The zarr files are not permanent. To test this part yourself you will need to create zarr files and write to an s3 bucket that you have read/write access.
In [1]:
#librariesimportdatetimeasdtimportxarrayasxrimportfsspecimports3fsimportos.pathimportmatplotlib.pyplotasplt# make datasets display nicelyxr.set_options(display_style="html")#magic fncts #put static images of your plot embedded in the notebook%matplotlib inline
plt.rcParams['figure.figsize']=12,6%config InlineBackend.figure_format = 'retina'
The last 30 days are on S3 standard access, after that it is move to infrequent access
It takes about 3 minutes to connect to a days worth of data for a single product
In [2]:
defget_geo_data(sat,lyr,idyjl):# arguments# sat goes-east,goes-west,himawari# lyr year# idyjl day of yeard=dt.datetime(lyr,1,1)+dt.timedelta(days=idyjl)fs=s3fs.S3FileSystem(anon=True)#connect to s3 bucket!#create strings for the year and julian dayimon,idym=d.month,d.daysyr,sjdy,smon,sdym=str(lyr).zfill(4),str(idyjl).zfill(3),str(imon).zfill(2),str(idym).zfill(2)#use glob to list all the files in the directoryifsat=='goes-east':file_location,var=fs.glob('s3://noaa-goes16/ABI-L2-SSTF/'+syr+'/'+sjdy+'/*/*.nc'),'SST'ifsat=='goes-west':file_location,var=fs.glob('s3://noaa-goes17/ABI-L2-SSTF/'+syr+'/'+sjdy+'/*/*.nc'),'SST'ifsat=='himawari':file_location,var=fs.glob('s3://noaa-himawari8/AHI-L2-FLDK-SST/'+syr+'/'+smon+'/'+sdym+'/*/*L2P*.nc'),'sea_surface_temperature'#make a list of links to the file keysiflen(file_location)<1:returnfile_obfile_ob=[fs.open(file)forfileinfile_location]#open connection to files#open all the day's datads=xr.open_mfdataset(file_ob,combine='nested',concat_dim='time')#note file is super messed up formatting#clean up coordinates which are a MESS in GOES#rename one of the coordinates that doesn't match a dim & shouldifnotsat=='himawari':ds=ds.rename({'t':'time'})ds=ds.reset_coords()else:ds=ds.rename({'ni':'x','nj':'y'})#for himawari change dims to match goes #put in to Celsius#ds[var] -= 273.15 #nice python shortcut to +- from itself a-=273.15 is the same as a=a-273.15#ds[var].attrs['units'] = '$^\circ$C'returnds
Open a day of GOES-16 (East Coast) Data and plot the average SST - netCDF¶
CPU times: user 15.2 s, sys: 2.31 s, total: 17.5 s
Wall time: 2min 45s
In [4]:
%%timesubset=ds.sel(x=slice(-0.01,0.06),y=slice(0.12,0.09))#reduce to GS regionmasked=subset.SST.where(subset.DQF==0)mean_dy=masked.mean('time',skipna=True)#here I want all possible values so skipna=Truemean_dy.plot(vmin=16+273.15,vmax=29+273.15,cmap='inferno')
CPU times: user 1min 46s, sys: 34.1 s, total: 2min 20s
Wall time: 19min 19s
/srv/conda/envs/notebook/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
x = np.divide(x1, x2, out)
Out[4]:
<matplotlib.collections.QuadMesh at 0x7f5e4d9bbf10>
Exact same process, but with Zarr file stored on S3 us-east-1, just like the netcdf files above¶
retrieval_local_zenith_angle: point (good or degraded quality pixel produced) quantitative_local_zenith_angle: point (good quality pixel produced) retrieval_solar_zenith_angle: point (good quality pixel produced) t: point area: point
coordinates :
retrieval_local_zenith_angle quantitative_local_zenith_angle retrieval_solar_zenith_angle t y x
grid_mapping :
goes_imager_projection
long_name :
ABI L2+ Sea Surface (Skin) Temperature
resolution :
y: 0.000056 rad x: 0.000056 rad
standard_name :
sea_surface_skin_temperature
units :
K
valid_range :
[0, -6]
Array
Chunk
Bytes
2.82 GB
117.68 MB
Shape
(24, 5424, 5424)
(1, 5424, 5424)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
SST_day_night_emissive_band_ids
(SST_day_night_emissive_bands)
int8
dask.array<chunksize=(4,), meta=np.ndarray>
long_name :
ABI band identifiers used to generate Sea Surface (Skin) Temperature product (day and night pixels)
standard_name :
sensor_band_identifier
units :
1
Array
Chunk
Bytes
4 B
4 B
Shape
(4,)
(4,)
Count
2 Tasks
1 Chunks
Type
int8
numpy.ndarray
SST_day_night_emissive_wavelengths
(SST_day_night_emissive_bands)
float32
dask.array<chunksize=(4,), meta=np.ndarray>
long_name :
ABI band central emissive wavelengths used to generate Sea Surface (Skin) Temperature product (day and night pixels)
standard_name :
sensor_band_central_radiation_wavelength
units :
um
Array
Chunk
Bytes
16 B
16 B
Shape
(4,)
(4,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
SST_night_only_emissive_band_id
(SST_night_only_emissive_band)
int8
dask.array<chunksize=(1,), meta=np.ndarray>
long_name :
ABI band identifier used to generate Sea Surface (Skin) Temperature product (night pixels only)
standard_name :
sensor_band_identifier
units :
1
Array
Chunk
Bytes
1 B
1 B
Shape
(1,)
(1,)
Count
2 Tasks
1 Chunks
Type
int8
numpy.ndarray
SST_night_only_emissive_wavelength
(SST_night_only_emissive_band)
float32
dask.array<chunksize=(1,), meta=np.ndarray>
long_name :
ABI band central emissive wavelength used to generate Sea Surface (Skin) Temperature product (night pixels only)
container for filenames of dynamic algorithm input data
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
algorithm_product_version_container
(time)
int32
dask.array<chunksize=(24,), meta=np.ndarray>
algorithm_version :
OR_ABI-L2-ALG-SST_v01r00.zip
long_name :
container for algorithm package filename and product version
product_version :
v01r00
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
day_solar_zenith_angle
()
float32
...
bounds :
day_solar_zenith_angle_bounds
long_name :
threshold angle of the day region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
array(85., dtype=float32)
day_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the day region
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
geospatial_lat_lon_extent
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
geospatial_eastbound_longitude :
[6.299499988555908]
geospatial_lat_center :
[0.0]
geospatial_lat_nadir :
[0.0]
geospatial_lat_units :
degrees_north
geospatial_lon_center :
[-75.0]
geospatial_lon_nadir :
[-75.0]
geospatial_lon_units :
degrees_east
geospatial_northbound_latitude :
[81.32820129394531]
geospatial_southbound_latitude :
[-81.32820129394531]
geospatial_westbound_longitude :
[-156.29949951171875]
long_name :
geospatial latitude and longitude references
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
goes_imager_projection
(time)
int32
dask.array<chunksize=(24,), meta=np.ndarray>
grid_mapping_name :
geostationary
inverse_flattening :
[298.2572221]
latitude_of_projection_origin :
[0.0]
long_name :
GOES-R ABI fixed grid projection
longitude_of_projection_origin :
[-75.0]
perspective_point_height :
[35786023.0]
semi_major_axis :
[6378137.0]
semi_minor_axis :
[6356752.31414]
sweep_angle_axis :
x
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
max_obs_modeled_diff_SST_night_only_emissive_band
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
maximum difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
max_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
maximum difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
maximum_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
mean_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
mean_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean sea surface temperature
standard_name :
sea_surface_temperature
units :
K
valid_range :
[180.0, 340.0]
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
min_obs_modeled_diff_SST_night_only_emissive_band
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
min_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
minimum_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum sea surface temperature
standard_name :
sea_surface_temperature
units :
K
valid_range :
[180.0, 340.0]
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
night_solar_zenith_angle
()
float32
...
bounds :
night_solar_zenith_angle_bounds
long_name :
threshold angle of the night region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
array(95., dtype=float32)
night_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the night region
quantitative_local_zenith_angle: sum day_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle day_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of day sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
number_of_night_SST_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of night sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
number_of_twilight_SST_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum twilight_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_twilight_solar_zenith_angle t y_image x_image
threshold angle between the line of sight to the satellite and the local zenith at the observation target for good quality sea surface (skin) temperature data production
standard_name :
platform_zenith_angle
units :
degree
array(67., dtype=float32)
quantitative_local_zenith_angle_bounds
(time, number_of_LZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
local zenith angle degree range where good quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
retrieval_local_zenith_angle
()
float32
...
bounds :
retrieval_local_zenith_angle_bounds
long_name :
threshold angle between the line of sight to the satellite and the local zenith at the observation target for good or degraded quality sea surface (skin) temperature data production
standard_name :
platform_zenith_angle
units :
degree
array(90., dtype=float32)
retrieval_local_zenith_angle_bounds
(time, number_of_LZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
local zenith angle degree range where good or degraded quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
retrieval_solar_zenith_angle
()
float32
...
bounds :
retrieval_solar_zenith_angle_bounds
long_name :
threshold angle between the line of sight to the sun and the local zenith at the observation target for good quality sea surface (skin) temperature data production
standard_name :
solar_zenith_angle
units :
degree
array(180., dtype=float32)
retrieval_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range where good quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
sea_surface_temp_outlier_pixel_count
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels whose values are outside valid measurement range only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of sea surface temperature pixels whose value is outside valid measurement range
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
standard_deviation_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard deviation of sea surface temperature values
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard deviation of the difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) values for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
std_dev_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard_deviation of the difference of the retrieved SST and Reynolds real-time global SST analysis values used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
time_bounds
(time, number_of_time_bounds)
datetime64[ns]
dask.array<chunksize=(24, 2), meta=np.ndarray>
long_name :
Scan start and end times in seconds since epoch (2000-01-01 12:00:00)
Array
Chunk
Bytes
384 B
384 B
Shape
(24, 2)
(24, 2)
Count
2 Tasks
1 Chunks
Type
datetime64[ns]
numpy.ndarray
total_number_of_degraded_quality_ocean_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: degraded quality pixels only) where sea
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of degraded quality sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
total_number_of_good_quality_ocean_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of good quality sea surface temperature pixels
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: severely degraded quality pixels only) where sea
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of severely degraded quality sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
total_number_of_unprocessed_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: invalid due to unprocessed pixels only)
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of unprocessed pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
twilight_solar_zenith_angle
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
bounds :
twilight_solar_zenith_angle_bounds
long_name :
midpoint of the twilight region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
twilight_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the twilight region
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
x_image
()
float32
...
axis :
X
long_name :
GOES-R fixed grid projection x-coordinate center of image
standard_name :
projection_x_coordinate
units :
rad
array(0., dtype=float32)
x_image_bounds
(time, number_of_image_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
GOES-R fixed grid projection x-coordinate west/east extent of image
units :
rad
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
y_image
()
float32
...
axis :
Y
long_name :
GOES-R fixed grid projection y-coordinate center of image
standard_name :
projection_y_coordinate
units :
rad
array(0., dtype=float32)
y_image_bounds
(time, number_of_image_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
GOES-R fixed grid projection y-coordinate north/south extent of image
units :
rad
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
Conventions :
CF-1.7
Metadata_Conventions :
Unidata Dataset Discovery v1.0
_FillValue :
[-999.0]
cdm_data_type :
Image
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
DOC/NOAA/NESDIS > U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Services
instrument_ID :
FM1
instrument_type :
GOES R Series Advanced Baseline Imager
iso_series_metadata_id :
d70be540-c38a-11e0-962b-0800200c9a66
keywords :
OCEANS > OCEAN TEMPERATURE > SEA SURFACE TEMPERATURE
keywords_vocabulary :
NASA Global Change Master Directory (GCMD) Earth Science Keywords, Version 7.0.0.0.0
license :
Unclassified data. Access is restricted to approved users only.
long_name :
standard deviation of the difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) values for the day and night emissive band central wavelengths used in the generation of the sea surface temperature product
naming_authority :
gov.nesdis.noaa
orbital_slot :
GOES-East
platform_ID :
G16
processing_level :
National Aeronautics and Space Administration (NASA) L2
production_data_source :
Realtime
production_environment :
OE
production_site :
NSOF
project :
GOES
scene_id :
Full Disk
spatial_resolution :
2km at nadir
standard_name_vocabulary :
CF Standard Name Table (v35, 20 July 2016)
summary :
The ABI Sea Surface Temperature (SST) is calculated using a 4-band (8.44, 10.33, 11.19, and 12.27 um) non-linear SST (NLSST) regression equation with coefficients calculated using match-ups with in situ SSTs from drifting and tropical moored buoys. Hence on average, ABI SST is close to in situ (bulk) SST, but its spatial and temporal variations are representative of skin SST (to which ABI BTs are sensitive). One regression equation, and one set of regression coefficients are used across day and night, resulting in consistent and continuous SST diurnal cycle. Note that SST is reported over all water pixels, and only data with quality flag DQF=0 should be used to select clear-sky pixels.
time_coverage_end :
2020-07-28T00:59:51.3Z
time_coverage_start :
2020-07-28T00:00:20.5Z
timeline_id :
ABI Mode 6
title :
ABI L2 Sea Surface (Skin) Temperature
units :
K
In [6]:
%%timesubset=ds.sel(x=slice(-0.01,0.06),y=slice(0.12,0.09))#reduce to GS regionmasked=subset.SST.where(subset.DQF==0)mean_dy=masked.mean('time',skipna=True)#here I want all possible values so skipna=Truemean_dy.plot(vmin=16+273.15,vmax=29+273.15,cmap='inferno')
CPU times: user 3.03 s, sys: 1.8 s, total: 4.83 s
Wall time: 9.13 s
/srv/conda/envs/notebook/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
x = np.divide(x1, x2, out)
Out[6]:
<matplotlib.collections.QuadMesh at 0x7f5e4ce46eb0>
Again, but with Zarr file stored on S3 in same region as this jupyter hub¶
retrieval_local_zenith_angle: point (good or degraded quality pixel produced) quantitative_local_zenith_angle: point (good quality pixel produced) retrieval_solar_zenith_angle: point (good quality pixel produced) t: point area: point
coordinates :
retrieval_local_zenith_angle quantitative_local_zenith_angle retrieval_solar_zenith_angle t y x
grid_mapping :
goes_imager_projection
long_name :
ABI L2+ Sea Surface (Skin) Temperature
resolution :
y: 0.000056 rad x: 0.000056 rad
standard_name :
sea_surface_skin_temperature
units :
K
valid_range :
[0, -6]
Array
Chunk
Bytes
2.82 GB
117.68 MB
Shape
(24, 5424, 5424)
(1, 5424, 5424)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
SST_day_night_emissive_band_ids
(SST_day_night_emissive_bands)
int8
dask.array<chunksize=(4,), meta=np.ndarray>
long_name :
ABI band identifiers used to generate Sea Surface (Skin) Temperature product (day and night pixels)
standard_name :
sensor_band_identifier
units :
1
Array
Chunk
Bytes
4 B
4 B
Shape
(4,)
(4,)
Count
2 Tasks
1 Chunks
Type
int8
numpy.ndarray
SST_day_night_emissive_wavelengths
(SST_day_night_emissive_bands)
float32
dask.array<chunksize=(4,), meta=np.ndarray>
long_name :
ABI band central emissive wavelengths used to generate Sea Surface (Skin) Temperature product (day and night pixels)
standard_name :
sensor_band_central_radiation_wavelength
units :
um
Array
Chunk
Bytes
16 B
16 B
Shape
(4,)
(4,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
SST_night_only_emissive_band_id
(SST_night_only_emissive_band)
int8
dask.array<chunksize=(1,), meta=np.ndarray>
long_name :
ABI band identifier used to generate Sea Surface (Skin) Temperature product (night pixels only)
standard_name :
sensor_band_identifier
units :
1
Array
Chunk
Bytes
1 B
1 B
Shape
(1,)
(1,)
Count
2 Tasks
1 Chunks
Type
int8
numpy.ndarray
SST_night_only_emissive_wavelength
(SST_night_only_emissive_band)
float32
dask.array<chunksize=(1,), meta=np.ndarray>
long_name :
ABI band central emissive wavelength used to generate Sea Surface (Skin) Temperature product (night pixels only)
container for filenames of dynamic algorithm input data
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
algorithm_product_version_container
(time)
int32
dask.array<chunksize=(24,), meta=np.ndarray>
algorithm_version :
OR_ABI-L2-ALG-SST_v01r00.zip
long_name :
container for algorithm package filename and product version
product_version :
v01r00
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
day_solar_zenith_angle
()
float32
...
bounds :
day_solar_zenith_angle_bounds
long_name :
threshold angle of the day region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
array(85., dtype=float32)
day_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the day region
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
geospatial_lat_lon_extent
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
geospatial_eastbound_longitude :
[6.299499988555908]
geospatial_lat_center :
[0.0]
geospatial_lat_nadir :
[0.0]
geospatial_lat_units :
degrees_north
geospatial_lon_center :
[-75.0]
geospatial_lon_nadir :
[-75.0]
geospatial_lon_units :
degrees_east
geospatial_northbound_latitude :
[81.32820129394531]
geospatial_southbound_latitude :
[-81.32820129394531]
geospatial_westbound_longitude :
[-156.29949951171875]
long_name :
geospatial latitude and longitude references
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
goes_imager_projection
(time)
int32
dask.array<chunksize=(24,), meta=np.ndarray>
grid_mapping_name :
geostationary
inverse_flattening :
[298.2572221]
latitude_of_projection_origin :
[0.0]
long_name :
GOES-R ABI fixed grid projection
longitude_of_projection_origin :
[-75.0]
perspective_point_height :
[35786023.0]
semi_major_axis :
[6378137.0]
semi_minor_axis :
[6356752.31414]
sweep_angle_axis :
x
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
int32
numpy.ndarray
max_obs_modeled_diff_SST_night_only_emissive_band
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
maximum difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
max_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
maximum difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
maximum_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: maximum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
mean_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
mean_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: mean (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
mean sea surface temperature
standard_name :
sea_surface_temperature
units :
K
valid_range :
[180.0, 340.0]
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
min_obs_modeled_diff_SST_night_only_emissive_band
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
min_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum difference of the retrieved SST and Reynolds real-time global SST analysis used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
minimum_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: minimum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
minimum sea surface temperature
standard_name :
sea_surface_temperature
units :
K
valid_range :
[180.0, 340.0]
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
night_solar_zenith_angle
()
float32
...
bounds :
night_solar_zenith_angle_bounds
long_name :
threshold angle of the night region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
array(95., dtype=float32)
night_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the night region
quantitative_local_zenith_angle: sum day_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle day_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of day sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
number_of_night_SST_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of night sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
number_of_twilight_SST_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum twilight_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_twilight_solar_zenith_angle t y_image x_image
threshold angle between the line of sight to the satellite and the local zenith at the observation target for good quality sea surface (skin) temperature data production
standard_name :
platform_zenith_angle
units :
degree
array(67., dtype=float32)
quantitative_local_zenith_angle_bounds
(time, number_of_LZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
local zenith angle degree range where good quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
retrieval_local_zenith_angle
()
float32
...
bounds :
retrieval_local_zenith_angle_bounds
long_name :
threshold angle between the line of sight to the satellite and the local zenith at the observation target for good or degraded quality sea surface (skin) temperature data production
standard_name :
platform_zenith_angle
units :
degree
array(90., dtype=float32)
retrieval_local_zenith_angle_bounds
(time, number_of_LZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
local zenith angle degree range where good or degraded quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
retrieval_solar_zenith_angle
()
float32
...
bounds :
retrieval_solar_zenith_angle_bounds
long_name :
threshold angle between the line of sight to the sun and the local zenith at the observation target for good quality sea surface (skin) temperature data production
standard_name :
solar_zenith_angle
units :
degree
array(180., dtype=float32)
retrieval_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range where good quality sea surface (skin) temperature data is produced
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
sea_surface_temp_outlier_pixel_count
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels whose values are outside valid measurement range only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of sea surface temperature pixels whose value is outside valid measurement range
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
standard_deviation_sea_surface_temp
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard deviation of sea surface temperature values
quantitative_local_zenith_angle: sum night_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle night_solar_zenith_angle SST_night_only_emissive_band_id SST_night_only_emissive_wavelength t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard deviation of the difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) values for the night only emissive band central wavelength used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
std_dev_retrieved_Reynolds_SST_diff
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
standard_deviation of the difference of the retrieved SST and Reynolds real-time global SST analysis values used in the generation of the sea surface temperature product
units :
K
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
time_bounds
(time, number_of_time_bounds)
datetime64[ns]
dask.array<chunksize=(24, 2), meta=np.ndarray>
long_name :
Scan start and end times in seconds since epoch (2000-01-01 12:00:00)
Array
Chunk
Bytes
384 B
384 B
Shape
(24, 2)
(24, 2)
Count
2 Tasks
1 Chunks
Type
datetime64[ns]
numpy.ndarray
total_number_of_degraded_quality_ocean_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: degraded quality pixels only) where sea
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of degraded quality sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
total_number_of_good_quality_ocean_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: good quality pixels only) where sea
coordinates :
quantitative_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of good quality sea surface temperature pixels
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: severely degraded quality pixels only) where sea
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of severely degraded quality sea surface temperature pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
total_number_of_unprocessed_pixels
(time)
float64
dask.array<chunksize=(24,), meta=np.ndarray>
cell_methods :
retrieval_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: sum (interval: 0.000056 rad comment: invalid due to unprocessed pixels only)
coordinates :
retrieval_local_zenith_angle retrieval_solar_zenith_angle t y_image x_image
grid_mapping :
goes_imager_projection
long_name :
number of unprocessed pixels
units :
count
Array
Chunk
Bytes
192 B
192 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float64
numpy.ndarray
twilight_solar_zenith_angle
(time)
float32
dask.array<chunksize=(24,), meta=np.ndarray>
bounds :
twilight_solar_zenith_angle_bounds
long_name :
midpoint of the twilight region for the angle between the line of sight to the sun and the local zenith at the observation target
standard_name :
solar_zenith_angle
units :
degree
Array
Chunk
Bytes
96 B
96 B
Shape
(24,)
(24,)
Count
2 Tasks
1 Chunks
Type
float32
numpy.ndarray
twilight_solar_zenith_angle_bounds
(time, number_of_SZA_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
solar zenith angle degree range for the twilight region
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
x_image
()
float32
...
axis :
X
long_name :
GOES-R fixed grid projection x-coordinate center of image
standard_name :
projection_x_coordinate
units :
rad
array(0., dtype=float32)
x_image_bounds
(time, number_of_image_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
GOES-R fixed grid projection x-coordinate west/east extent of image
units :
rad
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
y_image
()
float32
...
axis :
Y
long_name :
GOES-R fixed grid projection y-coordinate center of image
standard_name :
projection_y_coordinate
units :
rad
array(0., dtype=float32)
y_image_bounds
(time, number_of_image_bounds)
float32
dask.array<chunksize=(1, 2), meta=np.ndarray>
long_name :
GOES-R fixed grid projection y-coordinate north/south extent of image
units :
rad
Array
Chunk
Bytes
192 B
8 B
Shape
(24, 2)
(1, 2)
Count
25 Tasks
24 Chunks
Type
float32
numpy.ndarray
Conventions :
CF-1.7
Metadata_Conventions :
Unidata Dataset Discovery v1.0
_FillValue :
[-999.0]
cdm_data_type :
Image
cell_methods :
quantitative_local_zenith_angle: sum retrieval_solar_zenith_angle: sum t: sum area: standard_deviation (interval: 0.000056 rad comment: good quality pixels only) where sea
DOC/NOAA/NESDIS > U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Services
instrument_ID :
FM1
instrument_type :
GOES R Series Advanced Baseline Imager
iso_series_metadata_id :
d70be540-c38a-11e0-962b-0800200c9a66
keywords :
OCEANS > OCEAN TEMPERATURE > SEA SURFACE TEMPERATURE
keywords_vocabulary :
NASA Global Change Master Directory (GCMD) Earth Science Keywords, Version 7.0.0.0.0
license :
Unclassified data. Access is restricted to approved users only.
long_name :
standard deviation of the difference of the observed and modeled brightness temperature (Joint Center for Satellite Data Assimilation Community Radiative Transfer Model using temporally interpolated NWP data as input) values for the day and night emissive band central wavelengths used in the generation of the sea surface temperature product
naming_authority :
gov.nesdis.noaa
orbital_slot :
GOES-East
platform_ID :
G16
processing_level :
National Aeronautics and Space Administration (NASA) L2
production_data_source :
Realtime
production_environment :
OE
production_site :
NSOF
project :
GOES
scene_id :
Full Disk
spatial_resolution :
2km at nadir
standard_name_vocabulary :
CF Standard Name Table (v35, 20 July 2016)
summary :
The ABI Sea Surface Temperature (SST) is calculated using a 4-band (8.44, 10.33, 11.19, and 12.27 um) non-linear SST (NLSST) regression equation with coefficients calculated using match-ups with in situ SSTs from drifting and tropical moored buoys. Hence on average, ABI SST is close to in situ (bulk) SST, but its spatial and temporal variations are representative of skin SST (to which ABI BTs are sensitive). One regression equation, and one set of regression coefficients are used across day and night, resulting in consistent and continuous SST diurnal cycle. Note that SST is reported over all water pixels, and only data with quality flag DQF=0 should be used to select clear-sky pixels.
time_coverage_end :
2020-07-28T00:59:51.3Z
time_coverage_start :
2020-07-28T00:00:20.5Z
timeline_id :
ABI Mode 6
title :
ABI L2 Sea Surface (Skin) Temperature
units :
K
In [8]:
%%timesubset=ds.sel(x=slice(-0.01,0.06),y=slice(0.12,0.09))#reduce to GS regionmasked=subset.SST.where(subset.DQF==0)mean_dy=masked.mean('time',skipna=True)#here I want all possible values so skipna=Truemean_dy.plot(vmin=16+273.15,vmax=29+273.15,cmap='inferno')
CPU times: user 3.17 s, sys: 2.19 s, total: 5.36 s
Wall time: 6.59 s
/srv/conda/envs/notebook/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
x = np.divide(x1, x2, out)
Out[8]:
<matplotlib.collections.QuadMesh at 0x7f5e44570d90>