Matrix Decompositions Cheat Sheet

Numerical linear algebra course at Skoltech by Ivan Oseledets

Poster is prepared by TAs Maxim Rakhuba and Alexandr Katrutsa

Based on the idea by Skoltech students, NLA 2016

Name	Definition			Algorithms	Use cases
SVD (Singular Value Decomposition)	$A = \begin{bmatrix} \sigma_1 \\ \sigma_r \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_r \end{bmatrix}$		Singular values are unique	SVD via spectral decomposition of AA* and A*A – stability issues	Data compression, as Eckart-Young theorem states that truncated SVD
	$U = \operatorname{rank}(A)$ $V = \operatorname{rank}(A)$ $V = \operatorname{rank}(A)$		 If all σ_i are different, U and V are unique up to unitary diagonal D: UΣV* = (UD)Σ(VD)* If some σ_i coincide, then U and V are not unique 	1. Bidiagonalize A by Householder reflections $A = U_1 B V_1^* = U_1 \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$A_k = \begin{bmatrix} \sigma_1 \\ U_k \end{bmatrix}_{m \times k} \begin{bmatrix} \sigma_1 \\ \sigma_k \end{bmatrix}_{k \times k} \begin{bmatrix} \sigma_1 \\ V_k \end{bmatrix}_{k \times n}$ yields best rank-k approximation to A in $\ \cdot \ _{2,F}$
	Values			2. Find SVD of $B = U_2 \Sigma V_2^*$ by spectral decomposition of T (2 options): a) $T = B^*B$, don't form T explicitly!	Calculation of pseudoinverse A ⁺ , e.g. in solv- ing over/underdetermined, singular, or ill-posed linear systems
	Note: SVD can be also defined with $U \in \mathbb{C}^{m \times p}$, $\Sigma \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{C}^{n \times p}$, $p = \min\{n.m\}$			b) $T = \begin{bmatrix} B^* \end{bmatrix}$, permute T to tridiagonal 3. $U = U_1U_2$, $V = V_1V_2$	Feature extraction in machine learning Note: SVD is also called principal component analysis (PCA)
			Not unique: in $A = CR$ version $\forall S$:	Assuming $m > n$: \blacktriangleright truncated SVD, $\mathcal{O}(mn^2)$ flops,	Model reduction, data compression, and speedup of computations in numerical analy-

Skoltech

Skolkovo Institute of Science and Technology

Spectral	$S \qquad \qquad$	braic multiplicity \exists and S – unitary iff A is normal: $AA^* = A^*A$, e.g. Hermitian	 If some λ_i coincide, S is not unique 	 If AA* ≠ A*A, O(n³) flops: 1. Find Schur form A = UTU* via QR algorithm 2. Given T find its eigenvectors V 3. S = UV, Λ = diag(T) 	 If one needs only spectrum, schur decomposition is the method of choice If matrix has no spectral decomposition, Schur decomposition is preferable for numerics compared to Jordan form
	$A = \left[\bigcup_{\substack{n \ge n \\ Q \text{ is left unitary}}} \prod_{\substack{n \ge n \\ R}} m \ge n \right]_{n \ge n}$ $M \ge n$ $A = \left[\bigcup_{\substack{n \ge m \\ Q \text{ is unitary}}} \prod_{\substack{m \ge m \\ R}} m < n \right]_{m < n}$		Unique if all diagonal elements of R are set to be positive	 Gram-Schmidt (GS) process: 2mn² flops; not stable modified Gram-Schmidt (MGS) process: 2mn² flops; stable via Householder reflections: 2mn² - (2/3)n³ flops; best for dense matrices, sequential 	 Computation of orthogonal basis in a linear space Solving least squares problem (m > n): Ax - b ₂ → min ⇒ x = R⁻¹Q*b Solving linear systems Note: more stable, but has larger constant than LU Don't confuse QR decomposition and QR al- gorithm!
RRQR (Rank Revealing QR)	$AP = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} \begin{bmatrix} 0 & 0 \\ r & n-r \end{bmatrix}_{n \times n}$ $Q \text{ is unitary } R$ $P \text{ is permutation matrix}$ $r = \operatorname{rank}(A)$		Not unique since any r linearly inde- pendent columns can be selected	umn pivoting. On k -th iteration:	 Finding subset of linearly independent columns Computation of matrix approximation of a given rank

References

- (1) G. H. GOLUB AND C. F. VAN LOAN, Matrix computations, JHU Press, 4th ed., 2013.
- (2) L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, SIAM, 1997.
- (3) E. E. TYRTYSHNIKOV, A brief introduction to numerical analysis, Springer Science & Business Media, 2012.

Contact information

Course materials: https://github.com/oseledets/nla2016

Email: i.oseledets@skoltech.ru

Our research group website: oseledets.github.io