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Introduction

Introduction

e Syntactic dependency parsing is the important problem in
statistical natural language processing.

e Our goal was to speed up the parsing process.

e Using tensor formulation of the inside-outside algorithm we
compared different tensor decompositions.

e Tucker and Tensor Train decompositions were applied.

e We were able to achieve significant performance increase with
good accuracy results.
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Setup

Probabilistic Context-free Grammars

G=(WN,L,R,P,mx),

e N — nonterminal symbols.

L — words (lexical tokens).

R — set of rules: a — bcora— x, a,b,ce N, x e L.

P — transition probabilities p(a — bc|a) and p(a — x|a).
e 71, — probability of a being the root symbol.

All probabilities satisfy normalization conditions.
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Setup

Our purpose: given a sentence find the most probable tree of this

sentence.
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Figure: Parse tree representation of the man saw a mountain
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Figure: Inside Recursion
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Algorithms

Inside-Outside

Figure: Inside Recursion
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Al

Algorithms

gorithms

Algorithm 1 Inside-Outside Algorithm in the Tensor Form

1: (Inside base case): V(a — x;) € R [a"'], = p(a — x]a)
2: (Inside recursion):

[@]s = 02 Yassbe T2 ([0 M5, [4F2])
3: (Outside base case): Va € N [3VN], = 7,
4: (Outside recursion)

(81, = Yk Cpseo TE3P (815, 05 10) +
+ Zk:j+1 Zb—>ac Tli_éic([ﬁlk]ba [O‘H_l k] )
. (Marginals): p(a,i,j) = [a¥], - [87],

o1
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Algorithms

Tensor Decompositions (3D case)

Canonical

.
A= Z:)\,-a,1 ®a’®a’,
i=1

A eRm*mxm ) ¢ R and a} € R"
Time of multiplying by vector (of size n3): O(rn3)

Tensor Train

n r2

Alin, i i3) = > Y Gilin, ki) Ga(ku, ia, ko) Ga(ka, ),

ki=1 ko=1

A 6 Rnlxn2><n3, G]. 6 Rnlxrly G2 E erxnger, G3 6 Rr2><n3_
Time of multiplying by vector (of size n3): O(riran3)
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Algorithms

Tensor Decompositions (3D case)

vec(A) = (W ® V ® U) - vec(C),

A € Rmxnmxns (J ¢ Rmxn \/ c R™x2 W ¢ R®B*B and
C = erszXr3

Time of multiplying by vector (of size n3):

O (mr3 + rirr + rinng + ) = O(nr? + rd).
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Experiments

F1Score of TTRank10 vs Exact: u=04717, 0=01789
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F15core of TTRank50 vs Exact: p=06776, 0=02004
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Experiments

Experiments

(FLscore of TuckerRankl0 vs Exact: =04478, 0=0.1779 (FLscore of TuckerRank50 vs Exact : = 06661, 0=0.1893
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Experiments

Experiments

time measurements of parsing on several sentences of length 20
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Figure: Time efficiency
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Figure: Tree comparison
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Conclusion

Conclusion

e Using tensor formulation of the inside-outside algorithm we
tried different tensor decompositions to speed up parsing
process.

e Tucker and Tensor Train decompositions were applied.

e Experiments showed that using tensor decompositions we can
achieve significant speed up with the good accuracy of
parsing.

SD, AK, ADF, VP OPT-NLA project 15 / 15



	Introduction
	Setup
	Algorithms
	Experiments
	Conclusion

