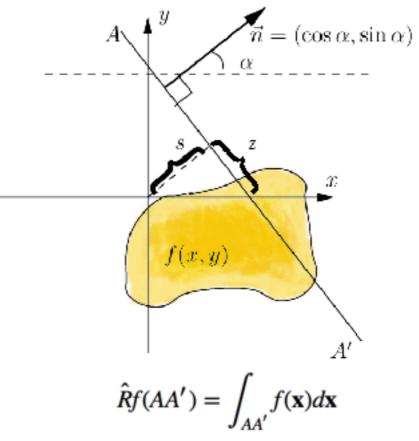
COMPARISON OF THE MOST POPULAR METHODS FOR RECONSTRUCTION MRI IMAGES

Team:

Ivan Okhmatovskii Polina Belozerova Mozhde Shiranirad Airat Kotliyar-Shapirov Mentor:

Maxim Rakhuba

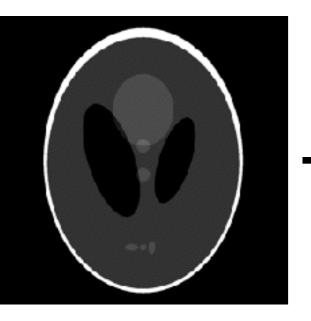
Direct Radon Transform

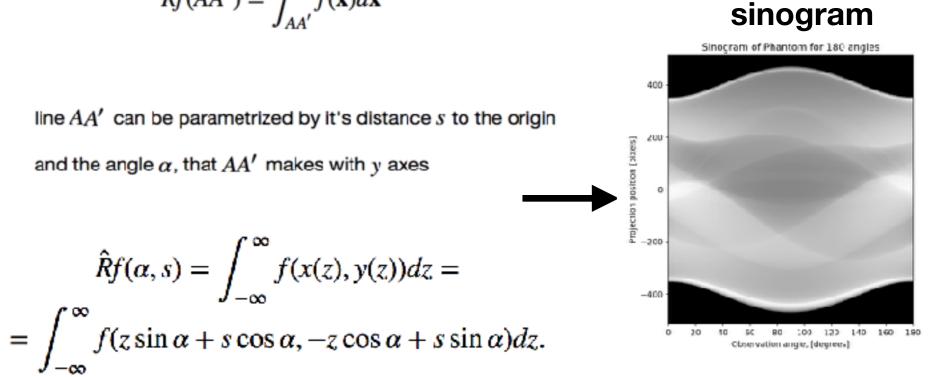


f(x, y) - absorption function

 α - observation angle

image



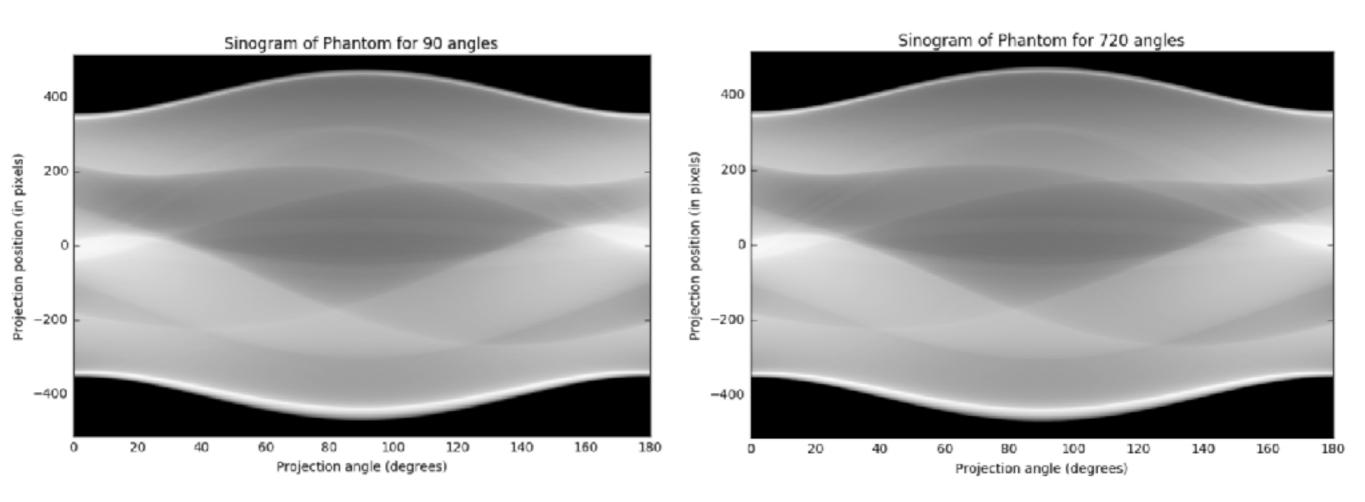


Sinograms with different numbers of observation angles:

PHANTOM

90 ANGLES

720 ANGLES

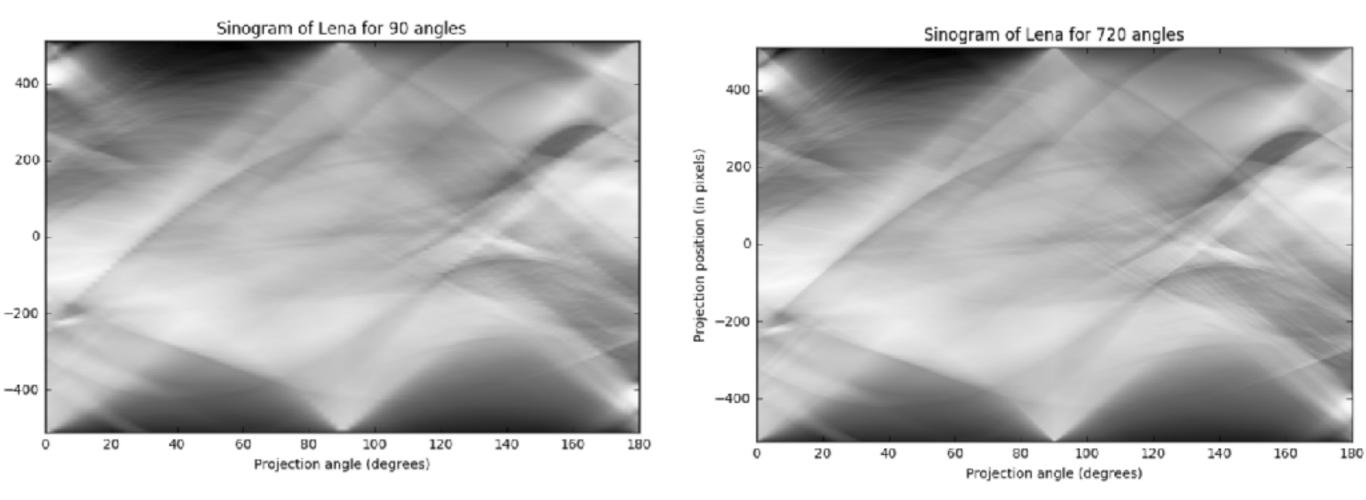


There is no difference visually — effect of piecewise-constant structure: it's not necessary to do lots observations to make quite accurate sinogram

LENA

90 ANGLES

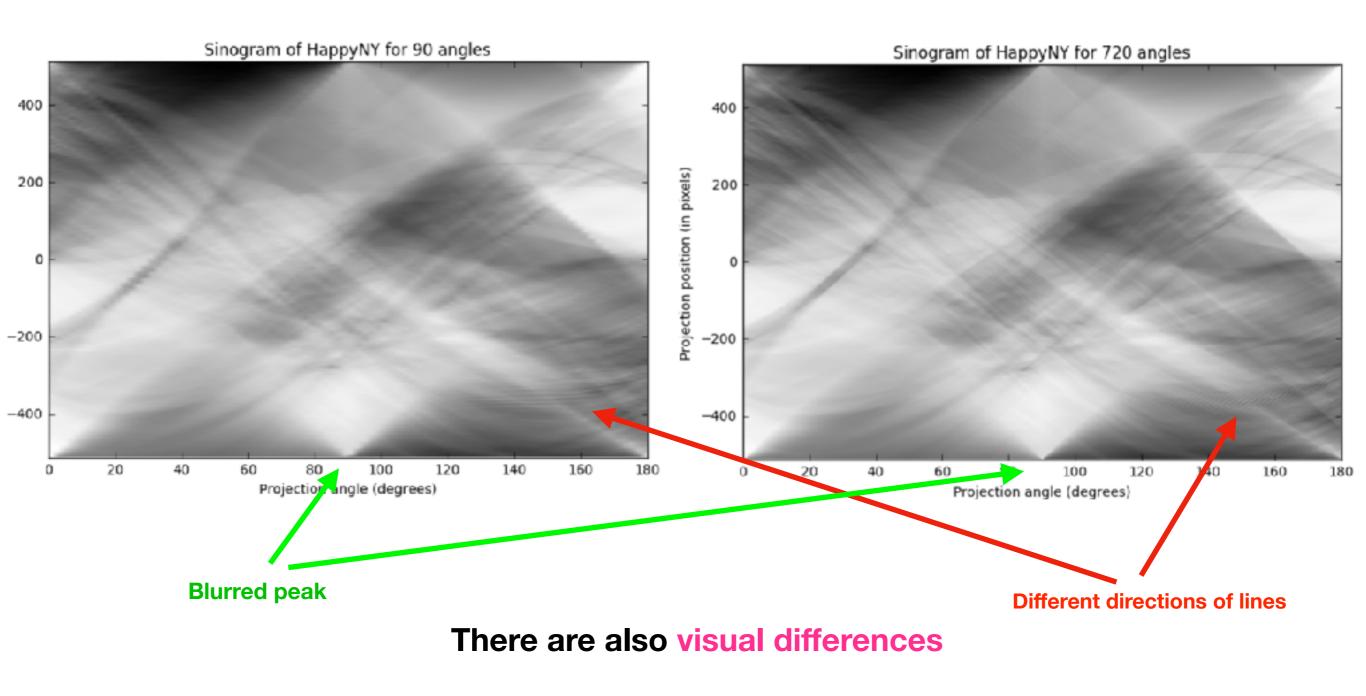
720 ANGLES



For not piecewise-constant objects we have even visually recognized difference in sinograms

HappyNY

90 ANGLES

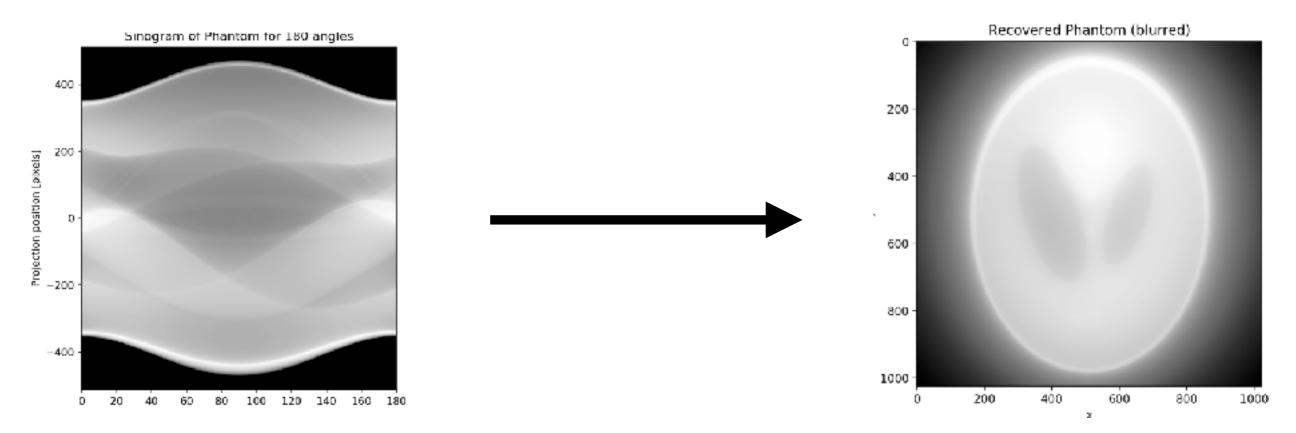


SUMMARY:

MORE OBSERVATION ANGLES – MORE ACCURACY!

But what about reconstruction?

Inverse Radon Transform - image reconstruction



There are several ways to reconstruct image from set of projections; we implemented the most famous of them:

- Reconstruction, based on Fourier Slice Theorem
- Reconstruction using **Dual Radon Transform** (back projection)

Approach I: Inverse Radon Transform via Fourier Slice Theorem

Given a real-valued function f defined on the plane, then

2-D Fourier transform

$$f(x, y)$$
 $F(u, v)$ f

$$\hat{f}(\lambda(\cos\varphi)) = \frac{1}{\sqrt{2\pi}} \widehat{R_f(\varphi, \cdot)}(\lambda)$$

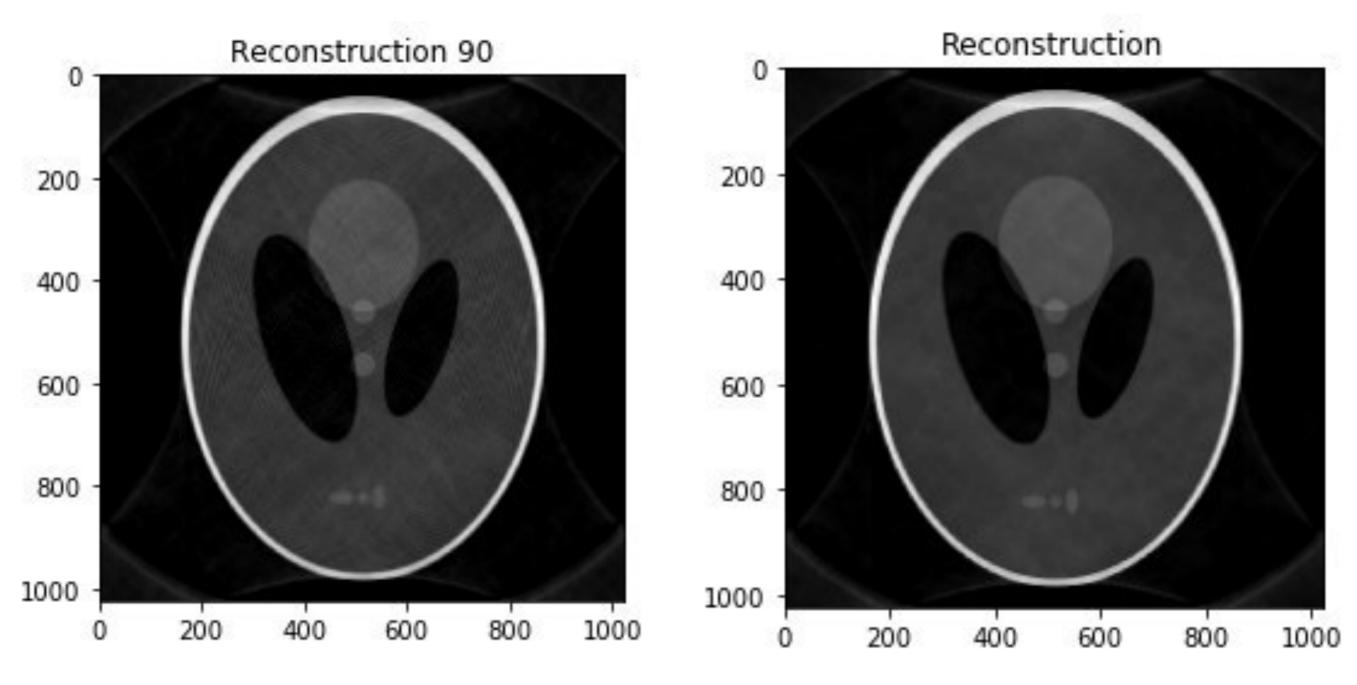
Sketch of the algorithm:

1. Take one dimensional Fourier transforms of the given Radon transform $\hat{R}f(\varphi, \cdot)$, for a (hopefully large) number of angles φ . 2. Take the inverse two dimensional Fourier transform of the above result.

Inverse Radon Transform via Fourier Slice Theorem - reconstructed images

PHANTOM

90 ANGLES

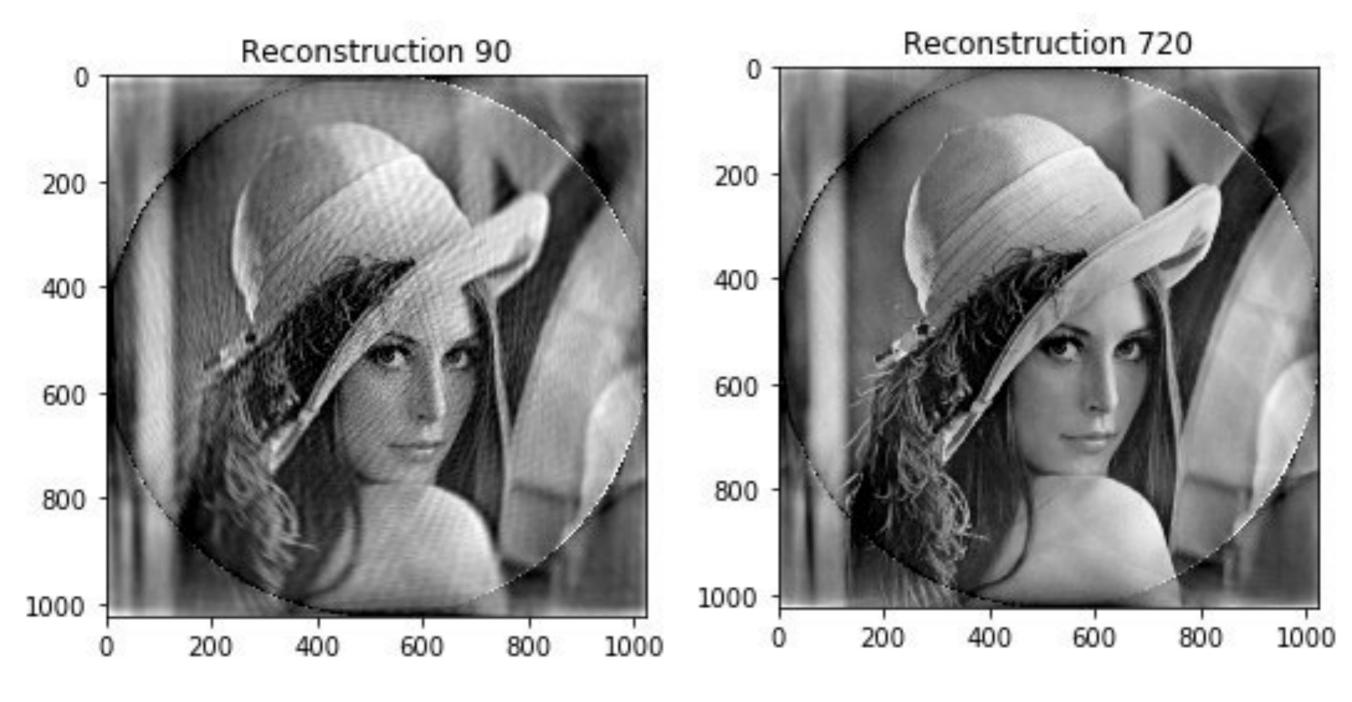


Inverse Radon Transform via Fourier Slice Theorem reconstructed images LENA

90 ANGLES

720 ANGLES

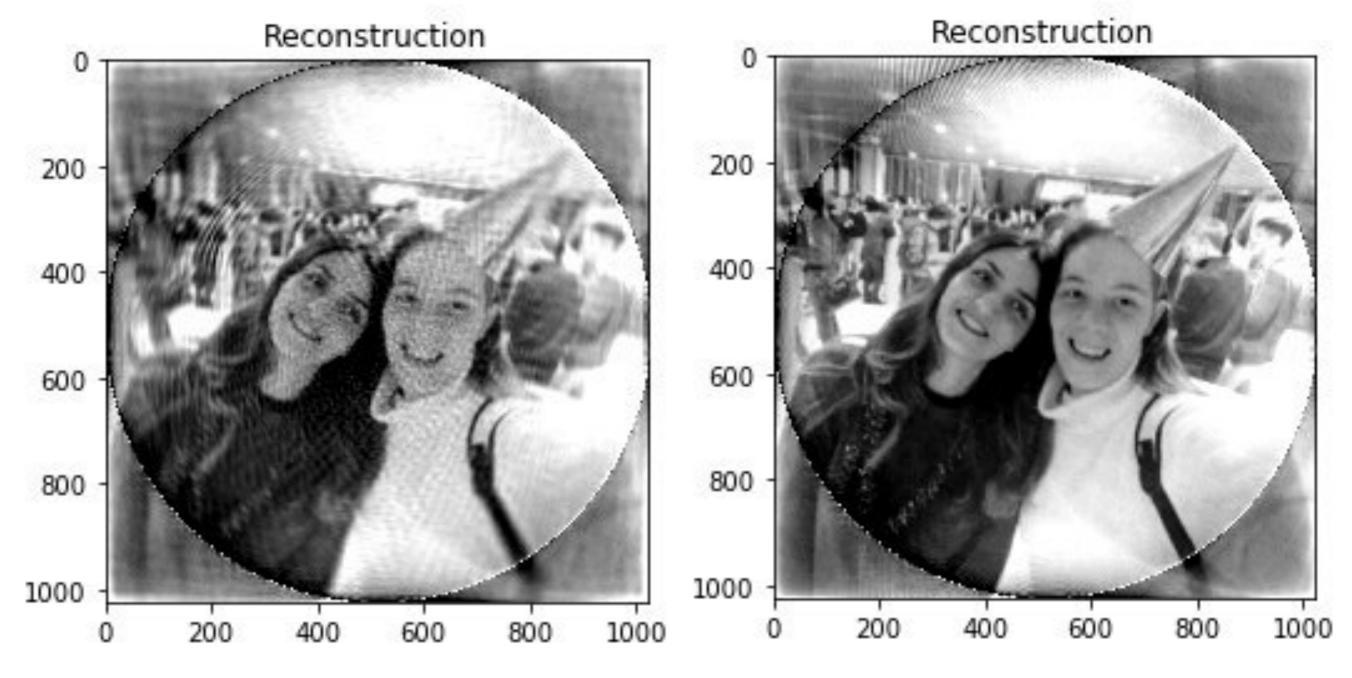
Skoltech



Inverse Radon Transform via Fourier Slice Theorem reconstructed images

HappyNY

90 ANGLES



Approach 2: Inverse Radon Transform as Dual Radon Transform

- $g(s, \alpha) sinogram$
- f(x, y) image

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} z \sin \alpha + s \cos \alpha \\ -z \cos \alpha + s \sin \alpha \end{bmatrix}$$

 $\hat{\boldsymbol{R}}^*$ - dual Radon transform operator

 $L_{\mathbf{x},a}$ denotes line along vector \mathbf{x} and making angle a with axes y

Dual Radon Transform by definition:
$$\hat{R}^* g(\mathbf{x}) = \frac{1}{\pi} \int_0^{\pi} g(L_{\mathbf{x},\alpha}) d\alpha = f(x, y)$$

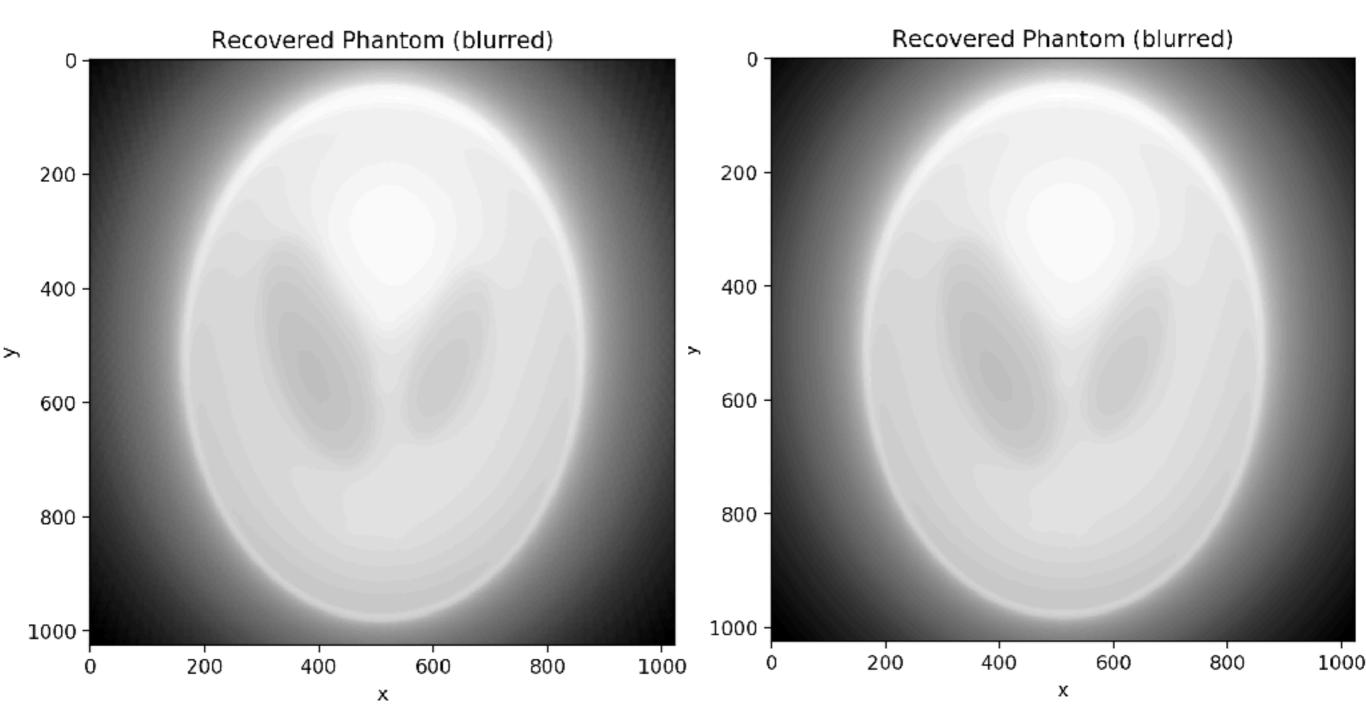
Why is it dual?
$$\langle f, \hat{R}^* g \rangle = \langle \hat{R} f, g \rangle$$

Dual Radon Transform - reconstructed images

PHANTOM

90 ANGLES

720 ANGLES

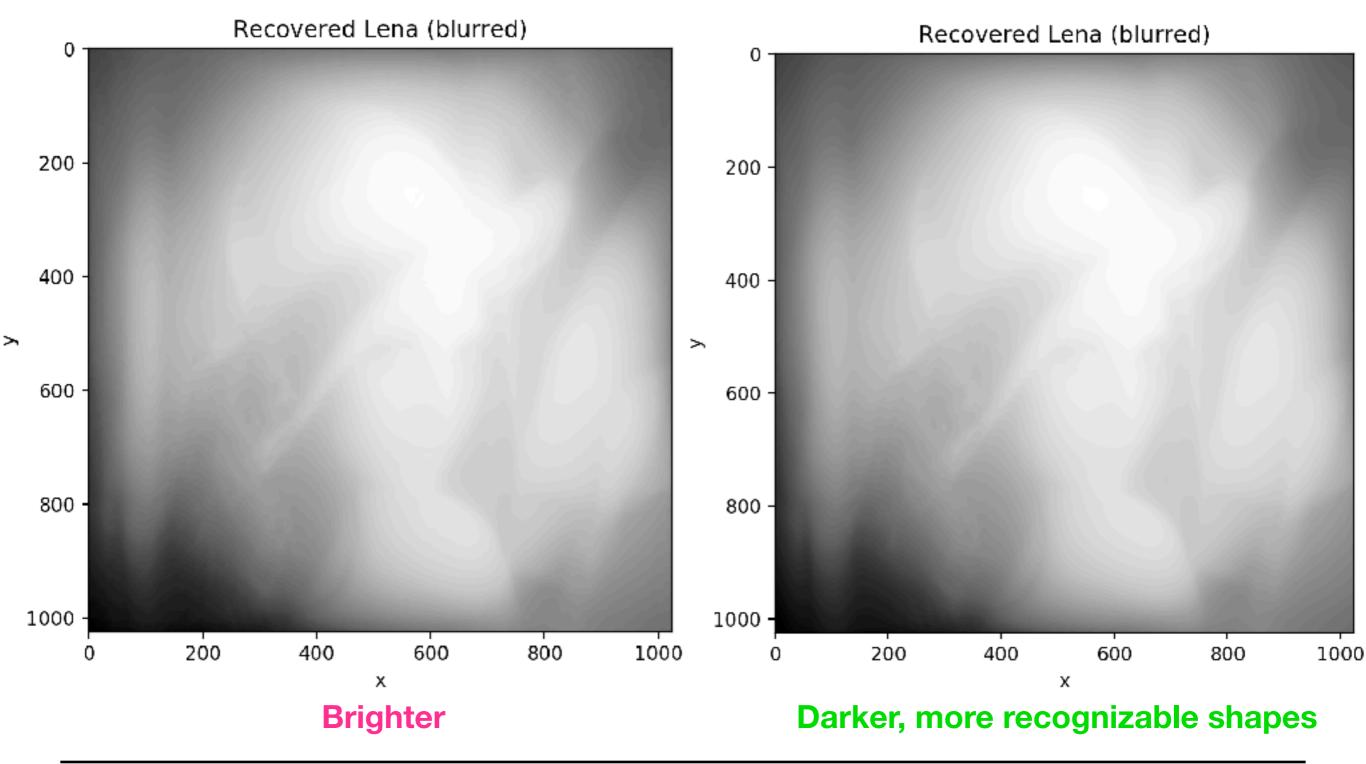


Shapes are more explicit

Dual Radon Transform - reconstructed images

LENA

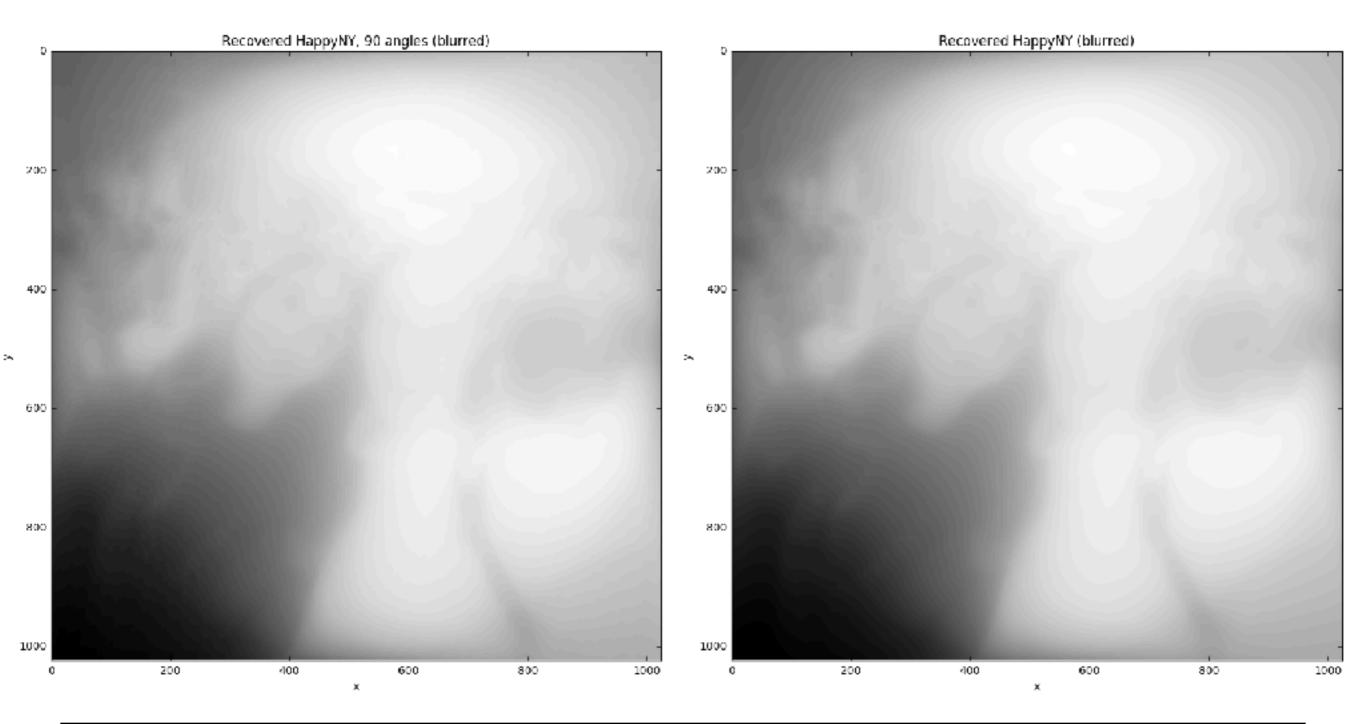
90 ANGLES



Dual Radon Transform - reconstructed images

HappyNY

90 ANGLES



Dual Radon Transform - problem

There is a **problem**:

Reconstructed images are very blurred.

Blur has low frequency nature.

The intuition, based on the fact, leads to the most nature way for deblurring: filtering. We can apply high-pass filter to cut off low frequency components on the reconstructed image.

> Actually, there is more common and convenient way, called *Hilbert transform*.

Hilbert Transform - image deblurring

- \hat{H}_s Hilbert transform operator
- $\frac{d}{ds}$ differentiation by distance to slice operator

f(x, y) = f - image

- \hat{R}^* Radon back projection operator
- \hat{R} Direct Radon transform operator

Filtered Back Projection (FBP) :

$$\frac{1}{2}\hat{R}^*\hat{H}_s\frac{\hat{d}}{ds}(\hat{R}f) = f$$

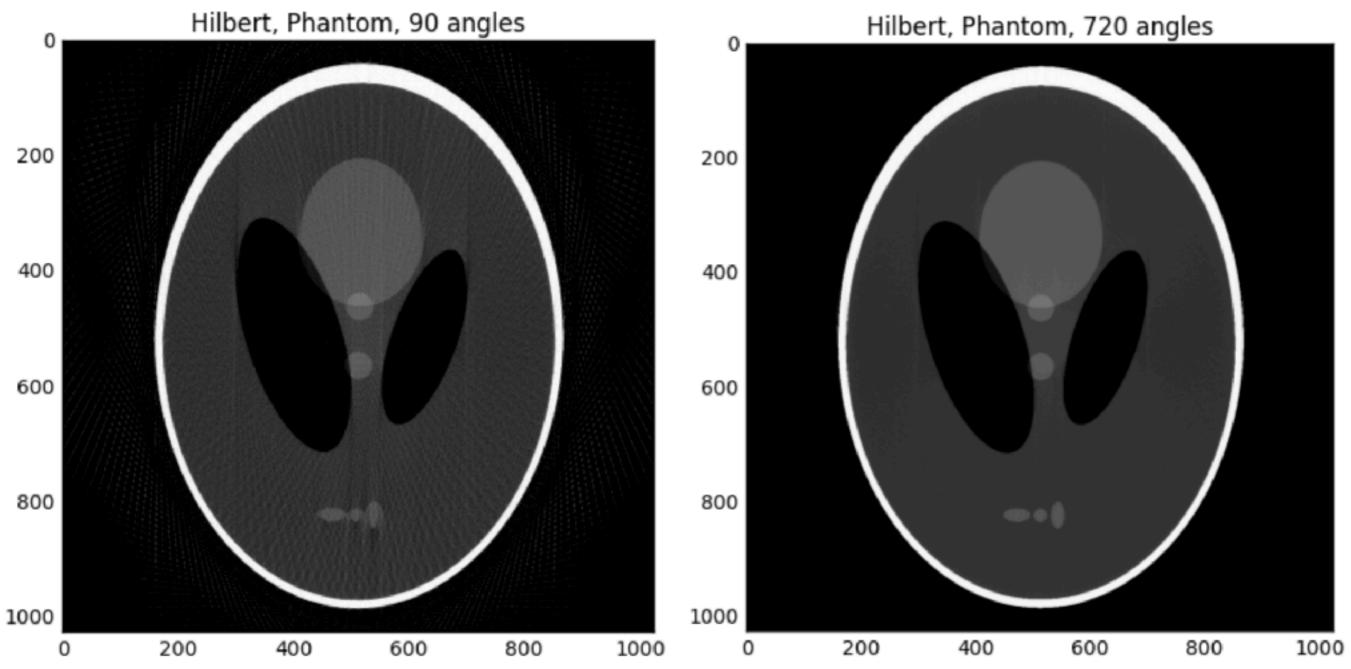
This formula is exactly the algorithm for implementation!

Hilbert Transform - deblurred images

90 ANGLES

PHANTOM

720 ANGLES

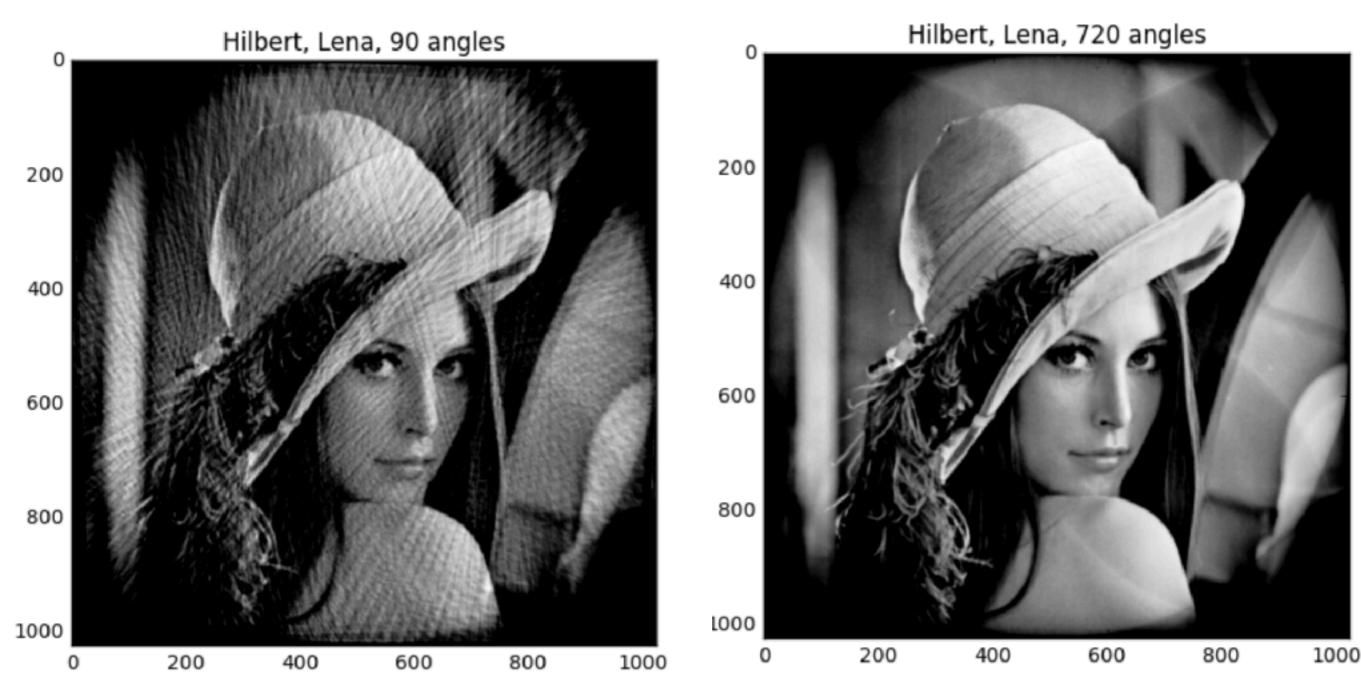


There are no 'lost angles', because the image has black background Piecewise-constant-nature image is well-reconstructable even with lack of observations

Hilbert Transform - deblurred images

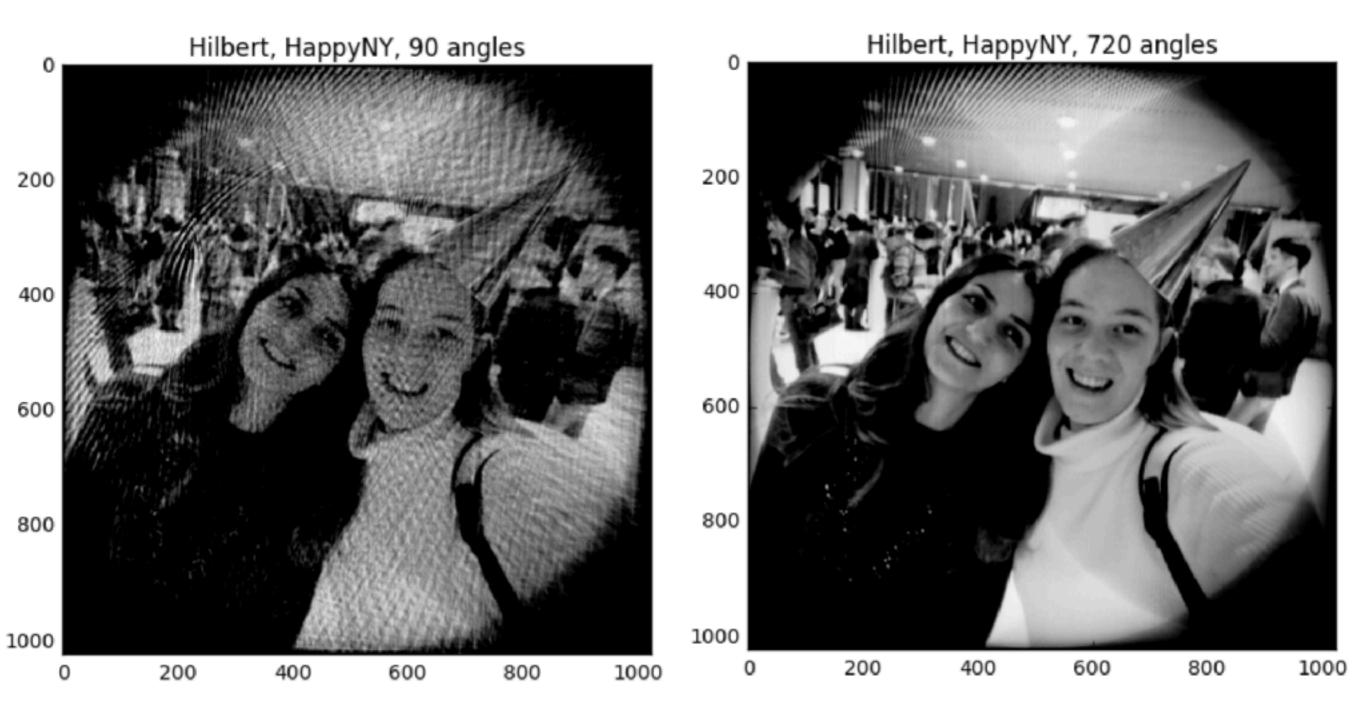
LENA

90 ANGLES



HappyNY HappyNY

90 ANGLES



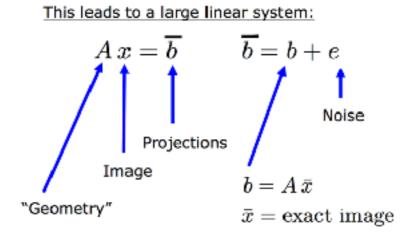
Algebraic reconstruction technique

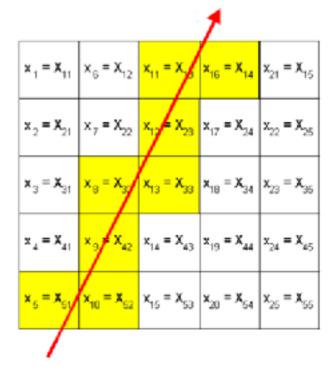
Damping of *i*-th X-ray through domain:

 $b_i = \int_{\mathrm{ray}_i} \chi(\mathbf{s}) \, d\ell, \quad \chi(\mathbf{s}) = ext{attenuation coef.}$

Assume $\chi(\mathbf{s})$ is a constant x_j in pixel j, leading to:

 $b_i = \sum_j a_{ij} x_j, \qquad a_{ij} = \text{length of ray } i \text{ in pixel } j.$



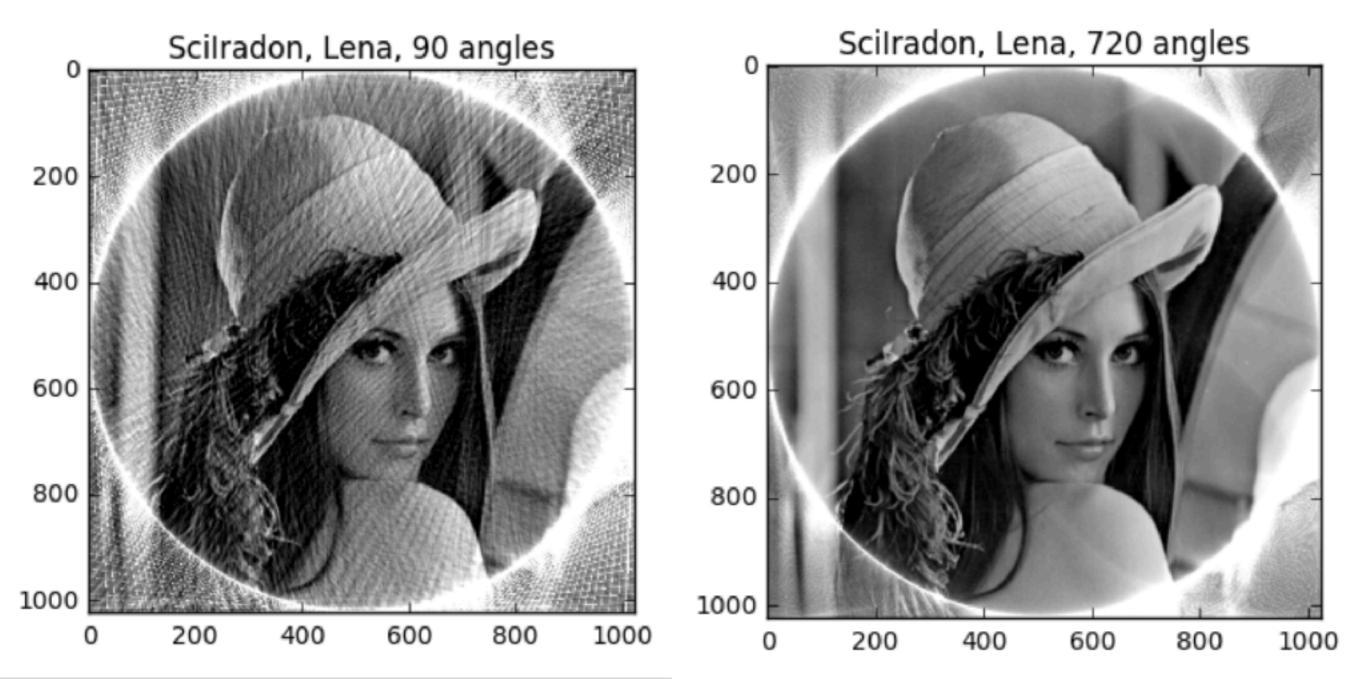


- In scikit-image package is used so called Algebraic Reconstruction Technique
- This approach is led by application of iterative methods (Kaczmarz' method)
- Basic property: solution will approach a least-squares solution of the equation set
- Good reconstruction normally obtained in a single iteration computationally effective
- More iterations more high frequency noise and less low frequency (mean squared error)
- Number of iteration set manually

Algebraic reconstruction technique

LENA

90 ANGLES



Accuracy and performance comparison

Our implementation

Inverse via Furier ST

Hilbert tr. filtering

	Full	Restricted
90	0.2830	0.1704
200	0.2706	0.1349
720	0.2749	0.1651

	Full	Restricted
90	0.61219	0.4583
200	0.5996	0.44130
720	0.59452	0.43768

Accuracy and performance comparison

Scikit

90 Angles

200 Angles

	Recovery time from sonogram	Relative error for norm L2	For the central part
Phantom	14.122	0.43161	0.24284
Lena	14.001	0.68268	0.30209
Happy NY	13.979	0.77730	0.33838

720 Angles

	Relative error for norm L2	For the central part
Phantom	0.21424	0.1333
Lena	0.58401	0.2438
Happy NY	0.6398	0.2826

Summary

- Slice Fourier Theorem good reconstruction, built-in filter (but quite slow)
- Dual Radon Transform blurred image Hilbert transform for deblurring - quite accurate reconstruction
- Algebraic approach the fastest, very accurate, but should be manually adaptated

