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Abstract

Marginal structural Cox models have been used to estimate the causal effect of
a time-varying treatment on a survival outcome in the presence of time-dependent
confounders. These methods rely on the positivity assumption, which states that the
propensity scores are bounded away from zero and one. Practical violations of this
assumption are common in longitudinal studies, resulting in extreme weights that may
yield erroneous inferences. Truncation, which consists of replacing outlying weights
with less extreme ones, is the most common approach to control for extreme weights
to-date. While truncation reduces the variability in the weights and the consequent
sampling variability of the estimator, it can also introduce bias. Instead of truncated
weights, we propose using optimal probability weights, defined as those that have a
specified variance and the smallest Euclidean distance from the original, untruncated
weights. The set of optimal weights is obtained by solving a constrained quadratic
optimization problem. The proposed weights are evaluated in a simulation study and
applied to the assessment of the effect of treatment on time to death among people
in Sweden who live with human immunodeficiency virus and inject drugs.

Keywords: Causal inference, longitudinal data, positivity assumption, probability weights,
survival analysis.
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1 Introduction

Marginal structural Cox models (MSCM) (Robins et al., 2000; Hernán et al., 2000) have

been used to estimate the causal effect of a time-varying treatment on a survival out-

come with observational data. The increasing popularity of MSCM derives from their

ability to handle time-dependent confounders, which are confounders that are affected

by previous treatments and affect future ones (Daniel et al., 2013). For example, the

HIV-Causal Collaboration (HIV-Causal Collaboration, 2011) used MSCM to evaluate the

optimal timing of human immunodeficiency virus (HIV) treatment initiation on time to

death, where CD4 cell count was both a predictor of treatment initiation and survival, as

well as being itself influenced by prior treatment. Standard procedures, such as regression

adjustment or matching, fail to control for time-dependent confounding, thus introduc-

ing post-treatment bias (Blackwell, 2013; Robins, 2000). MSCM are estimated via inverse

probability of treatment weighting (IPTW) (Hernan and Robins, 2010), which controls for

time-dependent confounding by creating a hypothetical population where time-dependent

and time-invariant confounders are balanced over time (Cole and Hernán, 2008). These

weights are constructed as the inverse of the product of the probabilities of being assigned

to the treatment conditional on covariates and treatment history, i.e. the propensity scores

(Rosenbaum and Rubin, 1983) estimated separately at each time point (Cole and Hernán,

2008). Despite their theoretical appeal and their wide range of applications, IPTW-based

methods are sensitive to violations of the positivity assumption, also referred to as the ex-

perimental treatment assignment assumption (Imbens and Rubin, 2015). This states that

the propensity score of each unit under study is bounded away from zero and one. Posi-

tivity is practically violated when subjects in specific strata of the population under study

have a low probability of receiving the treatment, leading to extreme weights, erroneous
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inferences, and low precision (Robins et al., 1995; Scharfstein et al., 1999; Robins et al.,

2007; Kang and Schafer, 2007).

Several methods have been developed to alleviate the problems caused by extreme

weights when considering one single time point (Santacatterina and Bottai, 2017; Zu-

bizarreta, 2015; Hainmueller, 2012; Athey et al., 2016). With longitudinal data, truncation,

which consists of replacing outlying weights with less extreme ones, remains the most pop-

ular solution to this problem (Cole et al., 2005). However, while truncation reduces the

variability of the weights, thus increasing inferential precision, it can also introduce con-

siderable bias. Ad-hoc and empirical criteria have been proposed to choose the truncation

threshold. Under the assumption that the MSCM estimates are unbiased, Cole et al. Cole

et al. (2005) suggested choosing the truncation level by progressively truncating the weights

until a trade-off between bias and variance is found. Xiao et al. Xiao et al. (2013) compared

different truncation levels for MSCM, and proposed a data-adaptive approach to select the

best level of truncation that minimizes the mean squared error. The authors showed an

improvement in the MSCM estimates when truncating the weights at high percentiles of

their distribution. Methods other than truncation have been proposed, including history-

restricted MSCM Neugebauer et al. (2007) where information on a restricted portion of

the treatment history is used to estimate the causal effects, trimming Stürmer et al. (2010)

where observations that violate the positivity assumption are excluded, and G-computation

Robins (2000), a non-IPTW-based method.

The purpose of this paper is to introduce optimal probability weights Santacatterina

and Bottai (2017) (OPW) to the estimation of the causal effect of a time-varying treatment

with longitudinal data when the positivity assumption is practically violated. OPW are

the solution to a constrained quadratic optimization problem, which finds the closest set of

weights to the original, untruncated weights while controlling the precision of the resulting
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weighted estimator. Differently from Santacatterina and Bottai Santacatterina and Bottai

(2017), this paper focuses on repeated observations. In addition, the constraint is placed

on the variance of the weights instead of the variance of the weighted estimator. This

formulation of the optimization problem is novel and has two main advantages: (1) it is

quadratic and convex and therefore admits a unique solution; and (2) it is independent of

both the chosen estimator for the causal parameter of interest and that for its standard

error.

The following section briefly reviews MSCM. Section 3 introduces the quadratic prob-

lem used to obtain the set of optimal probability weights, describes their properties, and

discusses the choice of the parameter that controls precision. Section 4 shows the results

of a simulation study. Section 5 presents an application of the optimal probability weights

to the evaluation of the effect of HIV treatment initiation on time to death among people

in Sweden who inject drugs. Final conclusions are given in Section 6.

2 Marginal structural Cox models

We consider a longitudinal study where n units are observed at regular time intervals

k = 1, . . . , K (e.g. every 3 months). For each unit i = 1, . . . , n, we denote by Ti the

observed follow-up time, and by Vi the vector of baseline covariates. For each unit i at

time t, we denote by A
(t)
i the binary time-varying treatment variable, where A

(t)
i = 0 means

not being treated at time t, and A
(t)
i = 1 means being treated at time t, and by X

(t)
i the

time-dependent covariates. We assume that the treatment A
(t)
i and the covariates X

(t)
i

do not change between two time intervals (k, k + 1). We denote by A
(t)

i the treatment

history up to time t and, X
(t)

i the covariates history up to time t, i.e. the time-dependent

confounders’ history. We define Y
(t)
i the event at time t, which equals 1 if the subject i had
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the event at time t, and 0 otherwise. Finally, we denote by Ta(t) the counterfactual failure

time, had the subject followed the treatment history a(t) = {a(t); 0 ≤ t < ∞}. For each

a(t), we define the MSCM as follows,

λT
a(t)

(t|V ) = λ
0
(t)(t)exp(β1γ(a(t)) + β2V ) (2.1)

where λT
a(t)

(t|V ) is the hazard at time t given baseline covariates V had, contrary to

fact, the subject followed the treatment history a(t), λ
0
(t)(t) is the baseline hazard at time t

for a never-treated subject a(t) = 0
(t)

with V = 0, γ(·) is a known function for the treatment

history, and β1 is the causal parameter of interest. Under the assumptions of positivity,

consistency, no unmeasured confounders, and correct specification of the models, the causal

parameter β1 can be consistently estimated using IPTW Hernán et al. (2000); Cole and

Hernán (2008). The stabilized version of the inverse probability of treatment weights can

be obtained as follows Hernán et al. (2000)

w(t)
∗ =

m(t)∏
k=1

Pr(A(k) = a(k)|A(k−1)
= a(k−1), V = v)

Pr(A(k) = a(k)|A(k−1)
= a(k−1), X

(k)
= x(k), V = v)

(2.2)

where m(t) is the number of visits up to time t. When informative censoring is present,

under all the aforementioned assumptions, and with the additional assumption of no un-

measured informative censoring, the causal parameter β1 can be consistently estimated

using weights obtained by the product of inverse probability of treatment and inverse

probability of censoring weights Hernán et al. (2001). The set of inverse probability of cen-

soring weights is computed similarly to that of equation (2.2). Parametric models, such as

logistic regression, are commonly used to estimate w
(t)
∗ , along with machine learning meth-

ods, such as support vector machines and classification and regression trees Karim et al.

(2017). Throughout this paper, we refer to ŵ
(t)
∗ , the estimated weights used to control for
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time-dependent confounding, as the set of target weights.

3 Optimal probability weights

When the positivity assumption is practically violated, the estimated set of target weights

ŵ
(t)
∗ may contain outliers, which may yield low precision and erroneous inferences on the

causal parameter β1. As suggested by Santacatterina and Bottai Santacatterina and Bottai

(2017), rather than truncating, we propose to obtain weights ŵ
(t)
o that are the closest to

ŵ
(t)
∗ with respect to the Euclidean norm, while constraining the variance of the weights ŵ

(t)
o

to be less or equal to a specified level ξ. The resulting quadratic optimization problem can

be formulated as follows.

minimize
w

(t)
o ∈Rn×t

‖w(t)
o − ŵ(t)

∗ ‖2 (3.1)

subject to ‖w(t)
o − w(t)

o ‖22 ≤ ξ (3.2)

w(t)
o ≥ 0 (3.3)

where w(t)
o is the mean of the weights w

(t)
o . Constraint (3.2) controls the variance of

the weights, and therefore the precision of the resulting weighted estimator. Constraint

(3.3) ensures that the weights are non-negative. We refer to ŵ
(t)
o , solution to the problem

(3.1)-(3.3), as the set of optimal probability weights (OPW). Santacatterina and Bottai

Santacatterina and Bottai (2017) showed that the weighted estimator that uses optimal

weights ŵ
(t)
o is consistent. They also showed that if the weighted estimator that uses target

weights ŵ
(t)
∗ is unbiased, minimizing the distance between ŵ

(t)
o and ŵ

(t)
∗ is equivalent to

minimizing the bias of the weighted estimator that uses ŵ
(t)
o . They concluded that high

precision could be reached with a low increase in bias, in all the scenarios considered in their
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simulations. Finally, the objective function and the constraint in the proposed quadratic

problem (3.1)-(3.3) are convex, therefore admitting a unique solution.

3.1 On the choice of ξ

The solution to the quadratic problem (3.1)-(3.3) depends on the constant ξ, which controls

the variance of the weights and consequently the precision of the estimates. We suggest

choosing ξ in function of the aims of the study. The following are some practical guidelines.

1. Variance of weights obtained by truncation. Xiao et al. Xiao et al. (2013) suggested

that truncation at high percentiles, such as the 99th or the 99.5th percentile of the

distribution of the target weights improves the IPTW estimators. Therefore, one

can truncate the target weights at high percentiles, compute their variance, and set

ξ equal to the variance of the obtained truncated weights. In Section 4.2, we show

how the MSCM that uses OPW performs better, in terms of mean squared error,

than that using truncated weights especially when the weights are truncated at high

percentiles.

2. Evaluation of the Lagrange multiplier. Constraint (3.2) in the quadratic problem

(3.1)-(3.3) has an associated Lagrange multiplier, λL, which can provide insight on

the relationship between the optimal solution and the constraint. Specifically, small

values of λL suggest that a small decrease in ξ would lead to a small increase in the

optimal value of the objective function (3.1). Large values of λL suggest that a small

decrease in ξ would lead to a large increase in the optimal value of the objective

function. Consequently, λL may be used to select the level of precision ξ. In Section

4.2 we show how λL reflects the behavior of the bias across different levels of precision.

8



3. Bias-variance trade-off. Cole and Hernán Cole and Hernán (2008) suggested using

truncation as a means to trade off bias and variance. If the untruncated IPTW esti-

mate, weighted by the set of target weights ŵ
(t)
∗ , is unbiased for the causal parameter

of interest, minimizing the objective function in (3.1) leads to minimizing the bias

of the IPTW estimator that uses the set of optimal weights, while controlling the

precision of the resulting IPTW estimator. A grid of values for ξ may be used to

evaluate the bias-variance trade-off. As in Cole and Hernán Cole and Hernán (2008),

an acceptable value for ξ may be selected after investigating the values of the esti-

mated weighted parameter and its estimated standard error against the grid of levels

of ξ.

4. Pre-specified level of precision. Similarly to sample size and power calculations, the

level of ξ may be set to match a pre-specified, desired precision of the resulting MSCM

estimates.

5. Variance of the weights obtained with simplified weights models. Deep classification

trees and logistic regression models with many covariates and higher-order interac-

tions can estimate the set of target weights. This yields nearly unbiased but highly

variable estimates of the causal parameters. Simplifying these models by considering,

for example, a logistic regression model with only the main effects or a less deep tree,

may increase the precision. The value for ξ may be set to be equal to that obtained

with the simplified model.
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4 Simulations

In this section, we present the setup and results of a simulation study designed to compare

OPW, solution to (3.1)-(3.3), and weights truncated at different levels with respect to

mean squared error (MSE), bias, and standard error of the MSCM estimator. The study is

aimed at mimicking data from a longitudinal study of a hypothetical cohort of HIV-positive

patients Xiao et al. (2013), similar to that discussed in Section 5.

4.1 Setup

We randomly generated 1,000 samples, each of which comprised 200 or 1,000 observations

using a maximum follow-up time of K = 10 biyearly visits. For each interval k = 1, . . . , K,

we generated the expected survival time t∗ by using the quantile function of an exponential

distribution with the interval-specific hazard rate computed from the following model

λi,k(t∗|A(k)
i , X

(k)
i ) = λ0(t

∗)exp(θ1A
(k)
i + θ2X

(k)
i ) (4.1)

with λ0(t
∗) = 0.12, θ1 = log(0.5), θ2 = −0.0016, A

(k)
i ∼ Binomial(π), π = (1 +

exp(3.623 − 2.605I[X
(k)
i > 500] − 0.022(X

(k)
i − 200) + 0.009(X

(k)
i − 200)I[X

(k)
i > 500] +

0.405A
(k−1)
i )−1 for k ≤ 1 ≤ K, A

(0)
i = 0, X

(k)
i = X

(k−1)
i + 70A

(k−1)
i + ∆i + εi, εi ∼

Normal(0, 3), ∆i ∼ Uniform(−80,−5) for k ≤ 2 ≤ K, and X
(1)
i = Vi = Lognormal(6,1) .

We defined the observed follow-up time as ti = min(Ti, Ci, 5), where Ti = 0.5(k− 1) + t∗i (k)

for 1 ≤ k < K and Ti = 5 for k ≥ K, and Ci ∼ Uniform(0, 40). The true causal parameter

of interest, the hazard ratio (HR), was set to be equal to HR = 0.5. A detailed expla-

nation of the data generating process is provided by Xiao et al. Xiao et al. (2010). We

also considered two additional scenarios in which the practical positivity assumption was

weakly and strongly violated. Specifically, under the weak violation scenario we considered
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π = (1 + exp(1.623 − 0.605I[X
(k)
i > 500] − 0.0015(X

(k)
i − 200) + 0.405A

(k−1)
i )−1, which

provided almost uniformly distributed weights, while under the strong violation scenario

we considered π = (1 + exp(4.623− 2.605I[X
(k)
i > 500]− 0.02(X

(k)
i − 200) + 0.009(X

(k)
i −

200)I[X
(k)
i > 500]+0.405A

(k−1)
i )−1, which provided more extreme weights than the original

setting aforementioned. In particular, for n = 1, 000, under the weak violation scenario,

the mean of the weights across simulations ranged between 0.9659 and 1.0660, under the

scenario provided by Xiao et al. Xiao et al. (2010) between 0.6203 and 18.3, while under

the strong violation scenario between 0.3390 and 51.77. We considered the set of stabilized

inverse probability weights as the target weights of interest. Truncated weights were ob-

tained by truncating the set of target weights across different quantiles defined as a grid

of twenty equally-spaced values between 0.8 and 1. OPW were obtained by solving (3.1)-

(3.3) with ξ equal to the variance of the truncated weights for each of the different levels

of truncation. In each simulated sample, we estimated the causal parameter of interest by

using the following Cox regression model

λi,k(t|A(k)

i , Vi) = λ0(t)exp(β1A
(k)
i + β2A

(k−1)
i + β3Vi) (4.2)

weighted by the truncated weights and by the set of OPW. We used a robust estimator

of the standard error Austin (2016). We estimated the stabilized inverse probability of

treatment weights using the R package ipw van der Wal et al. (2011), and we solved the

quadratic problem (3.1)-(3.3) by using the package Ipoptr Wächter and Biegler (2005) and

the MA57 sparse symmetric system as line-search method HSL (2017). We provide the R

code for the simulations as Supporting Information.
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4.2 Results

The top-left panels of Figure 1 and Figure 2 show the MSE ratio between the hazard ratio

estimated with truncated weights and that estimated with OPW across truncation levels

when n = 200 and n = 1, 000, respectively. The optimally weighted MSCM performed

better than the truncated MSCM at all truncation levels, especially between the 98th and

the 99.5th percentile of the distribution of the target weights. In particular, the value

between the 98th and the 99.5th percentile for which the MSE ratio is largest is equal to

the 99.5th percentile when n = 200 and equal to the 99th percentile when n = 1, 000. When

truncating at lower percentiles, optimally weighted and truncated MSCM performed equally

in small samples (n = 200), but not in larger samples (n = 1, 000) where the optimally

weighted MSCM showed a substantially smaller MSE. At the lowest truncation levels and

with the smaller sample size, the distributions of truncated weights and that of the OPW

were almost uniformly distributed, resulting in a similar MSE. In the larger samples, the

bias of the truncated MSCM increased with increasing levels of truncation while that of the

optimally weighted MSCM remained almost constant. The top-right panels of Figure 1 and

Figure 2 show the MSE (solid line), variance (dotted), and bias (dashed) of the estimated

hazard ratio that uses OPW across truncation levels. Setting the constant ξ based on

high-percentile truncation weights improves the behaviour of the MSCM by introducing

small bias but considerably increasing precision. The mean solving time of the algorithm

was below 0.22 seconds in the smaller samples and below 1.0 second in the larger samples

(bottom-left panels of Figure 1 and Figure 2). The standardized mean Lagrange multiplier

associated with constraint (3.2) partially reflected the behaviour of the bias (bottom-right

panels of Figure 1 and Figure 2), and it may be used to choose ξ as discussed in Section

3.1. Figure 3 shows scatter-plots and histograms of the mean truncated weights, (X-axis),

and the mean OPW, (Y-axis), across simulations when n = 1, 000 for each of the four
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thresholds, 1, 0.99, 0.85 and 0.80. Weights were first scaled to have mean 0 and variance 1

and then log-transformed. In particular, the top-left panel of Figure 3 shows the original

untruncated distribution of the weights, which was asymmetric with a long right tail. For

the remaining thresholds, 0.99, 0.85 and 0.80, truncated weights showed a wider distribution

compared with OPW. For instance, when the threshold was set to be equal to 0.80, the set

of OPW ranged between -0.0188 and 0.0504, while that of the truncated weights between

-0.1705 and 0.2767. The left panels of Figure 4 show the MSE ratio between the hazard

ratio estimated with truncated weights and that estimated with OPW across truncation

levels when n = 1, 000 under the weak and strong violation scenarios. Under weak violation

of the positivity assumption we observed no differences between the truncated MSCM and

the optimally weighted MSCM. Under the strong violation scenario, however, the optimally

weighted MSCM showed a consistently smaller MSE across truncation levels, and a greater

precision compared with the scenario presented in Figure 2, i.e., the MSE ratios were

larger under the strong scenario. The right panels of Figure 4 show the MSE (solid line),

variance (dotted), and bias (dashed) of the estimated hazard ratio that uses OPW across

truncation levels. Under weak violation, no differences were seen across truncation levels,

while under strong violation, similarly to the scenario presented in Figure 2, the constant

ξ based on high-percentile truncation weights improved the behaviour of the MSCM by

introducing small bias but significantly increasing precision. We conclude that OPW were

more narrowly distributed, thus leading to more precise inferences, than truncated weights

across all considered thresholds, and that OPW outperformed truncated weights across

both sample sizes and different scenarios of practical positivity violation, especially under

strong violations of the practical positivity assumption.
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Figure 1: Sample size n = 200. Top-left panel: ratio between the observed mean squared

error of the estimated hazard ratio that uses truncated weights and that of the estimated

hazard ratio that uses OPW across truncation levels. Top-right panel: mean squared error

(solid line), variance (dotted), and bias (dashed) of the estimated hazard ratio that uses

OPW across truncation levels. The value between the 98th and the 99.5th percentile for

which the MSE ratio is largest is the 99.5th percentile. Bottom-left: mean computational

time in seconds to solve the quadratic problem across levels of truncation. Bottom-right

panel: mean standardized Lagrange multiplier associated with constraint (3.2) across trun-

cation levels.
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Figure 2: Sample size n = 1, 000. Top-left panel: ratio between the observed mean squared

error of the estimated hazard ratio that uses truncated weights and that of the estimated

hazard ratio that uses OPW across truncation levels. Top-right panel: mean squared error

(solid line), variance (dotted), and bias (dashed) of the estimated hazard ratio that uses

OPW across truncation levels. The value between the 98th and the 99.5th percentile for

which the MSE ratio is largest is the 99th percentile. Bottom-left: mean computational time

in seconds to solve the quadratic problem across levels of truncation. Bottom-right panel:

mean standardized Lagrange multiplier associated with constraint (3.2) across truncation

levels.
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Figure 3: Scatter-plots and histograms of the mean truncated weights, (X-axis), and the

mean OPW, (Y-axis), across simulations when n = 1, 000 for each of the four thresholds,

1, 0.99, 0.85 and 0.80. Weights were first scaled to have mean 0 and variance 1 and then

log-transformed.
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Figure 4: Left panels: MSE ratios between the hazard ratio estimated with truncated

weights and that estimated with OPW across truncation levels when n = 1, 000 under the

scenarios of weak and strong violations of the positivity assumption. Right panels: mean

squared error (solid line), variance (dotted), and bias (dashed) of the estimated hazard ratio
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5 HIV treatment initiation on time to death

The HIV epidemic is a leading global burden with major economic and social consequences.

Drug injection is responsible for more than 10% of all HIV infections globally Mathers et al.

(2008). Consequently, the efficacy of the HIV treatment is of primary concern when treating

people who inject drugs (PWID). Several studies have shown the beneficial effect of HIV

treatment among PWID Wood et al. (2008); Mathers et al. (2010). We evaluated the

effect of HIV treatment initiation on time to death among PWID. To control for time-

dependent confounding and informative censoring we used OPW obtained by solving (3.1)-

(3.3). We computed the set of target weights as the product between the inverse probability

of treatment and censoring weights Robins et al. (2000). As discussed in Section 3.1, we

truncated the set of target weights at different truncation levels, computed the variance of

the resulting truncated weights and used it as a value for ξ in constraint (3.2).

5.1 Study population

We used prospective observational data from the Swedish InfCare HIV registry Sönnerborg

(2017), which contains socio-demographical, clinical and virological information, collected

longitudinally from all clinics that treat people living with HIV. The number of people diag-

nosed between 1987 and 2017 in Sweden was 10,015. Our study was restricted to those who

were alive, HIV treatment-naive and under follow-up after January 1996, when HIV treat-

ment became readily available in the country. We excluded 1,055 people who had both their

first and last visit before January 1996 (due to emigration or death) and 1,187 who started

HIV treatment before January 1996. The baseline visit was set equal to the first available

visit for each person. For those enrolled in the HIV monitoring program before January

1996, it was set at the first available visit after January 1996. People living with HIV were
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monitored and visited repeatedly from baseline onward contributing from a minimum of

2 to a maximum of 102 visits. At each visit, data on socio-demographical characteristics,

type of HIV treatment, laboratory measurements including absolute CD4 cell count and

HIV-RNA load were collected. HIV treatment was defined as a combination of at least

3 drugs, classified in 4 major categories: based on non-nucleoside reverse-transcriptase-

inhibitors, ritonavir-boosted protease inhibitors, protease inhibitors, and others. Out of

the 7,773 people, 459 lacked information on absolute CD4 cell count, 199 had only one

absolute CD4 cell count observation, and 1,110 did not have sufficient information on the

route of infection. We considered only people living with HIV infected by injecting drugs.

The final sample was comprised of 538 treatment-naive PWID and a total of 9,247 clinical

visits.

5.2 Treatment and censoring models

We used logistic regression to estimate the set of target weights that control for time-

dependent confounding and informative censoring. We used time-invariant and time-

dependent confounders to construct the set of stable inverse probability of treatment

weights as shown in (2.2). Specifically, we identified the following variables as poten-

tial time-invariant confounders of the effect of HIV treatment initiation on time to death:

baseline absolute CD4 cell count (<200, 200-350, 350-500, and >500 cells/mL); baseline

HIV-RNA viral load (≤100.000 vs >100.000 copies/mL) ; age at baseline (0-30, 31-40,

41-50, and >50 years); gender (female vs male); country of birth (Sweden vs. outside

Sweden); type of HIV treatment regimen (4 drug categories) and calendar year of HIV

treatment initiation. We considered the following potential time-dependent confounders:

absolute CD4 cell count, modelled as cubic splines with 3 knots placed at the 25th, 50th

and 75th percentiles, cumulative follow-up time, modelled as a cubic splines with 5 knots
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at 5th, 25th, 50th, 75th and 95th percentiles, undetectable HIV-RNA viral load and HIV

treatment at previous time points. Undetectable HIV-RNA viral load was considered un-

detectable if it was lower than 50 copies/mL. We constructed the set of inverse probability

of censoring weights similarly. Finally, we obtained the set of target stabilized weights as

the product between inverse probability of treatment and censoring weights.

5.3 Results

We considered the following MSCM to evaluate the effect of HIV treatment on time to

death among PWID,

λi,k(t|A(k)

i , Vi) = λ0(t)exp(β1A
(k)
i + β2A

(k−1)
i + β3Vi) (5.1)

where Vi was the baseline absolute CD4 cell count for each PWID. We estimated the

MSCM in (5.1) by a weighted Cox proportional hazard model. The unweighted estimated

hazard ratio was equal to HR= 1.65 with a robust estimate for the standard error equal

to 0.36, suggesting the presence of confounding. When using the set of target weights con-

structed as previously described, the estimated hazard ratio was equal to 0.68, suggesting

a protective effect of the HIV treatment on time to death. The standard error was equal

to 0.74, more than twice that of the unweighted analysis. In particular, when analyzing

the distribution of the target weights, few subjects (n=2) were assigned a weight of more

than 500, showing a possible practical violation of the positivity assumption, although not

large. To alleviate the presence of extreme weights we computed the set of OPW and

used it to estimate the hazard ratio. Specifically, we considered a grid of truncation levels

between 0.8 and 1 and computed the truncated weights. We obtained the set of OPW by

setting ξ equal to the variance of the truncated weights for each of the considered trun-
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cation levels. When the truncation level was equal to the 99.5th percentile of the target

weight distribution, the set of OPW had a minimum value of 0.86 and a maximum value

of 27. Figure 5 shows the value of the estimated hazard ratio for the risk of death among

PWID and 95% confidence interval across the considered truncation levels. Similarly to

our simulations results, we based the conclusions of this study on an estimated HR of 0.71

(95% CI 0.19-2.73, standard error equal to 0.68), obtained by using OPW with ξ set to

be equal to the variance of the truncated weights at 99.5th level. We concluded that with

adequate support, PWID can benefit from HIV treatment.

6 Conclusions

In this paper, we introduced OPW to the estimation of causal effects of time-varying

treatments on survival outcomes with MSCM under practical violation of the positivity

assumption. Xiao et al. Xiao et al. (2013) and Cole and Hernán Cole and Hernán (2008)

suggested truncating the weights at high percentiles of their observed sample distribution.

In our simulations, OPW outperformed the truncated weights across all the considered

truncation levels, especially at high percentiles. The results were similar in both small and

large samples. In addition, the results showed that OPW were generally more narrowly

distributed than truncated weights across all considered threshold levels and that OPW

outperformed truncated weights across all scenarios of practical violation of the positivity

assumption, especially under strong violation. This suggests that OPW may be used

instead of truncated weights regardless of the sample size and the strength of practical

positivity violation. By using OPW, we showed the beneficial effect of treatment on time

to death among people in Sweden who live with HIV after being infected by injecting drugs.

We considered MSCM, but other methods, such as pooled logistic regression, can also
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Figure 5: Estimated hazard ratio for the risk of death and 95% confidence interval com-

paring treated vs. untreated individuals across levels of truncation of the target stabilized

weights.
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be used Robins et al. (2000). Different methods to estimate the standard error may also be

applied, such as the bootstrap. In any given setting these may be preferable to the robust

estimator we used in the present paper. The optimization problem (3.1)-(3.3) and its

interpretation remain unchanged whichever estimator is used. We show this by providing

additional simulations as Supporting Information.

We derived the target weights by using logistic regression. However, a number of al-

ternative techniques have been proposed Karim et al. (2017); Lee et al. (2010, 2011). We

considered scenarios where the treatment and censoring models were well specified. When

they are suspected to be misspecified, Karim et al. Karim et al. (2017) suggested using

boosted regression and classification trees. These can be used to estimate the set of target

weights employed in (3.1)-(3.3).

The convex optimization problem (3.1)-(3.3) can be solved by using existing software,

like gurobi, quadprog, Ipoptr, and nloptr packages in R. The sample size has an impact

on the computation time of the proposed method. For instance, in our simulations the

average time was 0.2 seconds with n = 200 and about 1 second with n = 1, 000. Decreasing

ξ increases the computational time and may impact the feasibility of the problem. With

small values of ξ, an optimal solution may not exist. In this case, we suggest increasing

the value of ξ.

Future work may focus on extensions and applications of OPW to a variety of other

settings. For example, they may prove useful when comparing dynamic treatment regimes,

where treatment decisions are made based on the time-varying state of individual patients

and weights are applied to control for time-dependent confounding, and informative and

artificial censoring Hernán et al. (2006, 2009). Further work may improve the robustness

to misspecification of the treatment model and violations of the positivity assumption.
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