import numpy as np
from scipy.spatial.distance import cdist
from sklearn.datasets import load_iris
from sklearn.metrics.pairwise import rbf_kernel as skrbf_kernel
def rbf_kernel(X, Y=None, gamma=None):
if Y is None:
Y = X
if gamma is None:
gamma = 1 / X.shape[1]
K = np.zeros((X.shape[0], Y.shape[0]))
for i in range(X.shape[0]):
for j in range(Y.shape[0]):
K[i, j] = np.exp(-gamma * np.sum(np.square(X[i] - Y[j])))
return K
X, _ = load_iris(return_X_y=True)
K1 = rbf_kernel(X)
K2 = skrbf_kernel(X)
assert np.allclose(K1, K2)
def rbf_kernel(X, Y=None, gamma=None):
if Y is None:
Y = X
if gamma is None:
gamma = 1 / X.shape[1]
return np.exp(-gamma * cdist(X, Y, metric='sqeuclidean'))
X, _ = load_iris(return_X_y=True)
K1 = rbf_kernel(X)
K2 = skrbf_kernel(X)
assert np.allclose(K1, K2)