Optimization of a State-to-State Transfer in a Two-Level-System

In [1]:
%load_ext watermark
import qutip
import numpy as np
import scipy
import matplotlib
import matplotlib.pylab as plt
import krotov
%watermark -v --iversions
scipy            1.3.1
krotov           1.2.0
numpy            1.17.2
qutip            4.5.0
matplotlib       3.3.1
matplotlib.pylab 1.17.2
CPython 3.7.6
IPython 7.17.0

$\newcommand{tr}[0]{\operatorname{tr}} \newcommand{diag}[0]{\operatorname{diag}} \newcommand{abs}[0]{\operatorname{abs}} \newcommand{pop}[0]{\operatorname{pop}} \newcommand{aux}[0]{\text{aux}} \newcommand{opt}[0]{\text{opt}} \newcommand{tgt}[0]{\text{tgt}} \newcommand{init}[0]{\text{init}} \newcommand{lab}[0]{\text{lab}} \newcommand{rwa}[0]{\text{rwa}} \newcommand{bra}[1]{\langle#1\vert} \newcommand{ket}[1]{\vert#1\rangle} \newcommand{Bra}[1]{\left\langle#1\right\vert} \newcommand{Ket}[1]{\left\vert#1\right\rangle} \newcommand{Braket}[2]{\left\langle #1\vphantom{#2}\mid{#2}\vphantom{#1}\right\rangle} \newcommand{op}[1]{\hat{#1}} \newcommand{Op}[1]{\hat{#1}} \newcommand{dd}[0]{\,\text{d}} \newcommand{Liouville}[0]{\mathcal{L}} \newcommand{DynMap}[0]{\mathcal{E}} \newcommand{identity}[0]{\mathbf{1}} \newcommand{Norm}[1]{\lVert#1\rVert} \newcommand{Abs}[1]{\left\vert#1\right\vert} \newcommand{avg}[1]{\langle#1\rangle} \newcommand{Avg}[1]{\left\langle#1\right\rangle} \newcommand{AbsSq}[1]{\left\vert#1\right\vert^2} \newcommand{Re}[0]{\operatorname{Re}} \newcommand{Im}[0]{\operatorname{Im}}$

This first example illustrates the basic use of the krotov package by solving a simple canonical optimization problem: the transfer of population in a two level system.


We consider the Hamiltonian $\op{H}_{0} = - \frac{\omega}{2} \op{\sigma}_{z}$, representing a simple qubit with energy level splitting $\omega$ in the basis $\{\ket{0},\ket{1}\}$. The control field $\epsilon(t)$ is assumed to couple via the Hamiltonian $\op{H}_{1}(t) = \epsilon(t) \op{\sigma}_{x}$ to the qubit, i.e., the control field effectively drives transitions between both qubit states.

In [2]:
def hamiltonian(omega=1.0, ampl0=0.2):
    """Two-level-system Hamiltonian

        omega (float): energy separation of the qubit levels
        ampl0 (float): constant amplitude of the driving field
    H0 = -0.5 * omega * qutip.operators.sigmaz()
    H1 = qutip.operators.sigmax()

    def guess_control(t, args):
        return ampl0 * krotov.shapes.flattop(
            t, t_start=0, t_stop=5, t_rise=0.3, func="blackman"

    return [H0, [H1, guess_control]]
In [3]:
H = hamiltonian()

The control field here switches on from zero at $t=0$ to it's maximum amplitude 0.2 within the time period 0.3 (the switch-on shape is half a Blackman pulse). It switches off again in the time period 0.3 before the final time $T=5$). We use a time grid with 500 time steps between 0 and $T$:

In [4]:
tlist = np.linspace(0, 5, 500)
In [5]:
def plot_pulse(pulse, tlist):
    fig, ax = plt.subplots()
    if callable(pulse):
        pulse = np.array([pulse(t, args=None) for t in tlist])
    ax.plot(tlist, pulse)
    ax.set_ylabel('pulse amplitude')
In [6]:
plot_pulse(H[1][1], tlist)

Optimization target

The krotov package requires the goal of the optimization to be described by a list of Objective instances. In this example, there is only a single objective: the state-to-state transfer from initial state $\ket{\Psi_{\init}} = \ket{0}$ to the target state $\ket{\Psi_{\tgt}} = \ket{1}$, under the dynamics of the Hamiltonian $\op{H}(t)$:

In [7]:
objectives = [
        initial_state=qutip.ket("0"), target=qutip.ket("1"), H=H

[Objective[|Ψ₀(2)⟩ to |Ψ₁(2)⟩ via [H₀[2,2], [H₁[2,2], u₁(t)]]]]

In addition, we would like to maintain the property of the control field to be zero at $t=0$ and $t=T$, with a smooth switch-on and switch-off. We can define an "update shape" $S(t) \in [0, 1]$ for this purpose: Krotov's method will update the field at each point in time proportionally to $S(t)$; wherever $S(t)$ is zero, the optimization will not change the value of the control from the original guess.

In [8]:
def S(t):
    """Shape function for the field update"""
    return krotov.shapes.flattop(
        t, t_start=0, t_stop=5, t_rise=0.3, t_fall=0.3, func='blackman'

Beyond the shape, Krotov's method uses a parameter $\lambda_a$ for each control field that determines the overall magnitude of the respective field in each iteration (the smaller $\lambda_a$, the larger the update; specifically, the update is proportional to $\frac{S(t)}{\lambda_a}$). Both the update-shape $S(t)$ and the $\lambda_a$ parameter must be passed to the optimization routine as "pulse options":

In [9]:
pulse_options = {
    H[1][1]: dict(lambda_a=5, update_shape=S)

Simulate dynamics under the guess field

Before running the optimization procedure, we first simulate the dynamics under the guess field $\epsilon_{0}(t)$. The following solves equation of motion for the defined objective, which contains the initial state $\ket{\Psi_{\init}}$ and the Hamiltonian $\op{H}(t)$ defining its evolution. This delegates to QuTiP's usual mesolve function.

We use the projectors $\op{P}_0 = \ket{0}\bra{0}$ and $\op{P}_1 = \ket{1}\bra{1}$ for calculating the population:

In [10]:
proj0 = qutip.ket2dm(qutip.ket("0"))
proj1 = qutip.ket2dm(qutip.ket("1"))
In [11]:
guess_dynamics = objectives[0].mesolve(tlist, e_ops=[proj0, proj1])

The plot of the population dynamics shows that the guess field does not transfer the initial state $\ket{\Psi_{\init}} = \ket{0}$ to the desired target state $\ket{\Psi_{\tgt}} = \ket{1}$ (so the optimization will have something to do).

In [12]:
def plot_population(result):
    fig, ax = plt.subplots()
    ax.plot(result.times, result.expect[0], label='0')
    ax.plot(result.times, result.expect[1], label='1')
In [13]:


In the following we optimize the guess field $\epsilon_{0}(t)$ such that the intended state-to-state transfer $\ket{\Psi_{\init}} \rightarrow \ket{\Psi_{\tgt}}$ is solved, via the krotov package's central optimize_pulses routine. It requires, besides the previously defined objectives, information about the optimization functional $J_T$ (implicitly, via chi_constructor, which calculates the states $\ket{\chi} = \frac{J_T}{\bra{\Psi}}$).

Here, we choose $J_T = J_{T,\text{ss}} = 1 - F_{\text{ss}}$ with $F_{\text{ss}} = \Abs{\Braket{\Psi_{\tgt}}{\Psi(T)}}^2$, with $\ket{\Psi(T)}$ the forward propagated state of $\ket{\Psi_{\init}}$. Even though $J_T$ is not explicitly required for the optimization, it is nonetheless useful to be able to calculate and print it as a way to provide some feedback about the optimization progress. Here, we pass as an info_hook the function krotov.info_hooks.print_table, using krotov.functionals.J_T_ss (which implements the above functional; the krotov library contains implementations of all the "standard" functionals used in quantum control). This info_hook prints a tabular overview after each iteration, containing the value of $J_T$, the magnitude of the integrated pulse update, and information on how much $J_T$ (and the full Krotov functional $J$) changes between iterations. It also stores the value of $J_T$ internally in the Result.info_vals attribute.

The value of $J_T$ can also be used to check the convergence. In this example, we limit the number of total iterations to 10, but more generally, we could use the check_convergence parameter to stop the optimization when $J_T$ falls below some threshold. Here, we only pass a function that checks that the value of $J_T$ is monotonically decreasing. The krotov.convergence.check_monotonic_error relies on krotov.info_hooks.print_table internally having stored the value of $J_T$ to the Result.info_vals in each iteration.

In [14]:
opt_result = krotov.optimize_pulses(
        krotov.convergence.value_below('1e-3', name='J_T'),
iter.      J_T    ∫gₐ(t)dt          J       ΔJ_T         ΔJ  secs
0     9.51e-01    0.00e+00   9.51e-01        n/a        n/a     2
1     9.24e-01    2.32e-03   9.27e-01  -2.71e-02  -2.47e-02     4
2     8.83e-01    3.53e-03   8.87e-01  -4.11e-02  -3.76e-02     4
3     8.23e-01    5.22e-03   8.28e-01  -6.06e-02  -5.54e-02     4
4     7.37e-01    7.39e-03   7.45e-01  -8.52e-02  -7.78e-02     4
5     6.26e-01    9.75e-03   6.36e-01  -1.11e-01  -1.02e-01     5
6     4.96e-01    1.16e-02   5.07e-01  -1.31e-01  -1.19e-01     5
7     3.62e-01    1.21e-02   3.74e-01  -1.34e-01  -1.22e-01     5
8     2.44e-01    1.09e-02   2.55e-01  -1.18e-01  -1.07e-01     4
9     1.53e-01    8.42e-03   1.62e-01  -9.03e-02  -8.18e-02     5
10    9.20e-02    5.79e-03   9.78e-02  -6.14e-02  -5.56e-02     6
11    5.35e-02    3.66e-03   5.71e-02  -3.85e-02  -3.48e-02     5
12    3.06e-02    2.19e-03   3.28e-02  -2.29e-02  -2.07e-02     6
13    1.73e-02    1.27e-03   1.86e-02  -1.32e-02  -1.20e-02     6
14    9.78e-03    7.24e-04   1.05e-02  -7.54e-03  -6.82e-03     8
15    5.52e-03    4.10e-04   5.92e-03  -4.26e-03  -3.86e-03     5
16    3.11e-03    2.31e-04   3.34e-03  -2.40e-03  -2.17e-03     5
17    1.76e-03    1.30e-04   1.89e-03  -1.36e-03  -1.22e-03     6
18    9.91e-04    7.35e-05   1.06e-03  -7.64e-04  -6.90e-04     5
In [15]:
Krotov Optimization Result
- Started at 2020-08-17 10:34:02
- Number of objectives: 1
- Number of iterations: 18
- Reason for termination: Reached convergence: J_T < 1e-3
- Ended at 2020-08-17 10:35:47 (0:01:45)

Simulate the dynamics under the optimized field

Having obtained the optimized control field, we can simulate the dynamics to verify that the optimized field indeed drives the initial state $\ket{\Psi_{\init}} = \ket{0}$ to the desired target state $\ket{\Psi_{\tgt}} = \ket{1}$.

In [16]:
opt_dynamics = opt_result.optimized_objectives[0].mesolve(
    tlist, e_ops=[proj0, proj1])
In [17]:

To gain some intuition on how the controls and the dynamics change throughout the optimization procedure, we can generate a plot of the control fields and the dynamics after each iteration of the optimization algorithm. This is possible because we set store_all_pulses=True in the call to optimize_pulses, which allows to recover the optimized controls from each iteration from Result.all_pulses. The flag is not set to True by default, as for long-running optimizations with thousands or tens of thousands iterations, the storage of all control fields may require significant memory.

In [18]:
def plot_iterations(opt_result):
    """Plot the control fields in population dynamics over all iterations.

    This depends on ``store_all_pulses=True`` in the call to
    fig, [ax_ctr, ax_dyn] = plt.subplots(nrows=2, figsize=(8, 10))
    n_iters = len(opt_result.iters)
    for (iteration, pulses) in zip(opt_result.iters, opt_result.all_pulses):
        controls = [
            for pulse in pulses
        objectives = opt_result.objectives_with_controls(controls)
        dynamics = objectives[0].mesolve(
            opt_result.tlist, e_ops=[proj0, proj1]
        if iteration == 0:
            ls = '--'  # dashed
            alpha = 1  # full opacity
            ctr_label = 'guess'
            pop_labels = ['0 (guess)', '1 (guess)']
        elif iteration == opt_result.iters[-1]:
            ls = '-'  # solid
            alpha = 1  # full opacity
            ctr_label = 'optimized'
            pop_labels = ['0 (optimized)', '1 (optimized)']
            ls = '-'  # solid
            alpha = 0.5 * float(iteration) / float(n_iters)  # max 50%
            ctr_label = None
            pop_labels = [None, None]
            color='#1f77b4',  # default blue
            color='#ff7f0e',  # default orange
    ax_ctr.set_ylabel('control amplitude')
In [19]:

The initial guess (dashed) and final optimized (solid) control amplitude and resulting dynamics are shown with full opacity, whereas the curves corresponding intermediate iterations are shown with decreasing transparency.