the noise estimate
can then be given as

λ
[t]
d =

αλ
[t−1]
d + (1− α)λ[t]

y if
∥∥∥R

[t]
y

∥∥∥2
< ϑ

λ
[t−1]
d else

(5.16)

with ϑ ∈ R+ as decision threshold. If the energy of the spectral frame falls beneath this
threshold, the frame is classified as noise and thus incorporated in the new noise estimate.
If the energy is above this threshold, the noise estimate is not updated. To simplify the
selection of a threshold one could consider assuming that the first m frames of the signal
contain noise and thus can be used to form an initial noise estimate. With this estimate, we
can then compute our threshold via a SNR-like decision parameter δ ∈ R+, i.e.,

ϑ = δ
∥∥∥R̄[0:m]

y

∥∥∥2
, (5.17)

16

meaning that if the noisy signal exceeds the initial noise estimate by a certain factor (> δ),
it is classified as speech for the given frame. The resulting noise estimator is somewhat
adaptive, however, adaptivity is strongly limited by the initial noise estimate or the threshold
value, due to which we may want to consider adapting this over time. Strategies towards
this will be discussed in a later section. Furthermore, the parameter δ (or alternatively the
threshold ϑ) need to be tuned accordingly.

A fairly straightforward extension of this is to handle each frequency band individually. This
means that instead of looking at the energy of the whole frame, we look at the power of the
individual spectral coefficients. This directly leads to the update rule

λ
[t,k]
d =

{
αλ

[t−1,k]
d + (1− α)λ[t,k]

y if λ
[t,k]
y < ϑ[k]

λ
[t−1,k]
d else,

(5.18)

for which we can again represent the threshold ϑ via a (small) multiple of an initial noise
estimate, e.g., from the first m frames, leading to

ϑ[k] = δλ̄[0:m,k]
y . (5.19)

In contrast to the energy based thresholding, we here also index the spectral component via
k. This, again, has the same limitations as the previous method, i.e., it is fairly limited in
adaptivity and the parameters need to be tuned. As a simple solution for the first issue, we
could adapt the threshold ϑ by updating it each time-step using the current noise estimate,
i.e.,

ϑ[t,k] = δλ
[t−1,k]
d . (5.20)

Note that this, however, may be prone to incorporating speech into the noise estimate if
the value for the decision ratio δ is chosen too large. Specifically, δ should be chosen such
that the probability of misclassifying noise as speech is near-zero, as a mistakenly classifying
noise as speech generally has more severe consequences (i.e., distorting or outright removing
speech) than the other way around.

5.2.2 Evaluation

With spectral subtraction and the basic noise estimation techniques presented in the previous
subsection, we now have a first complete method for speech enhancement. For the analysis,
we chose a dataset designed to train and evaluate speech enhancement methods, provided
by the University of Edinburgh [24]. Specifically, we chose a sample clip overlapped with
moderate, additive, and slightly varying street noises2, as this best fits the adaptivity goal of
this paper. With the help of this, we will first look at the differences between magnitude-
and power-spectrum subtraction followed by a comparison of the noise estimation methods
presented in the previous section and finally a look at over-subtraction and spectral flooring.

For all evaluations, we chose a STFT (Section 4.1) with segment length of 20 ms, overlap of
half the segment length, and a square-root periodic Hann window. Reconstruction of the
time-signal from the frequency spectra is performed via the weighted overlap-add method
(Section 4.2) with the same window as used in the STFT as synthesis window. All initial
noise estimates (e.g., as used in Equations (5.17) and (5.19)) are constructed by averaging the
first nine spectral frames of the signal. To ensure the magnitude or power-spectrum is always
positive, we used half-wave rectification. Unless specified otherwise, neither over-subtraction
nor spectral flooring is performed.

Let us begin by comparing magnitude- with power-spectrum subtraction, as shown in Figure 4.
For this, we only used the initial noise estimate as described above. There is no update
performed on this estimate during the enhancement process. Due to this, the changes in

2The specific file is noisy_trainset_56spk_wav/p241_087.wav, containing the sentence “Global Scotland
will be held at the Glasgow Royal Concert Hall”.

17

noise over time in the input signal (noise gets louder towards the end) are also apparent in
both results. Furthermore, both results show clear reduction in noise, however, they also
highlight a major problem encountered in various speech enhancement techniques: musical
noise. This type of residual noise is usually described as warbling with tonal quality [16]
and can be characterized as containing more musical aspects than other noise, giving it its
unique name. It can be identified by the small isolated peaks in the spectrogram, having the
length of an analysis frame, and is a result multiple factors, including nonlinear processing,
inaccurate estimation of the noise spectrum, and large variance in the estimates of the noisy
and noise signal spectra [16]. Musical noise can have a significant impact on intelligibility,
in some instances it can even be of worse quality to the listener [16]. Even though there
are small differences between the two results, better observable by auditory comparison and
mostly in the volume of noise removed, they are largely similar. This suggests, that the
additional assumption made in the power-spectrum subtraction method (i.e., noise- and
clean-speech-signal independence as well as zero-mean of the noise signal, see Section 5.1
and Equation (5.3)) are, in practice, reasonable.

As we have seen during discussion of the spectral subtraction algorithm in Section 5.2,
noise estimation is an important component of this, and also other subsequently discussed
techniques. To this end, we have, in the the previous subsection (Section 5.2.1), had a
look at some very basic methods, which we will now compare via their application to
(magnitude-based) spectral subtraction, with results presented in Figure 5. As references,
we use both the original noisy input signal and spectral subtraction using a non-varying
noise estimate computed by averaging the first nine spectral frames (as already seen in the
previous evaluation and corresponding figure). Both adaptive noise estimation methods,
energy- and power-threshold based, use a threshold based on the initial noise estimation, as
given by Equations (5.17) and (5.19), with δ = 0.8, meaning that anything above 0.8 times
the initial noise estimate is classified as speech. The exponentially weighted moving average
used in the update-rules (Equations (5.17) and (5.19)) keeps the old estimate with a factor
of α = 0.8. No over-subtraction or spectral flooring is performed. When comparing the
results, we can clearly see that, overall, more noise is removed when using adaptive estimates.
Furthermore, the adaptivity also becomes apparent when looking at the noise changes over
time. In the stationary noise estimate, these changes are still visible after the enhancement
process, however, when using adaptive estimates, these variations are reduced, but still
audible. When comparing both adaptive methods with each other, we can see significant
differences: Due to classifying the whole frame as speech or noise, the energy-threshold based
technique (second-to-bottom) also classifies some of the weaker speech parts (e.g., s, sj, ʒ, z,
zj, etc.) as noise, which can be seen in the shadow they leave. This is significantly improved
in the power-threshold based algorithm. Although there is still a shadow visible, it is reduced
both in duration and its spread across frequencies. Note that neither method, however,
is capable of reducing atypical disturbances, such as the high-pitched tone (likely braking
noises) at the start and end of the clip. While the energy-threshold based technique performs
slightly better, due to it considering the energy of the whole frame instead of individual
frequency bands and thus averaging over such frequency-localized perturbations, it is still
not able to completely remove it due to its significant differences compared to the rest of
the noise. As should be expected, neither of the adaptive estimation methods shows any
significant difference in musical noise compared to the stationary estimate.

Finally, we can discuss enhancements of the spectral subtraction technique by means of
over-subtraction and spectral flooring with the results presented in Figure 6. To this end, we
base our comparison on spectral subtraction (magnitude) with power-threshold based noise
estimation, with the same parameters as used in the previous evaluation (i.e., δ = 0.8 and
α = 0.8 for noise estimation). This method, without over-subtraction and spectral flooring,
as well as the noisy input signal serve as a base-line for the evaluation. The remaining two
results both incorporate over-subtraction with α = 1.5, with the difference that the first of
them uses no spectral flooring (i.e., β = 0) and the second uses spectral flooring with a noise

18

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Magnitude-Spectrum Subtraction

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Power-Spectrum Subtraction

Figure 4: Spectral subtraction using the magnitude-spectrum compared to power spectrum
subtraction. The noise estimate subtracted is computed by averaging the first nine frames.
Notice the slight change in volume of the noise in the spectrogram of the original towards
the end (top). Due to the fixed noise estimate, this change is also apparent in the processed
results (middle and bottom). Both results also show signs of musical noise, i.e., small,
randomly distributed peaks and valleys. In addition, both spectrograms are largely similar,
however, in auditory comparison magnitude-spectrum based subtraction (middle) seems to
reduce noise slightly more than power-spectrum based subtraction (bottom).

19

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Initial Noise Estimate Only

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Exponentially Weighted Average with Energy-Threshold VAD

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Exponentially Weighted Average with Power-Threshold VAD

Figure 5: Basic noise estimation methods compared using spectral subtraction. Changes in
noise of the original audio spectrogram (top) can be seen in the spectral subtraction method
using the averaged first nine frames as noise estimate (second from top), whereas the two
more advanced methods (second-to-bottom and bottom, both δ = 0.8) do not show this
change as much. Shadows stemming from misclassifying speech as noise can be seen in the
energy-threshold based technique (second-to-bottom) and are significantly reduced in impact
in the power-threshold based algorithm (bottom). Again, all results show musical noise.

20

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Spectral Subtraction

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Spectral Subtraction with Over-Subtraction

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Spectral Subtraction with Over-Subtraction and Spectral Flooring

Figure 6: Over-subtraction and spectral flooring in comparison. Over-subtraction by a factor
of α = 1.5 (second-to-bottom) reduces significantly more noise as plain spectral subtraction
(second from top), while keeping speech largely intact. However, this also results in strong
musical noise. Adding a noise-floor of β = 0.066 (bottom) can mask this musical noise at
the expense of stronger residual white(-ish) noise. All methods use power-threshold based
noise estimation with the same parameters from the previous figure.

21

floor of β = 0.066 times the noise estimate. As can be seen in Figure 6, spectral subtraction
with over-subtraction significantly increases the amount of noise removed, however, also
affects the speech signal more than plain spectral subtraction, for example at the second
formant around the 2.5 s mark. Note again, that the over-subtraction-factor α poses a trade-
off between speech distortion and amount of noise removed. While this added distortion is
noticeable, in this instance, the benefits outweigh the costs, as, in auditory analysis, the
difference compared to the original speech signal is only perceivable as a sort of hall effect.
A problem significantly worsened when using over-subtraction is musical noise. Due to
scaling-up the amount of noise removed, the spectral peaks are significantly accentuated
and not masked as much by residual noise, leading to stronger musical noise. While this
noise is still not strong enough to significantly reduce intelligibility, due to its irregularity,
it has a strong impact on the signal quality as perceived by human listeners. We attempt
to solve this problem by introducing a spectral noise floor. Figure 6 (bottom) shows that
this adaption is indeed capable of masking the spectral peaks created during the subtraction
process, although at the cost of raising the noise floor. However, the resulting white-ish noise
is generally considered more pleasant than musical noise, due to which this enhancement to
the spectral subtraction algorithm is capable of improving the perceived quality compared to
plain over-subtraction. By computing the noise-floor multiplicatively from the noise estimate,
however, we also re-introduce variation in noise of the input signal back into the resulting
signal.

Overall, spectral subtraction is a very flexible technique, which provides two major op-
portunities for a trade-off between performance and complexity: noise estimation and the
post-subtraction rectification process. Most of the complexity is hidden behind these two
parts, and both are integral to a good enhancement technique (see Figure 6). Noise esti-
mation, specifically, is a complex yet important process not only for this technique, as we
will see later, and can have a significant impact (Figure 5). We will improve on the noise
estimation methods shown here later in Section 7. Equally as important as a good noise
estimation method, is keeping musical noise in check. Here, we have seen that spectral
flooring can help with that, at the cost of re-introducing a small amount of the original
noise back into the signal. In addition to spectral flooring, musical noise can be reduced
by several other techniques. For an overview thereof, see for example Loizou [16]. Lastly,
spectral subtraction is inevitably bound to reduce the volume of the speech signal, as the
noise estimate is subtracted across the complete spectrum. To compensate this, it may be
desirable to apply a constant multiplicator to the signal (or spectrum) after performing the
subtraction.

5.3 Statistical Estimation of Clean Speech Spectral Components

With the insights from spectral subtraction gained in the previous subsection, we can now
move towards statistical-model-based methods. All speech enhancement methods discussed
in the remainder of this paper fit into this category and, more specifically, are based on
estimating either the full complex spectral components of the clean speech signal or their
magnitude, in the latter case again with the phase taken from the noisy input signal. In this
subsection, we will first explore the Wiener filter in frequency domain as one such method,
which will then lead us to some important metrics for speech enhancement, the a priori
and a posteriori signal-to-noise ratio, and via this we will explore connection of the Wiener
filter to spectral subtraction. Finally, we will have a look at a generalized formulation of the
enhancement algorithms discussed in this paper.

5.3.1 Wiener Filter in Frequency Domain

One such method is the Wiener filter, which we will look at in the frequency domain. The
fundamental idea of this filter, applied to speech enhancement, is to reconstruct the clean
speech signal x from the noisy input signal y. In the infinite impulse response (IIR) form,

22

this is done via

x̂[t] =
∞∑

k=−∞

hk y[t− k] (5.21)

for −∞ < n <∞ with the goal of eliminating the error defined as

e[t] = x[t]− x̂[t], (5.22)

as is usually done by minimizing its mean-square. To simplify Equation (5.21), we can write
it as convolution, i.e.,

x̂[t] = (y ∗ h)[t], (5.23)

which we can then transform into a finite impulse response (FIR) filter by simply limiting the
domain of h to h : [−m : m]→ R. Note that convolution in time-domain can be expressed
by multiplication in frequency domain and thus

X̂(ω) = H(ω) Y (ω). (5.24)

With the insights from the previous subsections, we can again represent this using the STFT,
leading to

X̂ [k](ω) = H [k](ω) Y [k](ω). (5.25)

Essentially, these equations suggest that we derive a gain function H to estimate the clean
speech spectral components (cf., Equation (5.12)). For readability, we will again only discuss
the non-indexed variant. Due to the additivity theorem, we can similarly represent the error
in the frequency domain via

E(ω) = X(ω)− X̂(ω). (5.26)

Minimizing this via the minimum mean-square error (see for example Loizou [16]) leads to

H(ω) = Pxy(ω)
Pyy(ω) (5.27)

where

Pyy(ω) = E
{
|Y (ω)|2

}
and

Pxy(ω) = E {Y (ω) ·X∗(ω)}

are the power and cross-power spectra of the noisy as well as noisy and clean signal respectively.
While the power spectrum Pyy of the noisy signal is real-valued, the cross-power spectrum
Pxy, which is unknown and needs to be estimated, e.g., by help of a noise estimation method,
is complex valued and thus H is also complex.

5.3.2 Signal-to-Noise Ratios and General Algorithm Formulation

We can now introduce two important measures for statistical-model-based speech enhance-
ment methods: the a priori and a posteriori signal-to-noise ratio (SNR) and via those present
a generalized problem formulation for the enhancement methods discussed in this paper.
The a priori SNR ξ describes the SNR related to the clean speech signal x and is defined as

ξ(ω) := λx(ω)
λd(ω) , (5.28)

whereas the a posteriori SNR γ describes the SNR with regards to the distorted signal y
and is defined as

γ(ω) := λy(ω)
λd(ω) , (5.29)

23

i.e., they describe the SNR prior and posterior to applying the distortion to the clean speech
signal respectively, where the expected power spectra λx, λy, and λd are defined via

λy(ω) := |Y (ω)|2 , λx(ω) := E
{
|X(ω)|2

}
, λd(ω) := E

{
|D(ω)|2

}
Note that we use the expected value, given some model assumptions, in case the value cannot
be determined exactly. We should further make apparent a significant connection between
both SNRs. Under the assumption that E{λy(ω)} = λx(ω) + λd(ω), we can write

E{γ(ω)} = E
{

λy(ω)
λd(ω)

}
= E

{
λx(ω) + λd(ω)

λd(ω)

}
= E{ξ(ω) + 1}. (5.30)

One should, however, realize that in practical application this often does not hold exactly, due
to the mixture of measured values in case of the spectral components Y and the expectations
as produced by our model in case of X and D. Further, this also assumes that noise and
speech signal are uncorrelated and the speech signal has zero mean, i.e., that the cross-power-
terms between clean speech and noise signal are zero. Nevertheless, this relation can be
useful to robustify techniques in practice.

With the definition of the a priori SNR, we are now able to explore a relationship between
spectral subtraction using the power spectrum and Wiener filtering, and via that present
a more generalized view of speech enhancement methods via gain functions. From the
formulation of power-spectrum based spectral subtraction given in Equations (5.13) and (5.15),
we know that its gain function as applied to the magnitude is

HPSS(ω) =

√√√√1−
∣∣D(ω)

∣∣2∣∣Y (ω)
∣∣2 (5.31)

We can now re-express this in different ways, using a priori and a posteriori SNR, i.e.,

HPSS(ω) =

√
1− λd(ω)

λy(ω) =

√
1− 1

γ(ω) =

√
1− 1

ξ(ω) + 1 =

√
ξ(ω)

ξ(ω) + 1

Similarly, we can re-write the gain function of the Wiener filter (Equation (5.27)). Again
assuming independence between noise and speech signals as well as zero mean for the noise,
we obtain

Pxy(ω) = Pxx(ω)
Pyy(ω) = Pxx(ω) + Pdd(ω)

and via this

HWiener(ω) = Pxy(ω)
Pyy(ω) = Pxx(ω)

Pxx(ω) + Pdd(ω) = λx(ω)
λx(ω) + λd(ω) = ξ(ω)

ξ(ω) + 1

Thus HWiener = H2
PSS, i.e., the gain function of the Wiener filter is equivalent to the squared

gain function of the power-spectrum based spectral subtraction algorithm.

From these representations of the algorithms using gain functions depending on the a priori
and a posteriori SNR, we can now come to a generalized form of all speech enhancement
algorithms presented in this paper, illustrated in Figure 7, and many other estimation based
techniques, such as for instance the method by McAulay and Malpass [18], based on a
maximum likelihood estimation for the magnitude-spectrum of the clean speech signal. In
short, we multiply a gain function H(ξ, γ), usually depending only on the a priori and a
posteriori SNR, to the complex noisy spectra Y (ω), obtained by a STFT, to estimate the
clean speech coefficients X(ω) and then reconstruct the time-domain signal via the WOLA or
OLA method. For techniques that are only concerned with estimating the magnitude, such
as spectral subtraction, we usually use the phase of the noisy signal and thus H(ξ, γ) ∈ R+.
Note that both SNRs are unknowns and, due to this, need to be estimated, for example
based on a noise estimate. Methods towards this will be discussed in the next Section.

24

STFT

ISTFT ×

Y [k]
H

H [k]

Figure 7: Generalized block-diagram of gain-based speech enhancement algorithms. The
complex noisy spectrum Y obtained by a STFT is multiplied with a (potentially complex)
gain function H to estimate the clean-speech coefficients X. To obtain the time-domain
signal, these coefficients are back-transformed using an ISTFT method, e.g., WOLA or OLA.

6 Minimum Mean-Square Error Spectral Amplitude Estimation

Expanding on the enhancement methods provided in the previous section, we will now discuss
a set of algorithms based on estimating the short-time spectral amplitude (STSA) of the
clean speech signal using a minimum mean-square error (MMSE) formulation. This set of
algorithms is based on the MMSE STSA estimation by Ephraim and Malah [7] and forms
the core of this paper. In accordance with this fundamental technique, we will also look
at approaches for estimating the a priori SNR, which then gives us all the required parts
for a complete speech enhancement system. Additionally, we will discuss two noteworthy
enhancements of the MMSE STSA algorithm: first, using a logarithmic error measure, i.e.,
estimating the log-spectral amplitude, as again proposed by Ephraim and Malah [6], and
second, an adaption to incorporate uncertainty in the speech signal presence, proposed
by Cohen and Berdugo [4]. These techniques will be combined with an enhanced noise
estimation method, discussed in Section 7, and finally evaluated in Section 8.

For the MMSE STSA technique proposed by Ephraim and Malah [7], we again use additivity
of the noise as basis. Additionally we limit the signal to an analysis frame of length T and
assume that the interval is normalized to [0, T]. Combined, this leads to

y(t) = x(t) + d(t), 0 ≤ x ≤ T.

Discretizing the signal y in time and performing a discrete Fourier transform then yields the
same fundamental assumption in frequency domain, i.e.,

Y [k] = X [k] + D[k],

where k is the index to the respective spectral component. For readability, we will express
the spectral components in terms of their spectral amplitude R and phase φ via

Y [k] := R[k]
y exp

(
jφ[k]

y

)
, X [k] := R[k]

x exp
(

jφ[k]
x

)
, and D[k] := R

[k]
d exp

(
jφ

[k]
d

)
.

With those definitions, we can now express the underlying estimation goal of the method in
continuous form as

R̂x(ω) = E
{

Rx(ω)
∣∣∣ y(t), 0 ≤ t ≤ T

}
, (6.1)

which we discretize in time- and frequency-domain, leading to

R̂[k]
x = E

{
R[k]

x

∣∣∣ Y [0], Y [1], . . . , Y [N]
}

. (6.2)

Due to the inversibility of the Fourier transform, this is the same estimation modulo errors
introduced during discretization. To estimate the clean-speech spectral amplitude Rx,
Ephraim and Malah use a Gaussian model, which we will omit here for brevity and simplicity.

25

A fundamental assumption in this model is the statistical independence of the individual
spectral components, i.e., each spectral component is seen as an independent random variable.
With it, we can simplify Equation (6.2), yielding

R̂[k]
x = E

{
R[k]

x

∣∣∣ Y [k]
}

. (6.3)

This assumption is equivalent to the assumption that the Fourier expansion coefficients
are uncorrelated, which in turn is ratified by the fact that correlation between different
Fourier coefficients approaches zero with increasing frame lengths [7]. Note that, due to the
limited frame length, this assumption does not strictly hold in practical applications. Finally,
applying the model of Ephraim and Malah to Equation (6.3) gives us (neglecting indexing of
spectral components for readability)

R̂x = HMMSE (ξ, γ) ·Ry (6.4)

with the gain function

HMMSE (ξ, γ) = Γ(1.5)
√

ν

γ
exp

(
−ν

2

) [
(1 + ν) I0

(ν

2

)
+ νI1

(ν

2

)]
, (6.5)

where γ[k] is the a posteriori SNR as defined in Equation (5.29), discretized in frequency for
spectral component k, and

ν[k] := ξ[k]

1 + ξ[k] γ
[k] (6.6)

represents a corrected a priori SNR (cf., Equation (5.30)) using the a priori SNR ξ[k]

(Equation (5.28)), again discretized in frequency. Further, I0(·) and I1(·) denote the modified
Bessel functions of zeroth and first order, respectively, and Γ(.) with Γ(1.5) =

√
π

2 the gamma
function.

Here, we again use the phase of the noisy signal, i.e., HMMSE(ξ[k], γ[k]) be can directly
multiplied to the k-th spectral component of the noisy signal as show in Figure 7 and
discussed in Section 5.3.2, however, Ephraim and Malah also experimented with estimations
for the complex exponential ejφx(ω) as well as the optimal phase φx(ω), both relying on
the same aforementioned statistical model. They concluded that trying to estimate the
complex exponential leads to a trade-off in optimality between amplitude estimation and
phase estimation, where improving one would adversely affect the other, and further that an
estimator which does not affect the amplitude equals the complex exponential of the noisy
signal [7]. The last result is also shown in their approach to estimate the phase directly,
which yields that the optimal phase estimation of the clean speech signal is the phase of the
noisy signal [7].

6.1 Estimating the A Priori Signal-to-Noise Ratio

While the a posteriori SNR γ := λy/λd can directly be computed using a noise estimate λ̂d,
the a priori SNR ξ := λx/λd requires estimations for the spectral power of both noise and
clean speech signals. As we have previously discussed techniques for estimating the spectral
noise power λd, it remains to investigate on how to estimate the spectral signal power λx.
To this end, we will look at two methods, again proposed by Ephraim and Malah [7], one
based on estimating λx and the other based on estimating ξ more directly.

The first method is based on a maximum likelihood estimation of the spectral power λ
[k]
x

of the clean signal. For this, we use an estimation window of L previous observations of
the spectral component, i.e., observations of {Y [t,k], Y [t−1,k], . . . , Y [t−L+1,k]}. From this, the
same Gaussian model is used to estimate the spectral signal power λx for component k,
under the assumption that these previous observations are uncorrelated. Note that this does

26

not hold in practice, as the analysis frames need to overlap to ensure reversibility of the
STFT. Applying the model yields

λ̂[t,k]
x = max

{
1
L

L−1∑
l=0

λ[t−l,k]
y − λ

[t,k]
d , 0

}
(6.7)

which then suggests

ξ̂[t,k] = max
{

1
L

L−1∑
l=0

γ[t−l,k] − 1, 0
}

(6.8)

by plugging in the definition of the a priori SNR. As previously mentioned in Section 4.3,
a running average like this is not very well suited for real-time signal processing, thus, in
practice, we replace it with a recursive average, leading to the final formulation

γ̄[t,k] = αγ̄[t−1,k] + (1− α)γ[t,k]

β
, 0 ≤ α < 1, β ≥ 1 (6.9)

ξ̂[t,k] = max
{

γ̄[t,k] − 1, 0
}

, (6.10)

in which β is a correction factor for γ[k], related to the spectral subtraction gain function [7].

The second technique is obtained via a more constructive methodology and is referred to as
the decision-directed estimation approach. It is directly based on the definition of the a priori
SNR (Equation (5.28)) and the relation of it to the a posteriori SNR (Equation (5.30)), i.e.,

ξ[t,k] = λ
[t,k]
x

λ
[t,k]
d

and (6.11)

ξ[t,k] = E
{

γ[t,k] − 1
}

. (6.12)

The fundamental idea is that we combine these equations, yielding

ξ[t,k] = E

{
1
2

λ
[t,k]
x

λ
[t,k]
d

+ 1
2

(
γ[t,k] − 1

)}
, (6.13)

which is expected to be more stable with regards to errors in the individual estimations.
Note that the second part resembles the maximum likelihood estimation of the a priori SNR.
Instead of trying to estimate the amplitude of the current frame, we use the estimate of the
previous frame as an approximation. Generalizing the previous equation with a mixing ratio
0 < α < 1 and dropping expectation operators results in

ξ̂[t,k] = α
λ̂

[t−1,k]
x

λ
[t−1,k]
d

+ (1− α) max
{

γ[t,k] − 1, 0
}

. (6.14)

We can now obtain the estimate λ̂
[t−1,k]
x from the gain function of the previous frame by use

of the identities λ
[t,k]
x = E{|X̂ [t,k]|2} and |X̂ [t,k]| = H(ξ̂[t,k], γ[t,k]) · |Y [t,k]|, yielding the final

update rule of the decision-directed estimation approach

ξ̂[t,k] = αH2
(

ξ̂[t−1,k], γ[t−1,k]
)

γ[t−1,k] + (1− α) max
{

γ[t,k] − 1, 0
}

. (6.15)

For initialization, Ephraim and Malah [7] propose

ξ̂[0,k] = α + (1− α) max
{

γ[0,k] − 1, 0
}

. (6.16)

With these estimation methods, we now have all requirements for a complete and modular
speech enhancement algorithm, an illustration of which is provided in Figure 8. Before a
final evaluation in Section 8, we will in the next subsections look at further improvements to
the gain function.

27

STFT

ISTFT ×

Y [k]
Noise Estimation

γ ξ Estimation

λ̂
[k]
d

H
H

[k]
MMSE

ξ̂[k]
γ[k]

Figure 8: Full speech enhancement algorithm using MMSE STSA estimation. A noise
estimate is updated for each spectral analysis frame, with which the a posteriori SNR is
computed. This is then used to estimate the a priori SNR, which may additionally use
the previous value of the gain function (in case of the decision-directed approach). The
gain function is computed from both SNRs and is finally multiplied to the complex spectral
components resulting in an estimate of the clean speech spectrum.

6.2 Estimating the Logarithmic Spectral Amplitude

In a later work, Ephraim and Malah [6] discuss an improvement to the previously presented
gain function HMMSE obtained via MMSE STSA estimation. Instead of estimating the
spectrum directly via a minimum squared error function, they propose to estimate the
logarithm of the spectrum. The rationale behind this is founded on reports, e.g., by Gray
et al. [9], showing that a distortion measure based on the log-spectrum is more suitable for
speech processing. This essentially only represents a change in the error measure, as we will
use the same Gaussian model below, which can be expressed as

e[k] = E
{(

log R[k]
x − log R̂[k]

x

)2
}

(6.17)

and is to be minimized. This directly leads to the estimation

R̂[k]
x = exp

(
E

{
ln R[k]

x | y(t), 0 ≤ t ≤ T
})

(6.18)

and following the same reasoning as in the MMSE STSA technique above to

R̂[k]
x = exp

(
E

{
ln R[k]

x | Yk

})
. (6.19)

Using the same Gaussian model as above then leads to the gain function

Hlog-MMSE

(
ξ[k], γ[k]

)
= ξ[k]

1 + ξ[k] exp
(

1
2

∫ ∞

ν[k]

e−t

t
dt

)
(6.20)

where ν[k] is defined in Equation (6.6) and the integral is known as the exponential integral.
Many scientific computation libraries, such as the GSL [8] provide methods for computing
said integral efficiently.

6.3 Incorporating Speech Signal Uncertainty

The idea of incorporating speech signal uncertainty was already proposed by Ephraim and
Malah in their original paper [7]. It is based on the fact that speech contains a significant

28

amount of pauses during which only the noise signal is present. The optimally-modified
log-spectral amplitude (OM-LSA) method we present here was formulated by Cohen and
Berdugo [4] and is founded on two hypotheses

H[t,k]
0 : Y [t,k] = D[t,k] and (6.21)

H[t,k]
1 : Y [t,k] = X [t,k] + D[t,k], (6.22)

assuming that speech is absent (H0) and speech is present (H1), respectively. Based on this,
we can define the conditional speech presence probability p via

p[t, k] := P
(
H[t,k]

1
∣∣ Y [t,k]). (6.23)

We further define the a priori probability for speech absence q as

q[t, k] := P
(
H[t,k]

0
)
. (6.24)

Via the same Gaussian model as used above in the derivation of the MMSE and log-MMSE
STSA methods, we can express the conditional speech presence probability p in dependence
on the speech absence probability q, resulting in

p[t, k] =
(

1 + q[t, k]
1− q[t, k] ·

(
1 + ξ[t,k]

)
· exp

(
−ν[t,k]

))−1
. (6.25)

Using this conditional speech presence probability, we can formulate the expected log-spectral
amplitude via

E
[

log R[t,k]
x

∣∣∣ Y [t,k]
]

= p[t, k] · E
[

log R[t,k]
x

∣∣∣ Y [t,k],H[t,k]
1

]
+ (1− p[t, k]) · E

[
log R[t,k]

x

∣∣∣ Y [t,k],H[t,k]
0

]
,

(6.26)

leading to our estimation approach

R̂[t,k]
x = exp

(
E

[
log R[t,k]

x

∣∣∣ Y [t,k],H[t,k]
1

])p[t,k]

· exp
(
E

[
log R[t,k]

x

∣∣∣ Y [t,k],H[t,k]
0

])1−p[t,k]
.

(6.27)

This formulation now suggests that we split this into two estimations and consider them
separately, leading to two separate gain functions, i.e.,

exp
(
E

[
log R[t,k]

x

∣∣∣ Y [t,k],H[t,k]
0

])
= Hmin ·

∣∣Y [t,k]∣∣ (6.28)

in case of speech absence and

exp
(
E

[
log R[t,k]

x

∣∣∣ Y [t,k],H[t,k]
1

])
= H

[t,k]
H1
·
∣∣Y [t,k]∣∣ (6.29)

in case of speech presence. We assume Hmin to be a constant, which is determined by a
subjective criteria for noise naturalness [4] and has a similar purpose as the spectral flooring
we previously discussed for spectral subtraction. As the fundamental assumptions of H1
and the log-MMSE method discussed above are equal, including that they both assume the
speech signal is present, this estimation yields HH1 = Hlog-MMSE. Using Equation (6.27)
and the previous observations, the combined gain function can now be expressed as

H
(
ξ[t,k], γ[t,k]) = H

p[t,k]
H1

(
ξ[t,k], γ[t,k]) ·H1−p[t,k]

min (6.30)

and by plugging in HH1

HOM-LSA
(
ξ[t,k], γ[t,k]) = H

p[t,k]
log-MMSE

(
ξ[t,k], γ[t,k]) ·H1−p[t,k]

min . (6.31)

29

6.3.1 Modified A Priori SNR Estimation

Due to the integration of speech presence uncertainty into the gain function H, Cohen and
Berdugo also propose a modification to the decision-directed estimation approach for the a
priori SNR as given in Equation (6.15). They propose to use

ξ̂[t,k] = αH2
H1

(
ξ̂[t−1,k], γ[t−1,k]

)
γ[t−1,k] + (1− α) max

{
γ[t,k] − 1, 0

}
, (6.32)

i.e., that instead of using the modified gain function, we should only use the gain function
HH1 for the case in which the speech is present. This should already make sense intuitively,
as the decision-directed approach depends on the gain function to compute a direct estimate
of the a priori SNR, and by adapting the gain function with a subjectively determined
constant, we actively influence this estimate. Mathematically, we can show this via the
gain-related part of the estimation, which we can expand using the idea behind it presented
in Section 6.1, i.e.,

ξ̂
[t,k]
gain = H2

(
ξ̂[t−1,k], γ[t−1,k]

)
γ[t−1,k]

= H2
(

ξ̂[t−1,k], γ[t−1,k]
)
· λ

[t−1,k]
y

λ
[t−1,k]
d

=
[

HH1

(
ξ[t,k], γ[t,k]) · λ

[t−1,k]
y

λ
[t−1,k]
d

]p[t,k]

·

[
Hmin ·

λ
[t−1,k]
y

λ
[t−1,k]
d

]1−p[t,k]

=
[

λ̂
[t−1,k]
x

λ
[t−1,k]
d

]p[t,k]

·

[
λxmin

λ
[t−1,k]
d

]1−p[t,k]

.

In case of speech absence, i.e., p[t, k] = 0, we now get a minimum a priori SNR implied by
the constant Hmin and thus also λxmin instead of the expected zero. Also remember that
we introduced Hmin to retain a natural noise floor and via this mask artifacts. As this is
purely intended for the subjective quality of the result, our a priori SNR estimate should
not contain such modifications. Further mathematical analysis is presented by Cohen and
Berdugo [4].

6.3.2 A Priori Speech Absence Probability Estimation

To compute the modified gain function, we rely on the conditional speech presence probability
p, which, in turn, depends on the a priori speech absence probability q. Thus, an estimator
thereof is required before we can implement this as an algorithm. For this, Cohen and
Berdugo [4] propose a multi-scale approach, based on a recursive average in time ξ̄ of the a
priori SNR ξ, i.e.,

ξ̄[t,k] = β ξ̄[t−1,k] + (1− β) ξ̂[t−1,k]. (6.33)

This is then averaged locally over frequencies using normalized window functions hλ of size
2wλ + 1 respectively via

ξ̄
[t,k]
λ =

wλ∑
i=−wλ

h
[i]
λ · ξ̄

[t,k−i] (6.34)

where λ denotes the scale of the window function. Specifically, two scales are used: a larger
so-called global one and a smaller so-called local one, thus λ ∈ {local, global} and, without
loss of generality, wglobal > wlocal. Further, a third scale is used to incorporate the complete
analysis frame via

ξ̄
[t]
frame = mean

k

{
ξ̄[t,k]

}
. (6.35)

Combined, this forms the basis of a robust multi-scale estimation method, which should be
capable of handling errors and outliers in the a priori SNR estimate. These three estimates

30

are then used to compute three respective likelihoods for speech presence, which will then be
used to obtain the final speech absence probability estimation. Local and global likelihoods
Plocal and Pglobal are computed on a logarithmic scale, confined to a range between zero and
one, as

P
[t,k]
λ =


0 if ξ̄

[t,k]
λ ≤ ξ̄min,

1 if ξ̄
[t,k]
λ ≥ ξ̄max,

log
(

ξ̄
[t,k]
λ

)
−log

(
ξ̄min

)
log

(
ξ̄max

)
−log

(
ξ̄min

) otherwise.

(6.36)

The empirically chosen constants ξ̄min and ξ̄max characterize this mapping and are selected to
attenuate noise while retaining weak speech components [4]. The speech-presence likelihood
of the full frame, Pframe, is designed specifically towards this objective via

P
[t]
frame =


0 if ξ̄

[t]
frame ≤ ξ̄min,

1 if ξ̄
[t]
frame > ξ̄min and ξ̄

[t]
frame > ξ̄

[t−1]
frame,

µ[t] otherwise.

(6.37)

Again, a priori SNR values below a threshold are interpreted as zero likelihood for speech
presence, however, we additionally set the likelihood to one as soon as we detect a rising
SNR, to avoid clipping of speech startings or weak components [4]. The term µ, defined as

µ[t] :=


0 if ξ̄

[t]
frame ≤ ξ̄

[t]
peak · ξ̄min,

1 if ξ̄
[t]
frame ≥ ξ̄

[t]
peak · ξ̄max,

log
(

ξ̄
[t]
frame/ξ̄

[t]
peak

)
−log

(
ξ̄min

)
log

(
ξ̄max

)
−log

(
ξ̄min

) otherwise,

(6.38)

essentially delays the transition from H1, i.e., the speech presence hypothesis, to H0, i.e.,
the speech absence hypothesis, by relying on the most recent maxima ξ̄peak. This peak value
is updated via

ξ̄
[t]
peak =


min

{
max

{
ξ̄

[t]
frame, ξ̄pmin

}
, ξ̄pmax

}
if ξ̄

[t]
frame > ξ̄min and ξ̄

[t]
frame > ξ̄

[t−1]
frame

ξ̄
[t−1]
peak otherwise,

(6.39)
i.e., each time the SNR rises, and is confined by ξ̄pmin and ξ̄pmax, which are again empirical
constants. The transition itself is again on a logarithmic scale, and the constants define
the delay with which it will fade out towards H0. This delay is intended to reduce the
misdetection of weak speech tails [4]. Finally, we can combine the three likelihoods for speech
presence Plocal, Pglobal, and Pframe into the a priori speech absence probability q by

q̂[t,k] = 1− P
[t,k]
local · P

[t,k]
global · P

[t]
frame. (6.40)

To further reduce the possibility of speech distortion, q̂ is restricted to be smaller than a
threshold qmax, cf., Equation (6.25), resulting in

q̂[t,k] = min
{

1− P
[t,k]
local · P

[t,k]
global · P

[t]
frame , qmax

}
. (6.41)

The parameter qmax can thus be seen as an uncertainty parameter for erring on the safe side,
i.e., not attenuating (weak) speech components. Further note that, because this estimate only
depends on the a priori SNR ξ, using it for the modified gain function, i.e., Equations (6.30)
and (6.31), provides a drop-in replacement for any standard gain function depending only
on the a priori and a posteriori SNRs.

31

7 Noise Estimation via Minima-Controlled Recursive Averaging

The last part for a fully robust and adaptive speech enhancement method is an estimator λ̂d

for the time-varying noise spectrum, incorporating these properties. To this end, we will
improve upon the basic ideas presented in Section 5.2.1 via the minima-controlled recursive
averaging (MCRA) method proposed by Cohen and Berdugo [4]. Similar to previously
presented techniques, its fundament is a recursive average to capture the (assumed to be)
slowly varying changes in the noise power spectrum. In this instance, however, we again
introduce a (modified) speech presence probability pd, determining when and by how much
the average is updated, leading to the update-rule

λ̂
[t+1,k]
d = p

[t,k]
d λ̂

[t,k]
d +

(
1− p

[t,k]
d

) [
αdλ̂

[t,k]
d + (1− αd)

∣∣∣Y [t,k]
∣∣∣2

]
, (7.1)

= α̃
[t,k]
d λ̂

[t,k]
d +

(
1− α

[t,k]
d

) ∣∣∣Y [t,k]
d

∣∣∣2
, (7.2)

with time-varying smoothing parameter α̃d defined as

α̃
[t,k]
d := αd + (1− αd) p

[t,k]
d , (7.3)

where 0 < αd < 1 is the weighting parameter for the average. In contrast to the previously
discussed methods, this new technique updates the estimate by weighting the newly added
power spectrum instead of only making a binary decision, allowing for incorporation of
uncertainty.

As hinted on by notation, there is a significant difference between the conditional speech
presence probability p discussed in Section 6.3 and the adapted conditional speech presence
probability pd used here. This difference stems from the different cost of errors in making
decisions between the hypotheses H1 (speech present), and H0 (speech absent). In Section 6.3
we rather want to err on the side of speech presence, meaning that we rather choose H1
mistakenly, than choosing H0 mistakenly, as this results in less distortion of speech. The
objective of minimizing speech degradation stays the same here, however, the way to achieve,
or rather protect, it has changed: Let us assume we would erroneously classify speech as
noise, i.e., wrongly choose H1, then our noise estimate gets updated with a power-spectrum
containing speech, and thus, subsequently, a priori and a posteriori SNRs get compromised.
In the worst-case scenario, this will lead to wrong decisions in the probability estimation of
the modified gain function (Section 6.3) and impact the gain function itself, causing speech
to be identified as noise and thus removed, potentially causing a sort of chain-reaction. It is
thus, for noise estimation, much more preferable to mistakenly classify speech as noise and
not update the noise estimate at all, especially since we assume that the noise is only varying
slowly over time. Note that the possibility of such a runaway process, slowly classifying
more and more speech as noise, is also a strong reason why we do not want to base the
estimate for pd onto a measure such as the a priori SNR, which itself is estimated based on
the noise estimate. Due to this, we introduce the adapted hypotheses H′

0 and H′
1, as well as

an estimation approach suited for this task, originally proposed by Cohen and Berdugo [4].

This estimation approach, illustrated in Figure 9, is based on the spectral power of the signal
and robustified against outliers by first averaging in the frequency domain using a window
function h of size 2w + 1 via

S
[t,k]
f =

w∑
i=−w

h[i] ·
∣∣∣Y [t,k−i]

∣∣∣2
(7.4)

and then averaging in time via the recursive average

S[t,k] = αsS[t−1,k] + (1− αs) S
[t,k]
f (7.5)

32

L
min

Sf

S

|Y |2

Smin Sr

I pd

S/Smin > δ ⇒ 1

≤ δ ⇒ 0

avg. over freq. exp. avg. over time

localized minimum

decision ratio

speech indicator

exp. avg. over time

Figure 9: Minima-controlled conditional speech presence estimation approach for noise
estimation. First, the power spectrum |Y |2 is averaged over frequencies (Sf) using a window
function and then over time (S) via a recursive average. By tracking the minima constrained
to the latest L frames, a decision ratio Sr is computed, which when compared to the
decision parameter δ provides a binary indicator function I for conditional speech presence.
Recursively averaging this indicator function over time yields the final estimator.

with 0 < αs < 1 as the usual control parameter. Based on this, we compute Smin as a
windowed minimum over the last L to 2L frames using Algorithm 1, described in Section 4.4.
From this, we can compute the ratio Sr defined as

S[t,k]
r := S[t,k]

S
[t,k]
min

. (7.6)

This ratio between local energy and time-constrained minimum of the noise signal forms the
fundament of the remaining estimation process. Using the a priori probabilities for speech
absence and speech presence, P (H0) and P (H1), respectively, we can formulate the Bayes
minimum-risk decision rule

p (Sr | H1)
p (Sr | H0)

H′
0

≷
H′

1

c1,0 · P (H0)
c0,1 · P (H1) (7.7)

where ci,j is the cost, i.e., risk, for mistakenly deciding H′
i when actually H′

j holds true. As
the likelihood ratio of the conditional probabilities for the ratio Sr is a monotonic function
[4], we can express the decision rule as

S[t,k]
r

H′
1

≷
H′

0

δ, (7.8)

using a fixed decision parameter δ > 1. With this, we can then create an indicator function
for the modified speech presence hypothesis H1 as

I [t,k] :=
{

1 if S
[t,k]
r > δ

0 otherwise.
(7.9)

This, again, gives us a binary decision. However, as this decision is based on the ratio
between current local energy and the recent minimum, it is adaptive to changes in intensity
and type of noise. Further, the probability of |Y |2 � λd is very small when Sr < δ, and
thus a false decision on speech absence, i.e., H′

0, when speech is actually present, i.e., H1 is
fulfilled, only leads to an insignificant increase in the estimated noise [4]. Incorporating the
strong correlation of speech presence in subsequent frames using a recursive average leads to
the final, non-binary, estimation p̂d of the conditional speech presence probability, given as

p̂
[t,k]
d = αpp̂

[t−1,k]
d + (1− αp) I [t,k]. (7.10)

33

8 Evaluation

In this section, we will evaluate the performance of the short-time spectral amplitude
estimation based methods discussed in Section 6, as well as the improved noise estimation
approach provided in Section 7, and compare them to the spectral subtraction approach of
Section 5.2. As both, estimation and spectral subtraction methods, are highly modular in
terms of noise estimation, gain function or modifications to it, and choice of parameters, only
selected combinations of what we found to perform best will be discussed. Furthermore, we
will not discuss performance in terms of computational throughput, as none of the algorithms
presented here poses a challenge to contemporary computing hardware, and, rather, solely
focus on their auditory properties. We will first compare the maximum likelihood and
decision-directed a priori SNR estimators, followed by MMSE, log-MMSE, and OM-LSA
gain functions. Thereafter, we will look at the MCRA noise estimator, and finally compare
the OM-LSA method using MCRA noise estimation with the spectral subtraction method
using over-subtraction and spectral flooring.

Unless stated otherwise, we will again use the same parameters as in Section 5.2.2 for
the STFT, i.e., a segment length of 20 ms, an overlap of half the segment length, and a
square-root periodic Hann window, which will also be used for synthesis during the WOLA
method. Again, all initial noise estimates are constructed by averaging the first nine spectral
frames of the signal. Further parameters will be discussed within the individual evaluations.

We first compare the maximum likelihood and decision-directed a priori SNR estimators
via both MMSE and log-MMSE gain functions. For the maximum likelihood approach, we
chose α = 0.725 and β = 1.5, for the decision-directed approach, we chose α = 0.98, both
similar to the suggestion by Ephraim and Malah [7]. In all cases, we use power-threshold
noise estimation with a recursive average using α = 0.8 and decision ratio δ = 0.8. As we
can see in Figure 10, the maximum likelihood estimator achieves significantly better noise
reduction compared to the decision-directed estimator in combination with both, MMSE
and log-MMSE gain functions, however, it also introduces strong musical noise. In some
instances, this type of noise can even be more detrimental to the quality of the speech signal
as perceived by humans than the original noise. The difficulty in removing musical noise,
without introducing additional white-ish noise to mask it as done in spectral flooring, makes
the decision-directed method preferable. To understand this difference, we need to look at
the estimators as given in Equations (6.10) and (6.15). The maximum likelihood approach
solely depends on the a posteriori SNR, whereas the decision-directed approach also depends
on the value of the gain function for the previous frame, and can be seen as combining two
separate estimators. This makes the decision-directed estimator arguably less susceptible to
outliers in noise estimation. Together with the dependency on the gain function itself, which
in turn incorporates the previous a priori SNR estimation and our best guess at the real
clean signal magnitude, this improved robustness likely results in less musical noise, as it
combats the typical per-analysis-frame peaks of spectral subtraction.

Next, we will look at the MMSE, log-MMSE, and OM-LSA gain functions themselves. For
this, we will use both, power-threshold based noise estimation (Figure 11) and the MCRA
noise estimator (Figure 12). While, for now, we focus only on the gain functions, the different
noise estimation methods will be compared separately later. For power-threshold based noise
estimation, we use the same parameters as above, i.e., α = 0.8 and δ = 0.8, to estimate
the SNR, we use the decision-directed approach, again with α = 0.98. To estimate the
conditional speech presence probability for the OM-LSA gain, we use β = 0.8 for the recursive
average, as well as two Hamming windows of size wlocal = 1 and wglobal = 5 for averaging
over frequencies. Additionally, we use ξ̄min = 1× 10−3 and ξ̄max = 1× 103 for the likelihood
mapping, ξ̄pmin = 1 and ξ̄pmax = 1× 105 for the confined peak, as well as qmax = 0.95 to
combat speech distortion. The minimal gain is chosen as Hmin = 0.05. For MCRA noise
estimation, we chose αd = 0.95 for the recursive average of the spectra. To estimate the
conditional speech presence probability for MCRA, we chose αs = 0.8 for the recursive

34

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

MMSE Estimation with Maximum Likelihood SNR Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

MMSE Estimation with Decision-Directed SNR Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Log-MMSE Estimation with Maximum Likelihood SNR Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Log-MMSE Estimation with Decision-Directed SNR Estimator

Figure 10: Maximum likelihood and decision-directed a priori SNR estimators in comparison.
The decision-directed estimation approach shows improved robustness towards musical noise
in combination with both MMSE and log-MMSE gain functions, however, has higher overall
residual noise.

35

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

MMSE Estimation with Power-Threshold Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Log-MMSE Estimation with Power-Threshold Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

OM-LSA Estimation with Power-Threshold Noise Estimator

Figure 11: MMSE, log-MMSE, and OM-LSA gain functions with power-threshold based
noise-estimation. The OM-LSA method shows superiority in performance and quality of the
residual noise, although at the cost of some low-energy speech components removed.

36

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

MMSE Estimation with MCRA Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Log-MMSE Estimation with MCRA Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

OM-LSA Estimation with MCRA Noise Estimator

Figure 12: MMSE, log-MMSE, and OM-LSA gain functions with MCRA noise-estimation.
The OM-LSA method shows superiority in performance and quality of the residual noise.
In combination with MCRA noise estimation, even low-energy speech components remain
intact.

37

average of the spectrum together with a Hamming window of size w = 1 for averaging
over frequencies, a window length for minimum computation of L = 45, a decision ratio of
δ = 5 and αp = 0.2 for the recursive average to generate the probability estimate itself. In
Figures 11 and 12, we can see that all methods achieve a significant reduction in noise, yet
differ in characteristics of their residual noise. MMSE estimation achieves good results for
mid and high frequencies, however, fails to remove noise below 2 kHz. Both, log-MMSE and
OM-LSA methods improve upon this, due to their logarithmic error measure, and also provide
good results for lower frequencies. Further, MMSE estimation results in a more speckled
noise, reminding of musical noise with very low intensity. This is improved in log-MMSE
estimation, where the noise assumes a more white-ish character, and even further in the
OM-LSA method, where the remaining noise seems to be truly white. An interesting thing
to note in Figure 11 is that the shadows trailing behind weaker speech segments, stemming
from from noise estimation as previously noted in the evaluation of spectral subtraction
methods in Section 5.2.2, are less present in the log-MMSE method and virtually invisible
in the OM-LSA method. In terms of speech degradation, the MMSE algorithm influences
speech the least, however, it also seems to keep parts that may not belong to the original
speech signal, resulting in a somewhat blurry visual representation of speech components in
the spectrogram. The log-MMSE method seems to achieve a better cut-off, with OM-LSA
yielding the best result in this regard, however, both, anti-proportionally to this, also remove
more speech components in higher frequencies. This is also audible when comparing audio
outputs, however, other than voices sounding slightly more tinny, this does not affect the
speech and its perceived quality.

Comparing Figure 11 with Figure 12 allows us to evaluate the performance of the MCRA
noise estimator in relation to the power-threshold based one. When looking at the MMSE
and log-MMSE gain functions, we can see that the MCRA noise estimate is more accurate as
it does not cause shadows behind speech components, meaning that the noise estimate does
not include (as much) parts of the speech, thus fulfilling one of its design goals. Further,
MCRA seems slightly better at adapting to the rising noise intensity at the end of the audio
clip being analyzed, which can be confirmed via auditory comparison. In combination with
the OM-LSA gain function, it is capable of achieving a superior performance compared to
other noise estimation methods, while at the same time also retaining more weak speech
components and thus causing less degradation of the speech.

Finally, we can compare the results of spectral subtraction, already evaluated in Section 5.2.2,
with the OM-LSA method. For this, we use spectral subtraction using over-subtraction and
spectral flooring, combined with power-threshold based noise estimation as previously seen
in Section 5.2.2, keeping the same choice of parameters, i.e., over-subtraction with α = 1.5
and spectral flooring with β = 0.066. For power-threshold based noise-estimation, we again
use α = 0.8 and δ = 0.8. With regards to the OM-LSA and MCRA methods, we also use
the same parameters from previous evaluations, with decision-directed a priori SNR and
conditional speech presence estimation as described above. Additionally, we combine spectral
subtraction with the MCRA noise estimator for a thorough comparison. Figure 13 shows,
that spectral subtraction and OM-LSA based speech enhancement methods can achieve
similar reduction in noise. The major difference between the methods is the amount of speech
distortion. When combining spectral subtraction with the MCRA noise estimator, distortion
in speech is significantly reduced, however, very light musical noise is introduced. The
OM-LSA method with MCRA noise estimator does not suffer the problem of musical noise
and instead features the residual noise spectrum closest to pure white noise. Additionally,
it further reduces speech distortion compared to spectral subtraction with MCRA noise
estimation.

Neither of the methods and combinations is capable of removing the high pitched disturbances
at start and end of the audio clip analyzed, as they are too atypical for noise with the high
spectral power in comparison to previous frames and frequency bands, and thus recognized

38

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Original

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Spectral Subtraction with Power-Threshold Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

Spectral Subtraction with MCRA Noise Estimator

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time [s]

Fr
eq

ue
nc

y
[k

H
z]

OM-LSA Estimation with MCRA Noise Estimator

Figure 13: Comparison of spectral subtraction with OM-LSA using MCRA. The OM-LSA
method is capable of achieving similar reductions in noise as spectral subtraction when
combined with the MCRA noise estimator, however, shows superiority in terms of speech
degradation and residual noise.

39

as voice in both, noise estimation and speech probability estimation processes. The best
chance of removing these components in a single-microphone setting would be an MCRA
approach with smaller window size for minima computation, which, however, will keep at
least the beginnings of the disturbances and can introduce additional distortion of longer
speech components. We found that, overall, the OM-LSA gain function in combination with
the MCRA noise estimator and the parameters selected here provide the best results in terms
of subjective quality of the resulting signal, auditory and according to the spectrogram, in
comparison with the other methods presented here.

9 Conclusion

In this paper, we have looked at multiple methods for single-microphone, real-time capable
speech enhancement, with the goal to find a method that is both adaptive to changes
in noise, so that it can be used in environments with non-stationary disturbances, and
performs well in terms of amounts of noise removed and speech degradation introduced. To
this end, we have discussed the noise reduction problem in general (Section 2), together
with different characteristics of noise, after which we presented an overview of speech
enhancement techniques (Section 3). Thereafter, we looked at common methods used in real-
time signal processing and speech enhancement (Section 4), including STFT, WOLA method,
exponentially weighted (recursive) average, windowed extrema computation, and general
technical considerations for this setting. While looking closer into noise reduction via the
short-time spectral amplitude after this (Section 5), we discussed some general assumptions,
basic noise estimation methods, and spectral subtraction as a simple yet effective algorithm.
In this section, we also discussed the foundations of statistical estimation techniques, which
we expanded on thereafter via MMSE based spectral amplitude estimation (Section 6), where
we discussed various improvements to this method, specifically log-MMSE and OM-LSA, and
estimation of the a priori SNR. Finally, we discussed MCRA as an improved noise estimation
technique (Section 7) and performed an evaluation of the discussed methods (Section 8).

We found that both, spectral subtraction with over-subtraction and spectral flooring, as well
as OM-LSA with MCRA noise estimator and decision-directed SNR estimator, provide good
results in terms of noise reduced, whereas the OM-LSA method leads significantly in terms
of retaining weaker speech components. Both methods achieve mostly colorless residual
noise, leading to a subjectively good quality of the resulting signal, with no musical noise.
Most major drawbacks of these methods, such as misclassifying anomalistic disturbances as
speech instead of noise, can be related to the single-microphone approach, which requires
statistically independent speech and noise signals. This limitation also leads to a generally
bad performance on babble noise, which although not shown in the evaluation section, is,
using OM-LSA gain with MCRA noise estimator and depending on the parameters, either
largely preserved, or removed together with major parts of the original speech, due to the
likeness of noise and clean speech signals. For many other, more regular yet potentially
non-stationary, noise types, such as caused by cars, trains, machinery, wind, or waters, OM-
LSA with MCRA shows reasonably good performance in low and medium SNR situations,
however, some parameter adaptions may be needed.

Log-MMSE and OM-LSA methods, as well as MCRA noise estimation, form the basis of
many modern speech enhancement techniques, and as such there are many improvements to
them. For noise estimation, Cohen [3] proposed an improved MCRA (IMCRA) algorithm,
which is based on two iterations of smoothing and minimum tracking. A similar strategy
for noise estimation has been proposed by Rangachari and Loizou [20]. As improvement to
the noise reduction part, Yuan and Xia [27] discussed improving OM-LSA by choosing a
pre-defined parameter set based on the type of noise, determined via a classification algorithm.
Jia et al. [13] on the other hand looked at using phase reconstruction in combination with a
modified MMSE LSA estimation, based on the same binary hypothesis model as OM-LSA.

40

References
[1] M. Berouti, R. Schwartz, and J. Makhoul. “Enhancement of Speech Corrupted by

Acoustic Noise.” In: IEEE International Conference on Acoustics, Speech, and Signal
Processing. IEEE, 1979 (cit. on p. 15).

[2] J. Chen et al. “New Insights Into the Noise Reduction Wiener Filter.” In: IEEE
Transactions on Audio, Speech and Language Processing 14.4 (July 2006), pp. 1218–
1234 (cit. on pp. 1, 5, 6).

[3] I. Cohen. “Noise Spectrum Estimation in Adverse Environments: Improved Minima
Controlled Recursive Averaging.” In: IEEE Transactions on Speech and Audio Processing
11.5 (Sept. 2003), pp. 466–475 (cit. on p. 40).

[4] I. Cohen and B. Berdugo. “Speech Enhancement for Non-Stationary Noise Environ-
ments.” In: Signal Processing 81.11 (Nov. 2001), pp. 2403–2418 (cit. on pp. 2, 25,
29–33).

[5] S. Egger, R. Schatz, and S. Scherer. “It Takes Two to Tango - Assessing the Impact of
Delay on Conversational Interactivity on Perceived Speech Quality.” In: Proceedings of
the 11th Annual Conference of the International Speech Communication Association.
Jan. 2010, pp. 1321–1324 (cit. on p. 2).

[6] Y. Ephraim and D. Malah. “Speech Enhancement using a Minimum Mean-Square
Error Log-Spectral Amplitude Estimator.” In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 33.2 (Apr. 1985), pp. 443–445 (cit. on pp. 2, 6, 25, 28).

[7] Y. Ephraim and D. Malah. “Speech Enhancement using a Minimum-Mean Square
Error Short-Time Spectral Amplitude Estimator.” In: IEEE Transactions on Acoustics,
Speech, and Signal Processing 32.6 (Dec. 1984), pp. 1109–1121 (cit. on pp. 2, 5, 6,
25–28, 34).

[8] M. Galassi et al. GNU Scientific Library Reference Manual. 2018. url: https://www.
gnu.org/software/gsl/ (cit. on pp. 3, 28).

[9] R. Gray et al. “Distortion Measures for Speech Processing.” In: IEEE Transactions on
Acoustics, Speech, and Signal Processing 28.4 (Aug. 1980), pp. 367–376 (cit. on p. 28).

[10] E. A. P. Habets and J. Benesty. “A Two-Stage Beamforming Approach for Noise Re-
duction and Dereverberation.” In: IEEE Transactions on Audio, Speech, and Language
Processing 21.5 (May 2013), pp. 945–958 (cit. on pp. 1, 5).

[11] International Telecommunication Union. One-Way Transmission Time. Series G: Trans-
mission Systems and Media, Digital Systems and Networks. Tech. rep. International
Telecommunication Union, 2003 (cit. on p. 2).

[12] M. Jeub et al. “Noise Reduction for Dual-Microphone Mobile Phones Exploiting Power
Level Differences.” In: IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, Mar. 2012 (cit. on p. 1).

[13] H. Jia et al. “Speech Enhancement Using Modified MMSE-LSA and Phase Reconstruc-
tion in Voiced and Unvoiced Speech.” In: International Journal of Pattern Recognition
and Artificial Intelligence 33.02 (Oct. 2018), p. 1958002 (cit. on p. 40).

[14] N. Krishnamurthy and J.H.L. Hansen. “Babble Noise: Modeling, Analysis, and Ap-
plications.” In: IEEE Transactions on Audio, Speech, and Language Processing 17.7
(Sept. 2009), pp. 1394–1407 (cit. on p. 5).

[15] X. Li, S. Gannot, and R. Horaud. “Blind MultiChannel Identification and Equalization
for Dereverberation and Noise Reduction based on Convolutive Transfer Function.”
Nov. 2017. url: https://hal.inria.fr/hal-01568835 (cit. on pp. 3, 5).

[16] P. C. Loizou. Speech Enhancement. CRC Press, Feb. 2013 (cit. on pp. 1, 5–7, 14, 15,
18, 22, 23).

[17] N. D. Matsakis and Felix S. Klock I. “The Rust Language.” In: Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology. HILT ’14.
ACM, 2014, pp. 103–104 (cit. on p. 3).

41

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://hal.inria.fr/hal-01568835

[18] R. McAulay and M. Malpass. “Speech Enhancement Using a Soft-Decision Noise
Suppression Filter.” In: IEEE Transactions on Acoustics, Speech, and Signal Processing
28.2 (Apr. 1980), pp. 137–145 (cit. on pp. 2, 6, 24).

[19] K. K. Paliwal and L. D. Alsteris. “On the Usefulness of STFT Phase Spectrum in
Human Listening Tests.” In: Speech Communication 45.2 (Feb. 2005), pp. 153–170
(cit. on p. 14).

[20] S. Rangachari and P. C. Loizou. “A Noise-Estimation Algorithm for Highly Non-
Stationary Environments.” In: Speech Communication 48.2 (Feb. 2006), pp. 220–231
(cit. on p. 40).

[21] J. O. Smith III. Spectral Audio Signal Processing. W3K Publishing, 2011 (cit. on pp. 8,
9).

[22] R. Talmon, I. Cohen, and S. Gannot. “Multichannel Speech Enhancement using
Convolutive Transfer Function Approximation in Reverberant Environments.” In:
IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, Apr.
2009 (cit. on p. 3).

[23] The Rust Project Developers. The Rust Programming Language. https://www.rust-
lang.org/. Online; Accessed 01-August-2019. 2019 (cit. on p. 2).

[24] C. Valentini-Botinhao. Noisy Speech Database for Training Speech Enhancement Algo-
rithms and TTS Models. https://datashare.is.ed.ac.uk/handle/10283/2791. University
of Edinburgh. School of Informatics. Centre for Speech Technology Research (CSTR),
2016 (cit. on p. 17).

[25] X. Xiao and R. M. Nickel. “Speech Enhancement With Inventory Style Speech Resyn-
thesis.” In: IEEE Transactions on Audio, Speech, and Language Processing 18.6 (Aug.
2010), pp. 1243–1257 (cit. on p. 6).

[26] N. Yousefian and P. Loizou. “A Dual-Microphone Speech Enhancement Algorithm
Based on the Coherence Function.” In: IEEE Transactions on Audio, Speech, and
Language Processing (2011) (cit. on p. 1).

[27] W. Yuan and B. Xia. “A speech enhancement approach based on noise classification.”
In: Applied Acoustics 96 (Sept. 2015), pp. 11–19 (cit. on p. 40).

[28] E. Zwicker. “Subdivision of the Audible Frequency Range into Critical Bands (Fre-
quenzgruppen).” In: The Journal of the Acoustical Society of America 33.2 (Feb. 1961),
pp. 248–248 (cit. on p. 5).

42

	Introduction
	Goals and Implementation

	The Noise-Reduction Problem
	An Overview of Speech Enhancement Algorithms
	Common Processing Methods for Real-Time Noise Reduction
	Short-Time Fourier Transform
	Weighted Overlap-Add Method
	Exponentially Weighted Moving Average
	Windowed Extrema Computation
	General Technical Considerations

	Noise Reduction based on the Short-Time Spectral Amplitude
	Assumptions on the Signal
	Spectral Subtraction
	Basic Noise Estimation
	Evaluation

	Statistical Estimation of Clean Speech Spectral Components
	Wiener Filter in Frequency Domain
	Signal-to-Noise Ratios and General Algorithm Formulation

	Minimum Mean-Square Error Spectral Amplitude Estimation
	Estimating the A Priori Signal-to-Noise Ratio
	Estimating the Logarithmic Spectral Amplitude
	Incorporating Speech Signal Uncertainty
	Modified A Priori SNR Estimation
	A Priori Speech Absence Probability Estimation

	Noise Estimation via Minima-Controlled Recursive Averaging
	Evaluation
	Conclusion

