import numpy as np
from sklearn.metrics import brier_score_loss as skbrier_score_loss
def brier_score_loss(y_true, y_prob):
return np.mean(np.square(y_true - y_prob))
# binary
for i in range(10):
rng = np.random.RandomState(i)
y_true = rng.randint(2, size=10)
y_prob = rng.random_sample(size=10)
score1 = brier_score_loss(y_true, y_prob)
score2 = skbrier_score_loss(y_true, y_prob)
assert np.isclose(score1, score2)