Low-rank Approximations for Incomplete Matrices

Liliya Ageeva Sergey Makarychev Aleksandr Rozhnov Anton Zhevnerchuk

Mentor: Maksim Rakhuba

Skoltech

There are some challenging industrial problems in which only incomplete data is available and the goal is to "complete" the data.

Skoltech

There are some challenging industrial problems in which only incomplete data is available and the goal is to "complete" the data.

Recommender systems

Skoltech

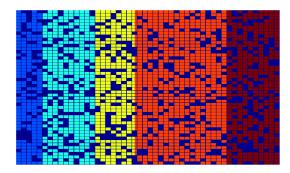
There are some challenging industrial problems in which only incomplete data is available and the goal is to "complete" the data.

- Recommender systems
- Repairing damaged files

Skoltech

There are some challenging industrial problems in which only incomplete data is available and the goal is to "complete" the data.

- Recommender systems
- Repairing damaged files



General Formulation

Input:

• Data dimensions (*M*, *N*)

• Set of known entries Ω and values at them (sparse matrix X) Output:

• Low-rank approximation Z

General Formulation

Input:

- Data dimensions (M, N)
- Set of known entries Ω and values at them (sparse matrix X) Output:
 - Low-rank approximation Z

Approach

Fix rank, minimize error at the known entries.

Approach II

Set maximum acceptable error at the known entries, minimize rank.

- Alternating Least Squares (Approach I)
- Riemannian optimization [Vandereycken, 2012] (Approach I)
- Soft-Input [Mazumder, Hastie, Tibshirani, 2010] (Approach II)

Alternating Least Squares(ALS)

Skoltech

minimize
$$\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2$$
 s.t. $\operatorname{rank}(Z) = K$

Alternating Least Squares (ALS)

- Find Z in the form $Z = U^T V$, $U \in \mathbb{R}^{K \times M}$, $V \in \mathbb{R}^{K \times N}$
- Update U and V independently until convergence
- At each step optimal U and V can be found analytically

minimize
$$\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2$$
 s.t. $\operatorname{rank}(Z) = K$

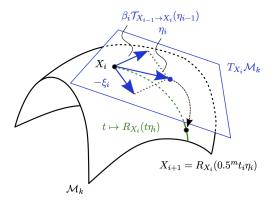
Alternating Least Squares (ALS)

- Find Z in the form $Z = U^T V$, $U \in \mathbb{R}^{K \times M}$, $V \in \mathbb{R}^{K \times N}$
- Update U and V independently until convergence
- At each step optimal U and V can be found analytically

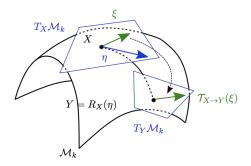
Avoiding overfitting: add regularization term $\lambda(||U||_F^2 + ||V||_F^2)$, still explicit formulas for optimal U and V^T at each step.

- Matrices of fixed-rank k forms a smooth manifold of dimensionality (m + n k)k.
- Tangent space of the same dimensionality.
- Algorithm closely resembles a typical non-linear CG algorithm with Armijo line-search for unconstrained optimization.

Visualization of non-linear CG on a Riemannian manifold



Vector transport on a Riemannian manifold



Rank minimization

Skoltech

Initial formulation:

minimize rank(Z) s.t.
$$\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2 \leq \delta$$
 (1)

Rank minimization

Skoltech

Initial formulation:

minimize
$$\operatorname{rank}(Z)$$
 s.t. $\frac{1}{2}\sum_{(i,j)\in\Omega}(X_{ij}-Z_{ij})^2\leq\delta$ (1)

Convex relaxation of (1):

$$\underset{Z}{\text{minimize}} \quad \|Z\|_* \quad \text{s.t.} \quad \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - Z_{ij})^2 \leq \delta \tag{2}$$

Rank minimization

Skoltech

Initial formulation:

minimize
$$\operatorname{rank}(Z)$$
 s.t. $\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2 \leq \delta$ (1)

Convex relaxation of (1):

minimize
$$||Z||_*$$
 s.t. $\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2 \leq \delta$ (2)

Equivalent reformulation of (2):

minimize
$$\frac{1}{2} \sum_{(i,j)\in\Omega} (X_{ij} - Z_{ij})^2 + \lambda \|Z\|_*$$
 (3)

If the full X is known and $U\Lambda V^T$ is SVD for X, then the solution to (3) is given by

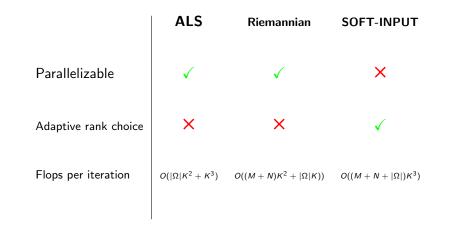
$$Z = U \Lambda_{\lambda} V^{\mathcal{T}}, \text{ where } \Lambda_{\lambda} = \operatorname{diag} \Big((\sigma_1 - \lambda)_+, \dots, (\sigma_{\min\{M,N\}} - \lambda)_+ \Big).$$

SOFT-INPUT

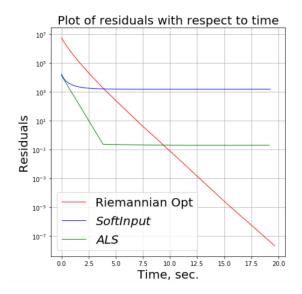
- Set Z_0 to be a zero-matrix.
- At each step k approximate unknown entries of X by Z_{k-1} , set Z_k to be a solution for a problem with all values given.

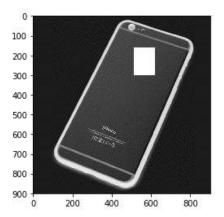
NOTE: Since approximated full matrix is of form $Z_k + (X - Z_{\Omega,k})$, MATVEC can be cheap.

Comparative Analysis

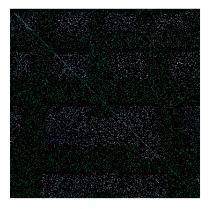


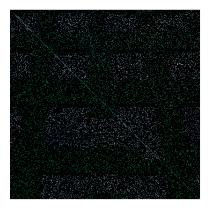
Comparative Analysis

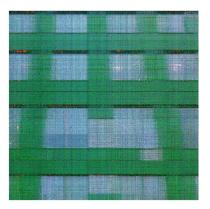




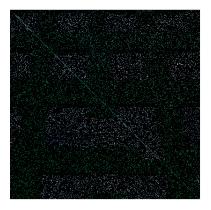


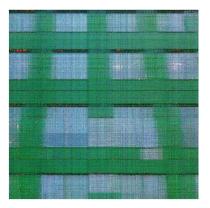






Skoltech





75 kB

451 kB

Project Group 22 Low-rank Approximations for Incomplete Matrices

- Implementation of three competitive completion algorithms
- Comparative analysis of implemented algorithms
- Application to repairing damaged files