import numpy as np
from sklearn.metrics import mean_squared_error as skmean_squared_error
def mean_squared_error(y_true, y_pred):
return np.mean((y_true - y_pred) ** 2)
for i in range(10):
rng = np.random.RandomState(i)
y_true = rng.rand(10)
y_pred = rng.rand(10)
score1 = mean_squared_error(y_true, y_pred)
score2 = skmean_squared_error(y_true, y_pred)
assert np.isclose(score1, score2)