Optimization of multi-origin travel search

- Artur Grigorev,
- Satyarth Mishra Sharma
- Vadim Liventsev
- Phan Van Duc
- Shreya Santra

Team: A, SVDs!
Skoltech
22 December, 2017

Problem description

Suppose n friends (who like travelling!) living in different cities around the world want to meet up at a common destination. When and where should they meet to get the cheapest flights?

Project Objective

Try different optimization methods to this problem and suggest a common destination at the cheapest price from multiple airports taking into account the arrival and departure dates.

Data Description

Data acquired (live!) from Sky Scanner API

- We can get the cheapest flights (anywhere) from an origin or between two cities
- Flight prices change on a whim, which is why crawling and caching the data is not effective.

Optimization Formulation

- We treat SkyScanner as a 'black box' and use optimization methods query it in the most promising way
- Adds a challenge - we are limited by the latency and specifications of the API. Need optimization!

Methods Applied \& Performance Analysis

$\sqrt{ }$ Try different approaches

- Simulated Annealing
- Genetic Algorithm
- Regression Methods
- Branch \& Bound
\checkmark Choose the best one (Spoiler alert: it's B\&B)
$\sqrt{ }$ Build a Telegram Bot around it

Simulated annealing

Budapest, Jan 3rd, Jan 7th

Riga, Jan 3rd, Jan 7th

Riga, Jan 3rd, Jan 8th

Each solution consists of:

- destination
- outbound date
- inbound date

Start with:

- Random triplet within the date range

Neighbourhood includes any solution reached by:

- changing destination city
- changing outbound date
- changing inbound date

Simulated annealing test

Sequence of best solutions for [London, Berlin, Brussels] on the date range from January 1st, 2018 to January 15th, 2018:

6-days trip to Budapest for three people only for 8 K roubles!
~ 3 min to get the solution

Genetic Algorithm

```
[TO: KULM,
T0: FLLA,
TO: CHIA,
TO: FLLA,
TO: MILA,
TO: SGNV,
TO: TPET,
TO: YMQA,
TO: PLSA,
TO: FDFA,
TO: BERI,
TO: MFMA,
TO: KULM,
TO: TPET,
TO: MILA,
TO: FLLA,
TO: THES,
TO: MILA,
TO: SGNV,
TO: FDFA,
```

COME: 2018-01-01, COME: 2018-01-07, COME: 2018-01-05, COME: 2018-01-02, COME: 2018-01-11, COME: 2018-01-09, COME: 2018-01-08, COME: 2018-01-01, COME: 2018-01-01, COME: 2018-01-03, COME: 2018-01-07, COME: 2018-01-06, COME: 2018-01-02, COME: 2018-01-07, COME: 2018-01-06, COME: 2018-01-10, COME: 2018-01-09, COME: 2018-01-11, COME: 2018-01-09, COME: 2018-01-10,

LEAVE: 2018-01-10, LEAVE: 2018-01-11, LEAVE: 2018-01-13, LEAVE: 2018-01-13, LEAVE: 2018-01-14, LEAVE: 2018-01-14, LEAVE: 2018-01-11, LEAVE: 2018-01-09, LEAVE: 2018-01-05, LEAVE: 2018-01-14, LEAVE: 2018-01-11, LEAVE: 2018-01-12, LEAVE: 2018-01-05, LEAVE: 2018-01-14, LEAVE: 2018-01-10, LEAVE: 2018-01-13, LEAVE: 2018-01-14, LEAVE: 2018-01-14, LEAVE: 2018-01-13, LEAVE: 2018-01-14]

- Start by initializing our population with random solutions from our sample space
- In each iteration:
- Evaluate the cost of each sample in our population
- Discard the worst ones
- 'Crossover' our best solutions: randomly pick and mix features from pairs of our best solutions
- Some probability of 'mutations' randomize parameters to increase genetic diversity

Genetic algorithm

Works reasonably well, but in practice not great compared to other methods:

- Technical reason: Getting costs for our population at each iteration is expensive in terms of time and API calls
- Parameters need to be tuned to include right amount of genetic diversity at each step - otherwise we get 'inbreeding'
- Still promising, with a better technical implementation (smarter parallelization of network calls)

Regression Methods

Regression Data Representation

- Several Regression methods were used to predict the expected minimum price for a given origin date, departure date and their places.
- Ridge Regression has 66.48% and Lasso Regression with 66.89\% provided an indication of the goodness of fit of a set of predictions to the value.
$\operatorname{Cost}(W)=\operatorname{RSS}(W)+\lambda *($ sum of squares of weights $)=$

$$
=\sum_{n=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}+\lambda \sum_{j=0}^{M}\left\|w_{j}\right\|_{2}^{2}
$$

$\operatorname{Cost}(W)=\operatorname{RSS}(W)+\lambda *($ sum of squares of weights $)=$ $=\sum_{n=1}^{N}\left(y_{i}-\sum_{j=1}^{M} w_{j} x_{i j}\right)^{2}+\lambda \sum_{j=0}^{M}\left\|w_{j}\right\|_{1}$

Lower-bounding the cost

Branch and Bound (for 2 origins)

No constraints, infeasible solution (2 different destinations, 2 different date-pairs)

4 types of constraints:

- Required destination
- Banned (taboo) destination
- Required travel dates
- Banned (taboo) travel dates

SVD Approach

Using a truncated database (sourced from Skyscanner), a matrix was created with the Minimum Prices from various origins to various destinations.

	Origin	MinPrice	Destination
$\mathbf{0}$	MUNI	9150.0	MOSC
$\mathbf{1}$	VIEN	8679.0	MOSC
$\mathbf{2}$	BRUS	9197.0	MOSC

However, the SVD failed to converge.
Also, we could not come up with a proper application of low-rank approximation in this project 14

Demonstration Time!

To our knowledge, this is currently the best implemented solution for this problem.

DAVAII

Learning Outcomes

Vadim:

- I can use optimization in my hobby (travel)!

Shreya:

- My first serious coding challenge!

Sat:

- If you want to make everyone happy, don't be a leader. Sell ice cream!

Learning Outcomes

Artur:

- Learning outcomes are unnecessary: I pursue knowledge for the sake of knowledge.

Duc:

- Apply machine learning methods to unconventional data.

