Dynamic Programming on Tensors for Solving the
Problem of Dependency Parsing in NLP
Optimization&NLA course project

Sergey Divakov, Anastasia Koloskova, Alfredo De la Fuente and
Vladislav Pimanov

Skolkovo Institute of Science and Technology, Data Science Department
Moscow, Russia

22nd December 2017

SD, AK, ADF, VP OPT-NLA project 1/15

Outline

Introduction

Setup

Algorithms

Experiments

Conclusion

SD, AK, ADF, VP

OPT-NLA project

2/15

Introduction

Introduction

e Syntactic dependency parsing is the important problem in
statistical natural language processing.

e Our goal was to speed up the parsing process.

e Using tensor formulation of the inside-outside algorithm we
compared different tensor decompositions.

e Tucker and Tensor Train decompositions were applied.

e We were able to achieve significant performance increase with
good accuracy results.

SD, AK, ADF, VP OPT-NLA project 3/15

Setup

Probabilistic Context-free Grammars

G=(WN,L,R,P,mx),

e N — nonterminal symbols.

L — words (lexical tokens).

R — set of rules: a — bcora— x, a,b,ce N, x e L.

P — transition probabilities p(a — bc|a) and p(a — x|a).
e 71, — probability of a being the root symbol.

All probabilities satisfy normalization conditions.

SD, AK, ADF, VP OPT-NLA project 4 /15

Setup

Our purpose: given a sentence find the most probable tree of this

sentence.
S
,-""fm-\-"‘-v._
NP VP
//\\ /-\H-\‘\
Det N v NP
| | SN
the man saw Det N
| |
a mountain

Figure: Parse tree representation of the man saw a mountain

SD, AK, ADF, VP OPT-NLA project 5/15

Algorithms

Algorithms

She N S] 3
cats v v v
pizza N N, NP

without PP P

anchovies N

Figure: Inside Recursion

SD, AK, ADF, VP

6/ 15

Algorithms

Algorithms

Inside-Outside

Figure: Inside Recursion

SD, AK, ADF, VP OPT-NLA project 7/15

Al

Algorithms

gorithms

Algorithm 1 Inside-Outside Algorithm in the Tensor Form

1: (Inside base case): V(a — x;) € R [a"'], = p(a — x]a)
2: (Inside recursion):

[@]s = 02 Yassbe T2 ([0 M5, [4F2])
3: (Outside base case): Va € N [3VN], = 7,
4: (Outside recursion)

(81, = Yk Cpseo TE3P (815, 05 10) +
+ Zk:j+1 Zb—>ac Tli_éic([ﬁlk]ba [O‘H_l k])
. (Marginals): p(a,i,j) = [a¥], - [87],

o1

SD,

AK, ADF, VP OPT-NLA project 8/15

Algorithms

Tensor Decompositions (3D case)

Canonical

.
A= Z:)\,-a,1 ®a’®a’,
i=1

A eRm*mxm) ¢ R and a} € R"
Time of multiplying by vector (of size n3): O(rn3)

Tensor Train

n r2

Alin, i i3) = > Y Gilin, ki) Ga(ku, ia, ko) Ga(ka,),

ki=1 ko=1

A 6 Rnlxn2><n3, G]. 6 Rnlxrly G2 E erxnger, G3 6 Rr2><n3_
Time of multiplying by vector (of size n3): O(riran3)

SD, AK, ADF, VP OPT-NLA project 9/15

Algorithms

Tensor Decompositions (3D case)

vec(A) = (W ® V ® U) - vec(C),

A € Rmxnmxns (J ¢ Rmxn \/ c R™x2 W ¢ R®B*B and
C = erszXr3

Time of multiplying by vector (of size n3):

O (mr3 + rirr + rinng +) = O(nr? + rd).

SD, AK, ADF, VP OPT-NLA project 10 / 15

Experiments

Experiments

F1Score of TTRank10 vs Exact: u=04717, 0=01789

1

Frequency

SD, AK, ADF, VP

Frequency

Frequency

1

F15core of TTRank50 vs Exact: p=06776, 0=02004

11/ 15

Experiments

Experiments

(FLscore of TuckerRankl0 vs Exact: =04478, 0=0.1779 (FLscore of TuckerRank50 vs Exact : = 06661, 0=0.1893

Frequency

Frequency
-

Frequency
e

12 /15

SD, AK, ADF, VP

Experiments

Experiments

time measurements of parsing on several sentences of length 20

— tensortan
= ceer
=0
o
%0
z
2100
°
o —
® % o %

Figure: Time efficiency

SD, AK, ADF, VP LA project 13 / 15

Experiments

Experiments

Ty [e N /\
N ; p by = =
| i

Figure: Tree comparison

SD, AK, ADF, VP

14 / 15

Conclusion

Conclusion

e Using tensor formulation of the inside-outside algorithm we
tried different tensor decompositions to speed up parsing
process.

e Tucker and Tensor Train decompositions were applied.

e Experiments showed that using tensor decompositions we can
achieve significant speed up with the good accuracy of
parsing.

SD, AK, ADF, VP OPT-NLA project 15 / 15

	Introduction
	Setup
	Algorithms
	Experiments
	Conclusion

