
Introduction
Setup

Algorithms
Experiments
Conclusion

Dynamic Programming on Tensors for Solving the
Problem of Dependency Parsing in NLP

Optimization&NLA course project

Sergey Divakov, Anastasia Koloskova, Alfredo De la Fuente and
Vladislav Pimanov

Skolkovo Institute of Science and Technology, Data Science Department
Moscow, Russia

22nd December 2017

SD, AK, ADF, VP OPT-NLA project 1 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Outline

Introduction

Setup

Algorithms

Experiments

Conclusion

SD, AK, ADF, VP OPT-NLA project 2 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Introduction

• Syntactic dependency parsing is the important problem in
statistical natural language processing.

• Our goal was to speed up the parsing process.

• Using tensor formulation of the inside-outside algorithm we
compared different tensor decompositions.

• Tucker and Tensor Train decompositions were applied.

• We were able to achieve significant performance increase with
good accuracy results.

SD, AK, ADF, VP OPT-NLA project 3 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Setup

Probabilistic Context-free Grammars

G = (N ,L,R,P, π),

• N — nonterminal symbols.

• L — words (lexical tokens).

• R — set of rules: a→ bc or a→ x , a, b, c ∈ N , x ∈ L.

• P — transition probabilities p(a→ bc|a) and p(a→ x |a).

• πa — probability of a being the root symbol.

• All probabilities satisfy normalization conditions.

SD, AK, ADF, VP OPT-NLA project 4 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Setup

Our purpose: given a sentence find the most probable tree of this
sentence.

Figure: Parse tree representation of the man saw a mountain

SD, AK, ADF, VP OPT-NLA project 5 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Algorithms

Inside-Outside

Figure: Inside Recursion

SD, AK, ADF, VP OPT-NLA project 6 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Algorithms

Inside-Outside

Figure: Inside Recursion

SD, AK, ADF, VP OPT-NLA project 7 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Algorithms

Algorithm 1 Inside-Outside Algorithm in the Tensor Form

1: (Inside base case): ∀(a→ xi) ∈ R [αi ,i]a = p(a→ x |a)
2: (Inside recursion):

[αi ,j]a =
∑j−1

k=i

∑
a→bc T

a→bc([αi ,k]b, [α
k+1,j]c)

3: (Outside base case): ∀a ∈ N [β1,N]a = πa
4: (Outside recursion):

[βi ,j]a =
∑i−1

k=1

∑
b→ca T

b→ca
(1,2) ([βk,j]b, [α

k,i−1]c)+

+
∑N

k=j+1

∑
b→ac T

b→ac
(1,3) ([βik]b, [α

j+1,k]c)

5: (Marginals): µ(a, i , j) = [αij]a · [βij]a

SD, AK, ADF, VP OPT-NLA project 8 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Tensor Decompositions (3D case)

Canonical

A =
r∑

i=1

λia
1
i ⊗ a2i ⊗ a3i ,

A ∈ Rn1×n2×n3 , λi ∈ R and aji ∈ Rnj

Time of multiplying by vector (of size n3): O(rn3)

Tensor Train

A(i1, i2, i3) =

r1∑
k1=1

r2∑
k2=1

G1(i1, k1)G2(k1, i2, k2)G3(k2, i3),

A ∈ Rn1×n2×n3 ,G1 ∈ Rn1×r1 , G2 ∈ Rr1×n2×r2 , G3 ∈ R r2×n3 .
Time of multiplying by vector (of size n3): O(r1r2n3)

SD, AK, ADF, VP OPT-NLA project 9 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Tensor Decompositions (3D case)

Tucker

vec(A) = (W ⊗ V ⊗ U) · vec(C),

A ∈ Rn1×n2×n3 ,U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 and
C ∈ Rr1×r2×r3

Time of multiplying by vector (of size n3):
O (n3r3 + r1r2r3 + r1r2n1 + r2n2) = O(nr2 + r3).

SD, AK, ADF, VP OPT-NLA project 10 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Experiments

Figure: F1 scores TT

SD, AK, ADF, VP OPT-NLA project 11 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Experiments

Figure: F1 scores Tucker

SD, AK, ADF, VP OPT-NLA project 12 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Experiments

Figure: Time efficiency

SD, AK, ADF, VP OPT-NLA project 13 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Experiments

Figure: Tree comparison

SD, AK, ADF, VP OPT-NLA project 14 / 15

Introduction
Setup

Algorithms
Experiments
Conclusion

Conclusion

• Using tensor formulation of the inside-outside algorithm we
tried different tensor decompositions to speed up parsing
process.

• Tucker and Tensor Train decompositions were applied.

• Experiments showed that using tensor decompositions we can
achieve significant speed up with the good accuracy of
parsing.

SD, AK, ADF, VP OPT-NLA project 15 / 15

	Introduction
	Setup
	Algorithms
	Experiments
	Conclusion

