Tutorial showing use of a Workspace object

Part 1: making tables and plots

PyGSTi's Workspace object is first a foremost a container and factory for plots and tables. At the most basic level, it can be used to generate nice output based on quantities (e.g. GateSets, DataSets, etc.) that you've computed or loaded within a notebook. For this, it's useful to call init_notebook_mode with autodisplay=True (see below) so that you don't have to .display() everything - display() gets called automatically when a plot or table is created.

First, let's run GST on the standard 1Q gate set to get some results to play with.

In [1]:
import numpy as np
import pygsti
from pygsti.construction import std1Q_XYI
In [2]:
#The usual GST setup: we're going to run GST on the standard XYI 1-qubit gateset
gs_target = std1Q_XYI.gs_target
fiducials = std1Q_XYI.fiducials
germs = std1Q_XYI.germs
maxLengths = [1,2]
listOfExperiments = pygsti.construction.make_lsgst_experiment_list(
    gs_target.gates.keys(), fiducials, fiducials, germs, maxLengths)
In [3]:
#Create some datasets for analysis
gs_datagen1 = gs_target.depolarize(gate_noise=0.1, spam_noise=0.02)
gs_datagen2 = gs_target.depolarize(gate_noise=0.05, spam_noise=0.01).rotate(rotate=(0.01,0.01,0.01))

ds1 = pygsti.construction.generate_fake_data(gs_datagen1, listOfExperiments, nSamples=1000,
                                            sampleError="binomial", seed=1234)
ds2 = pygsti.construction.generate_fake_data(gs_datagen2, listOfExperiments, nSamples=1000,
                                            sampleError="binomial", seed=1234)
ds3 = ds1.copy_nonstatic(); ds3.add_counts_from_dataset(ds2); ds3.done_adding_data()
In [4]:
#Run GST on all three datasets
gs_target.set_all_parameterizations("TP")
results1 = pygsti.do_long_sequence_gst(ds1, gs_target, fiducials, fiducials, germs, maxLengths, verbosity=0)
results2 = pygsti.do_long_sequence_gst(ds2, gs_target, fiducials, fiducials, germs, maxLengths, verbosity=0)
results3 = pygsti.do_long_sequence_gst(ds3, gs_target, fiducials, fiducials, germs, maxLengths, verbosity=0)

#make some shorthand variable names for later
tgt = results1.estimates['default'].gatesets['target']

ds1 = results1.dataset
ds2 = results2.dataset
ds3 = results3.dataset

gs1 = results1.estimates['default'].gatesets['go0']
gs2 = results2.estimates['default'].gatesets['go0']
gs3 = results3.estimates['default'].gatesets['go0']

gss = results1.gatestring_structs['final']

Now that we have some results, let's create a Workspace and make some plots and tables.

To get tables and plots to display properly, one must run init_notebook_mode. The connected argument indicates whether you want to rely on an active internet connection. If True, then resources will be loaded from the web (e.g. a CDN), and if you save a notebook as HTML the file size may be smaller. If False, then all the needed resources (except MathJax) are provided by pyGSTi, and an offline directory is automatically created in the same directory as your notebook. This directory contains all the necessary resources, and must "tag along" with the notebook and any saved-as-HTML versions of it in order for everything to work. The second argument, autodisplay, determines whether tables and plots are automatically displayed when they are created. If autodisplay=False, one must call the display() member function of a table or plot to display it.

In [5]:
from pygsti.report import workspace
w = workspace.Workspace()
w.init_notebook_mode(connected=False, autodisplay=True)