Metrics in pyGSTi

PyGSTi contains implementation of common ways to compare quantum processes and models. You may just want to import pygsti just for this functionality, as many of the functions below act on standard NumPy arrays. Here are some of the most common functions (this tutorial is under construction, and we plan to expand it in future releases. We apologize for it's current brevity.

Let's begin by getting some gate (process) matrices for several simple 1-qubit operations. Note that Gx, Gy and Gi below are superoperator matrices in the Pauli basis - they're $4 \times 4$ real matrices. We do this for a model pack (see the model packs tutorial) and a version of this model with slightly rotated gates.

In [ ]:
import as tls
import as rptbls
from pygsti.modelpacks import smq1Q_XYI as std
import numpy as np

mdl = std.target_model()
Gx = mdl[('Gxpi2',0)].to_dense()
Gy = mdl[('Gypi2',0)].to_dense()
Gi = mdl[()].to_dense()

mdl_overrot = mdl.rotate( (0.1,0,0) )
Gx_overrot = mdl_overrot[('Gxpi2',0)].to_dense()
Gy_overrot = mdl_overrot[('Gypi2',0)].to_dense()
Gi_overrot = mdl_overrot[()].to_dense()


Process matrix comparisons


In [ ]:
rptbls.entanglement_infidelity(Gx, Gx_overrot, 'pp')
In [ ]:
rptbls.avg_gate_infidelity(Gx, Gx_overrot, 'pp')
In [ ]:
rptbls.eigenvalue_entanglement_infidelity(Gx, Gx_overrot, 'pp')
In [ ]:
rptbls.eigenvalue_avg_gate_infidelity(Gx, Gx_overrot, 'pp')

Diamond distance

In [ ]:
rptbls.half_diamond_norm(Gx, Gx_overrot, 'pp')
In [ ]:
rptbls.eigenvalue_diamondnorm(Gx, Gx_overrot, 'pp')


In [ ]:

Jamiolkowski trace distance

In [ ]:
rptbls.jtrace_diff(Gx, Gx_overrot, 'pp')

State comparisons

State fidelity

In [ ]:
rhoA = tls.ppvec_to_stdmx(mdl['rho0'].to_dense())
rhoB = np.array( [ [0.9,   0],
                   [ 0,  0.1]], complex), rhoB)