Based on the idea by Skoltech students, NLA 2016

Name	Definition	\exists	!	Algorithms	Use cases		
SVD (Singular Value Decomposition)	- $r=\operatorname{rank}(A)$ - U, V - unitary $\triangleright \sigma_{1} \geq \ldots \geq \sigma_{r}>0$ are nonzero singular values - columns of U, V are singular vectors Note: SVD can be also defined with $U \in \mathbb{C}^{m \times p}$, $\Sigma \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{C}^{n \times p}, p=\min \{n . m\}$	\checkmark	- Singular values are unique - If all σ_{i} are different, U and V are unique up to unitary diagonal D : $U \Sigma V^{*}=(U D) \Sigma(V D)^{*}$ - If some σ_{i} coincide, then U and V are not unique	\triangle SVD via spectral decomposition of $A A^{*}$ and $A^{*} A$ - stability issues - Stable algorithm, $\mathcal{O}\left(m n^{2}\right)$ flops $(m>n)$: 1. Bidiagonalize A by Householder reflections $A=U_{1} B V_{1}^{*}=U_{1}[\quad] V_{1}^{*}$ 2. Find SVD of $B=U_{2} \Sigma V_{2}^{*}$ by spectral decomposition of T (2 options): a) $T=B^{*} B$, don't form T explicitly! b) $T=\left[{ }_{B} B^{*}\right]$, permute T to tridiagonal 3. $U=U_{1} U_{2}, \quad V=V_{1} V_{2}$	- Data compression, as Eckart-Young theorem states that truncated SVD $A_{k}=[\| \|]_{U_{k}}^{[]_{m \times k}} \sum_{\Sigma_{k}}^{\left[\begin{array}{c} \sigma_{1} \\ \sigma_{k} \\ k k_{k \times k} \end{array}\right]}\left[\begin{array}{l} V_{k}^{*} \end{array}\right]_{k \times n}$ yields best rank-k approximation to A in $\\|\cdot\\|_{2, F}$ - Calculation of pseudoinverse A^{+}, e.g. in solving over/underdetermined, singular, or ill-posed linear systems - Feature extraction in machine learning Note: SVD is also called principal component analysis (PCA)		
Skeleton (also known as Rank decomposition)		\checkmark	Not unique: - in $A=C R$ version $\forall S$: $\operatorname{det}(S) \neq 0$: $C R=C S S^{-1} R=\widetilde{C} \widetilde{R}$ - in $A=\widehat{C} \widehat{A}^{-1} \widehat{R}$ version any r linearly independent columns and rows can be chosen	Assuming $m>n$: - truncated SVD, $\mathcal{O}\left(m n^{2}\right)$ flops, $C=U_{r} \Sigma_{r}, R=V_{r}^{*}$ - RRQR: $\mathcal{O}(m n r)$ flops - Cross approximation: $\mathcal{O}\left((n+m) r^{2}\right)$ flops. It is based on greedy maximization of $\|\operatorname{det}(\widehat{A})\|$. Might fail on some A. - Optimization methods (ALS, ...) for $\\|A-C R\\| \rightarrow \min _{C, R},$ sometimes with additional constraints, e.g. -nonnegativity of C and R elements -small norms of C and R	- Model reduction, data compression, and speedup of computations in numerical analysis: given rank- r matrix with $r \ll n, m$ one needs to store $\mathcal{O}((n+m) r) \ll n m$ elements - Feature extraction in machine learning, where it is also known as matrix factorization - All applications where SVD applies, since Skeleton decomposition can be transformed into truncated SVD form		
Schur	- U is unitary - $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues - columns of U are Schur vectors	\checkmark	- Not unique in terms of both U and T : permutation of $\lambda_{1}, \ldots, \lambda_{n}$ in T will change both U and off-diagonal part of T	\downarrow QR algorithm, $\mathcal{O}\left(n^{4}\right)$ flops: $A_{k}=Q_{k} R_{k}, A_{k+1}=R_{k} Q_{k}$ - "Smart" QR algorithm, $\mathcal{O}\left(n^{3}\right)$ flops: 1. Reduce A to upper Hessenberg form $\tilde{A}=Q^{*} A Q=[\square]$ Note: then each iteration of $Q R$ algorithm will $\operatorname{cost} \mathcal{O}\left(n^{2}\right)$ 2. Run $Q R$ algorithm for \widetilde{A} with shifting strategy to speed-up convergence	- Computation of matrix spectrum - Computation of matrix functions (Schur-Parlett algorithm) -Solving matrix equations (e.g. Sylvester equation)		
Spectral	$A=\left[\left\|\| \|_{S}\right]_{n \times n}\left[\begin{array}{ll} \lambda_{1} & \\ & \\ \lambda_{n} \end{array}\right]\left[\\| \\|_{n \times n}[\mid]_{S^{-1}}^{-1}\right]_{n \times n}\right.$ - $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues - columns of S are eigenvectors	$\triangleright \exists$ iff $\forall \lambda_{i}$ its geometric multiplicity equals algebraic multiplicity $-\exists$ and S - unitary iff A is normal: $A A^{*}=A^{*} A$, e.g. Hermitian	- If all λ_{i} are different, then unique up to permutation and scaling of eigenvectors - If some λ_{i} coincide, S is not unique	- If $A=A^{*}$, Jacobi method: $\mathcal{O}\left(n^{3}\right)$ - If $A A^{*}=A^{*} A, Q R$ algorithm: $\mathcal{O}\left(n^{3}\right)$ -If $A A^{*} \neq A^{*} A, \mathcal{O}\left(n^{3}\right)$ flops: 1. Find Schur form $A=U T U^{*}$ via $Q R$ algorithm 2. Given T find its eigenvectors V 3. $S=U V, \Lambda=\operatorname{diag}(T)$	- Full spectral decomposition is rarely used unless all eigenvectors are needed - If one needs only spectrum, Schur decomposition is the method of choice - If matrix has no spectral decomposition, Schur decomposition is preferable for numerics compared to Jordan form		

QR	$A=\left[\\| \\|_{Q}^{[\text {is unitary }}=[]_{m \times n}\left[\begin{array}{l} R<n \\ m \end{array}\right.\right.$	\checkmark	- Unique if all diagonal elements of R are set to be positive	Assuming $m>n$: - Gram-Schmidt (GS) process: $2 m n^{2}$ flops; not stable - modified Gram-Schmidt (MGS) process: $2 m n^{2}$ flops; stable - via Householder reflections: $2 m n^{2}-(2 / 3) n^{3}$ flops; best for dense matrices, sequential computer architectures; stable - via Givens rotations: $3 m n^{2}-n^{3}$ flops; best for sparse matrices, parallel computer architectures; stable	- Computation of orthogonal basis in a linear space - Solving least squares problem $(m>n)$: $\\|A x-b\\|_{2} \rightarrow \min _{x} \Rightarrow x=R^{-1} Q^{*} b$ - Solving linear systems Note: more stable, but has larger constant than LU - Don't confuse QR decomposition and $Q R$ algorithm!
RRQR (Rank Revealing $Q R$)	- P is permutation matrix $\nabla r=\operatorname{rank}(A)$		- Not unique since any r linearly independent columns can be selected	- Basic algorithm: Householder $Q R$ with column pivoting. On k-th iteration: 1. Find column of largest norm in $R_{k}[:, \mathrm{k}: \mathrm{n}]$ 2. Permute this column and the k-th column 3. Zero subcolumn of the k-th column by Householder reflection $\rightarrow R_{k+1}$ Complexity: $\mathcal{O}(n m r)$ flops	- Solving rank deficient least squares problem - Finding subset of linearly independent columns - Computation of matrix approximation of a given rank

LU	$A=\left[\begin{array}{cc} 1 & \\ & \\ & 1 \end{array}\right]_{n \times n}\left[\begin{array}{ll} & \\ & \\ & \\ & \\ & \\ & \\ & \end{array}\right.$	Let $\operatorname{det}(A) \neq 0$ - LU \exists iff all leading minors $\neq 0$	- Unique if $\operatorname{det}(A) \neq 0$	- Different versions of Gaussian elimination, $\mathcal{O}\left(n^{3}\right)$ flops. In LU for stability use permutation of rows or columns (LUP) $-\mathcal{O}\left(n^{3}\right)$ can be decreased for sparse matri-	LU, LDL, Cholesky are used for - solving linear systems. Given $A=L U$, complexity of solving $A x=b$ is $\mathcal{O}\left(n^{2}\right)$: 1. Forward substitution: $L y=b$
LDL		Let $\operatorname{det}(A) \neq 0$ $-\operatorname{LDL} \exists$ iff $A=A^{*}$ and all leading minors $\neq 0$		ces by appropriate permutations, e.g. - minimum degree ordering - Cuthill-McKee algorithm	2. Backward substitution: $U x=y$ - matrix inversion - computation of determinant
Cholesky	$A=\left[\begin{array}{ll} L & \\ L \end{array}\right]_{n \times n}\left[\begin{array}{cc} L^{*} & \\ & \\ \hline n \times n \end{array}\right.$	$\begin{aligned} & \text { Cholesky } \exists \text { iff } \\ & \qquad A=A^{*} \text { and } A \succeq 0 \end{aligned}$	\checkmark Unique if $A \succ 0$	$\left[\begin{array}{ll} x \end{array}\right]$ can be decomposed using $\mathcal{O}\left(n b^{2}\right)$ flops	Cholesky is also used for - computing QR decomposition
References (1) G. H. Golub and C. F. Van Loan, Matrix computations, JHU Press, 4th ed., 2013. (2) L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, SIAM, 1997. (3) E. E. Tyrtyshnikov, A brief introduction to numerical analysis, Springer Science \& Business Media, 2012.				Contact information Course materials: https://github.com/oseledets/nla2016 Email: i.oseledets@skoltech.ru Our research group website: oseledets.github.io	

