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Background

There are some challenging industrial problems in which only
incomplete data is available and the goal is to “complete” the data.

Recommender systems

Repairing damaged files
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Problem Formulation

General Formulation

Input:

Data dimensions (M,N)

Set of known entries Ω and values at them (sparse matrix X )

Output:

Low-rank approximation Z

Approach I

Fix rank, minimize error at the
known entries.

Approach II

Set maximum acceptable error at
the known entries, minimize rank.
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Implemented approaches

Alternating Least Squares (Approach I)

Riemannian optimization [Vandereycken, 2012] (Approach I)

Soft-Input [Mazumder, Hastie, Tibshirani, 2010] (Approach II)
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Alternating Least Squares(ALS)

minimize
Z

1

2

∑
(i ,j)∈Ω

(Xij − Zij)
2 s.t. rank(Z ) = K

Alternating Least Squares (ALS)

Find Z in the form Z = UTV , U ∈ RK×M , V ∈ RK×N

Update U and V independently until convergence

At each step optimal U and V can be found analytically

Avoiding overfitting: add regularization term λ(‖U‖2
F + ‖V ‖2

F ),
still explicit formulas for optimal U and V T at each step.
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Riemannian optimization

Matrices of fixed-rank k forms a smooth manifold of
dimensionality (m + n − k)k .

Tangent space of the same dimensionality.

Algorithm closely resembles a typical non-linear CG algorithm
with Armijo line-search for unconstrained optimization.
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Riemannian optimization

Visualization of non-linear CG on a Riemannian manifold
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Riemannian optimization

Vector transport on a Riemannian manifold
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Rank minimization

Initial formulation:

minimize
Z

rank(Z ) s.t.
1

2

∑
(i ,j)∈Ω

(Xij − Zij)
2 ≤ δ (1)

Convex relaxation of (1):

minimize
Z

‖Z‖∗ s.t.
1

2

∑
(i ,j)∈Ω

(Xij − Zij)
2 ≤ δ (2)

Equivalent reformulation of (2):

minimize
Z

1

2

∑
(i ,j)∈Ω

(Xij − Zij)
2 + λ‖Z‖∗ (3)
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Soft-Input

If the full X is known and UΛV T is SVD for X , then the solution
to (3) is given by

Z = UΛλV
T , where Λλ = diag

(
(σ1 − λ)+, . . . , (σmin{M,N} − λ)+

)
.

SOFT-INPUT

• Set Z0 to be a zero-matrix.

• At each step k approximate unknown entries of X by Zk−1,
set Zk to be a solution for a problem with all values given.

NOTE: Since approximated full matrix is of form Zk + (X − ZΩ,k),
MATVEC can be cheap.
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Comparative Analysis

ALS Riemannian SOFT-INPUT

Parallelizable X X

Adaptive rank choice X

Flops per iteration O(|Ω|K2 + K3) O((M + N)K2 + |Ω|K)) O((M + N + |Ω|)K3)
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Comparative Analysis
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Demonstration
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Demonstration

75 kB 451 kB
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Conclusion

Implementation of three competitive completion algorithms

Comparative analysis of implemented algorithms

Application to repairing damaged files
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