In [1]:
using Expr2LaTeX
In [2]:
@render x^(1/(y+2))
$x^{\frac{1}{(y + 2)}}$
In [3]:
@render 2^x+2
@render 2^(x+2)
@render 2^(x/(x+2))
@render log(x)
@render 2
@render 20^30
@render 1+1
@render 2^(1+1)
@render 1+(2+3)
@render 1/2
@render 1/(2+3)
@render f(x)
@render f(x,y)
@render sin(x)
@render [1,2,3]
@render log([1; 2; (2+e^x)/3])
@render [1 2 3; 4 3 2; π pi gamma]/2
$(2^{x} + 2)$
$2^{(x + 2)}$
$2^{\frac{x}{(x + 2)}}$
$\mathrm{log}(x)$
$2$
$20^{30}$
$(1 + 1)$
$2^{(1 + 1)}$
$(1 + (2 + 3))$
$\frac{1}{2}$
$\frac{1}{(2 + 3)}$
$f(x)$
$f(x , y)$
$\mathrm{sin}(x)$
$\left[\begin{array}{ccc} 1\\2\\3 \end{array}\right]$
$\mathrm{log}(\left[\begin{array}{ccc} 1\\2\\\frac{(2 + e^{x})}{3} \end{array}\right])$
$\frac{\left[\begin{array}{ccc} 1 & 2 & 3\\4 & 3 & 2\\π & pi & gamma \end{array}\right]}{2}$
In [4]:
x = zeros(4,4)
renderval(x)
y=x[diagind(4,4)] = 1:4
renderval(x)
renderval(1./ x.^3)
$\left[\begin{array}{cccc} 0.0 & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & 0.0 \end{array}\right]$
$\left[\begin{array}{cccc} 1.0 & 0.0 & 0.0 & 0.0\\0.0 & 2.0 & 0.0 & 0.0\\0.0 & 0.0 & 3.0 & 0.0\\0.0 & 0.0 & 0.0 & 4.0 \end{array}\right]$
$\left[\begin{array}{cccc} 1.0 & Inf & Inf & Inf\\Inf & 0.125 & Inf & Inf\\Inf & Inf & 0.037037 & Inf\\Inf & Inf & Inf & 0.015625 \end{array}\right]$
In [ ]: