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Introduction

• Syntactic dependency parsing is the important problem in
statistical natural language processing.

• Our goal was to speed up the parsing process.

• Using tensor formulation of the inside-outside algorithm we
compared different tensor decompositions.

• Tucker and Tensor Train decompositions were applied.

• We were able to achieve significant performance increase with
good accuracy results.
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Setup

Probabilistic Context-free Grammars

G = (N ,L,R,P, π),

• N — nonterminal symbols.

• L — words (lexical tokens).

• R — set of rules: a→ bc or a→ x , a, b, c ∈ N , x ∈ L.

• P — transition probabilities p(a→ bc|a) and p(a→ x |a).

• πa — probability of a being the root symbol.

• All probabilities satisfy normalization conditions.
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Setup

Our purpose: given a sentence find the most probable tree of this
sentence.

Figure: Parse tree representation of the man saw a mountain
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Algorithms

Inside-Outside

Figure: Inside Recursion

SD, AK, ADF, VP OPT-NLA project 6 / 15



Introduction
Setup

Algorithms
Experiments
Conclusion

Algorithms

Inside-Outside

Figure: Inside Recursion
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Algorithms

Algorithm 1 Inside-Outside Algorithm in the Tensor Form

1: (Inside base case): ∀(a→ xi ) ∈ R [αi ,i ]a = p(a→ x |a)
2: (Inside recursion):

[αi ,j ]a =
∑j−1

k=i

∑
a→bc T

a→bc([αi ,k ]b, [α
k+1,j ]c)

3: (Outside base case): ∀a ∈ N [β1,N ]a = πa
4: (Outside recursion):

[βi ,j ]a =
∑i−1

k=1

∑
b→ca T

b→ca
(1,2) ([βk,j ]b, [α

k,i−1]c)+

+
∑N

k=j+1

∑
b→ac T

b→ac
(1,3) ([βik ]b, [α

j+1,k ]c)

5: (Marginals): µ(a, i , j) = [αij ]a · [βij ]a
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Tensor Decompositions (3D case)

Canonical

A =
r∑

i=1

λia
1
i ⊗ a2i ⊗ a3i ,

A ∈ Rn1×n2×n3 , λi ∈ R and aji ∈ Rnj

Time of multiplying by vector (of size n3): O(rn3)

Tensor Train

A(i1, i2, i3) =

r1∑
k1=1

r2∑
k2=1

G1(i1, k1)G2(k1, i2, k2)G3(k2, i3),

A ∈ Rn1×n2×n3 ,G1 ∈ Rn1×r1 , G2 ∈ Rr1×n2×r2 , G3 ∈ R r2×n3 .
Time of multiplying by vector (of size n3): O(r1r2n3)
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Tensor Decompositions (3D case)

Tucker

vec(A) = (W ⊗ V ⊗ U) · vec(C),

A ∈ Rn1×n2×n3 ,U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 and
C ∈ Rr1×r2×r3

Time of multiplying by vector (of size n3):
O (n3r3 + r1r2r3 + r1r2n1 + r2n2) = O(nr2 + r3).
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Experiments

Figure: F1 scores TT
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Experiments

Figure: F1 scores Tucker
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Experiments

Figure: Time efficiency
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Experiments

Figure: Tree comparison
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Conclusion

• Using tensor formulation of the inside-outside algorithm we
tried different tensor decompositions to speed up parsing
process.

• Tucker and Tensor Train decompositions were applied.

• Experiments showed that using tensor decompositions we can
achieve significant speed up with the good accuracy of
parsing.
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