

Dynamic Programming on Tensors for Solving the Problem of Dependency Parsing in NLP Optimization&NLA course project

Sergey Divakov, Anastasia Koloskova, Alfredo De la Fuente and Vladislav Pimanov

Skolkovo Institute of Science and Technology, Data Science Department Moscow, Russia

22nd December 2017

Outline

Introduction

Setup

Algorithms

Experiments

Conclusion

SD, AK, ADF, VP

Introduction

- Syntactic dependency parsing is the important problem in statistical natural language processing.
- Our goal was to speed up the parsing process.
- Using tensor formulation of the inside-outside algorithm we compared different tensor decompositions.
- Tucker and Tensor Train decompositions were applied.
- We were able to achieve significant performance increase with good accuracy results.

Setup

Probabilistic Context-free Grammars

$$G = (\mathcal{N}, \mathcal{L}, \mathcal{R}, \mathcal{P}, \pi),$$

- \mathcal{N} nonterminal symbols.
- \mathcal{L} words (lexical tokens).
- \mathcal{R} set of rules: $a \rightarrow bc$ or $a \rightarrow x$, $a, b, c \in \mathcal{N}$, $x \in \mathcal{L}$.
- \mathcal{P} transition probabilities $p(a \rightarrow bc|a)$ and $p(a \rightarrow x|a)$.
- π_a probability of *a* being the root symbol.
- All probabilities satisfy normalization conditions.

Setup

Our purpose: given a sentence find the most probable tree of this sentence.

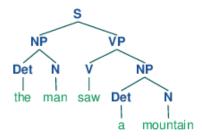
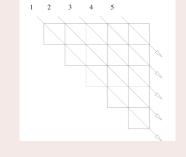


Figure: Parse tree representation of the man saw a mountain

Algorithms

Inside-Outside

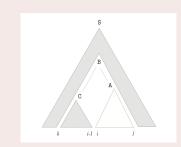


She	N	S	S		S
	eats	v	v		v
	1	pizza	N		N, N-P
without PH				PP	Р
anchovies					N

Figure: Inside Recursion

Algorithms

Inside-Outside



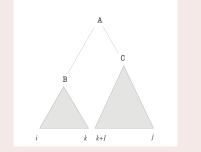


Figure: Inside Recursion

Algorithms

Algorithm 1 Inside-Outside Algorithm in the Tensor Form

- 1: (Inside base case): $\forall (a \rightarrow x_i) \in \mathcal{R} \ [\alpha^{i,i}]_a = p(a \rightarrow x|a)$
- 2: (Inside recursion):

$$[\alpha^{i,j}]_{a} = \sum_{k=i}^{j-1} \sum_{a \to bc} T^{a \to bc} ([\alpha^{i,k}]_{b}, [\alpha^{k+1,j}]_{c})$$

- 3: (Outside base case): $\forall a \in \mathcal{N} \ [\beta^{1,N}]_a = \pi_a$
- 4: (Outside recursion):

$$[\beta^{i,j}]_{a} = \sum_{k=1}^{i-1} \sum_{b \to ca} T^{b \to ca}_{(1,2)} ([\beta^{k,j}]_{b}, [\alpha^{k,i-1}]_{c}) + \sum_{k=j+1}^{N} \sum_{b \to ac} T^{b \to ac}_{(1,3)} ([\beta^{ik}]_{b}, [\alpha^{j+1,k}]_{c})$$

5: (Marginals): $\mu(a, i, j) = [\alpha^{ij}]_a \cdot [\beta^{ij}]_a$



Tensor Decompositions (3D case)

Canonical

$$\mathcal{A} = \sum_{i=1}^{r} \lambda_i \mathbf{a}_i^1 \otimes \mathbf{a}_i^2 \otimes \mathbf{a}_i^3,$$

 $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, $\lambda_i \in \mathbb{R}$ and $\mathbf{a}_i^j \in \mathbb{R}^{n_j}$ Time of multiplying by vector (of size n_3): $\mathcal{O}(rn_3)$

Tensor Train

$$\mathcal{A}(i_1, i_2, i_3) = \sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} G_1(i_1, k_1) G_2(k_1, i_2, k_2) G_3(k_2, i_3),$$

 $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, G_1 \in \mathbb{R}^{n_1 \times r_1}, G_2 \in \mathbb{R}^{r_1 \times n_2 \times r_2}, G_3 \in \mathbb{R}^{r_2 \times n_3}.$ Time of multiplying by vector (of size n_3): $\mathcal{O}(r_1r_2n_3)$

SD, AK, ADF, VP



Tensor Decompositions (3D case)

Tucker

$$\mathsf{vec}(\mathcal{A}) = (W \otimes V \otimes U) \cdot \mathsf{vec}(\mathcal{C}),$$

 $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, $U \in \mathbb{R}^{n_1 \times r_1}$, $V \in \mathbb{R}^{n_2 \times r_2}$, $W \in \mathbb{R}^{n_3 \times r_3}$ and $\mathcal{C} \in \mathbb{R}^{r_1 \times r_2 \times r_3}$

Time of multiplying by vector (of size n_3): $\mathcal{O}(n_3r_3 + r_1r_2r_3 + r_1r_2n_1 + r_2n_2) = \mathcal{O}(nr^2 + r^3).$

Experiments

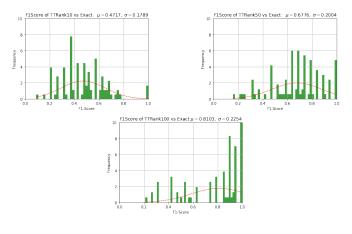


Figure: F1 scores TT

Experiments

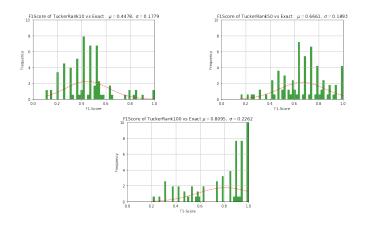


Figure: F1 scores Tucker

Experiments

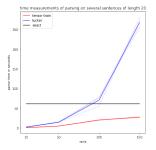


Figure: Time efficiency

Experiments

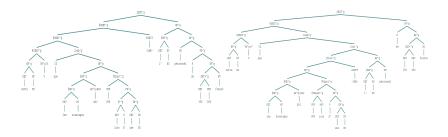


Figure: Tree comparison

Conclusion

- Using tensor formulation of the inside-outside algorithm we tried different tensor decompositions to speed up parsing process.
- Tucker and Tensor Train decompositions were applied.
- Experiments showed that using tensor decompositions we can achieve significant speed up with the good accuracy of parsing.