Problem Sheet 6 Part B - Solutions¶

$\newcommand{\vct}[1]{\mathbf{#1}}$ $\newcommand{\mtx}[1]{\mathbf{#1}}$ $\newcommand{\e}{\varepsilon}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\minimize}{\text{minimize}\quad}$ $\newcommand{\maximize}{\text{maximize}\quad}$ $\newcommand{\subjto}{\quad\text{subject to}\quad}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\trans}{T}$ $\newcommand{\ip}[2]{\langle {#1}, {#2} \rangle}$ $\newcommand{\zerovct}{\vct{0}}$ $\newcommand{\diff}[1]{\mathrm{d}{#1}}$

Solution to Problem 6.4¶

(a) We first write down the matrix $\mtx{A}$:

\begin{equation*} \mtx{A} = \begin{pmatrix} 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 1.2 & 1.4&1.6&1.8&2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \end{equation*}

and the vectors $\vct{b}$ and $\vct{c}$:

\begin{equation*} \vct{b} = \begin{pmatrix} 1\\1 \end{pmatrix}, \ \vct{c} = \begin{pmatrix} 1 & 1.01 & 1.04 & 1.09 & 1.16 & 1.25 & 1.36 & 1.49 & 1.64 & 1.81 & 2 \end{pmatrix}^{\trans} \end{equation*}

The primal version of the problem is given by

\begin{align*} \minimize & x_1+1.01x_2+1.04x_3+1.09x_4+1.16x_5+1.25x_6+1.36x_7\\ &+1.49x_8+1.64x_9+1.81x_{10}+2x_{11}\\ \subjto &0.2x_2+0.4x_3+0.6x_4+0.8x_5+x_6+1.2x_7+1.4x_8+1.6x_9\\ &+1.8x_{10}+2x_{11}=1\\ &x_1+x_2+x_3+x_4+x_5+x_6+x_7+x_8+x_9+x_{10}+x_{11}=1\\ & x_i\geq 0. \end{align*}

We define the matrix $\mtx{A}$ and the vectors $\vct{b}$ and $\vct{c}$ for this problem in Python as follows.

In [1]:
import numpy as np
import numpy.linalg as la
In [2]:
v = np.linspace(0,1,11)
n = len(v)
A = np.concatenate((2*v.reshape((1,n)), np.ones((1,n))), axis=0)
c = 1+v**2
b = np.array([1,1])

(b) The problem has $m=2$ dual variables $y_1$ and $y_2$, so the projection of the trajectory on the $\vct{y}$-plane can easily be visualised. The Python code implementinng the long-step primal-dual method with parameters $\sigma=0.1, 0.5, 0.9$ is given below.

In [3]:
# Define the function F and the Jacobian matrix M
def F(x, y, s):
C1 = np.dot(A.T,y)+s-c
C2 = np.dot(A,x)-b
C3 = x*s
return np.concatenate((C1, C2, C3))

def M(x, y, s):
return np.asarray(np.bmat([[np.zeros((n,n)), A.T, np.eye(n)],
[A, np.zeros((2,2)), np.zeros((2,n))],
[np.diag(s), np.zeros((n,2)), np.diag(x)]]))
In [4]:
x = np.ones(n)/11.
y = np.array([0,0])
s = c-np.dot(A.T, y)
In [5]:
def longstep(x, y, s, sigma, gamma=1e-3, tol=1e-4):
mu = 1
i = 1
yy = np.zeros((2,50))
while mu>tol and i<50:
a = 1
mu = np.dot(x,s)/11.
rhs = F(x,y,s)-np.concatenate((np.zeros(n+2), sigma*mu*np.ones(11)))
delta = -la.solve(M(x,y,s), rhs)
xs = np.concatenate((x,s))
deltaxs = np.concatenate((delta[:11], delta[13:]))

I = np.argmin(xs+deltaxs)
m = xs[I]+deltaxs[I]
if m<gamma*mu:
a = np.amin(-xs[I]/deltaxs[I])

x = x+a*delta[:11]
y = y+a*delta[11:13]
s = s+a*delta[13:]

yy[:,i] = y
i+=1
return yy[:,:i]
In [6]:
import matplotlib.pyplot as plt
% matplotlib inline
fig, ax = plt.subplots(1,3, figsize=(12, 4))
xx = np.linspace(0,1,100)
sigmas = [0.1, 0.5, 0.9]

for k in range(3):
yy = longstep(x,y,s,sigmas[k])
ax[k].set_ylim([0,1])
for j in range(n):
ax[k].plot(xx,c[j]-np.dot(A[0,j],xx))
ax[k].plot(yy[0,:], yy[1,:], '-o')
ax[k].set_title("$\sigma$={:f}".format(sigmas[k]))
ax[k].set_xlabel('$y_1$')
ax[k].set_ylabel('$y_2$')
plt.show()

(c) In the figure, the central path is shown as the vertical line in the $\vct{y}$ plane.

In [7]:
def longstep_xs(x, y, s, sigma, gamma=1e-3, tol=1e-4):
mu = 1
i = 1
xxs = np.zeros((2,50))
xxs[:,0] = np.array([x[1]*s[1],x[4]*s[4]])
while mu>tol and i<50:
a = 1
mu = np.dot(x,s)/11.
rhs = F(x,y,s)-np.concatenate((np.zeros(n+2), sigma*mu*np.ones(11)))
delta = -la.solve(M(x,y,s), rhs)
xs = np.concatenate((x,s))
deltaxs = np.concatenate((delta[:11], delta[13:]))

I = np.argmin(xs+deltaxs)
m = xs[I]+deltaxs[I]
if m<gamma*mu:
a = np.amin(-xs[I]/deltaxs[I])

x = x+a*delta[:11]
y = y+a*delta[11:13]
s = s+a*delta[13:]
xxs[:,i] = np.array([x[1]*s[1],x[4]*s[4]])
i+=1
return xxs[:,:i]
In [8]:
fig, ax = plt.subplots(1,3, figsize=(12, 4))
xx = np.linspace(0,0.1,100)
sigmas = [0.1, 0.5, 0.9]

for k in range(3):
xs = longstep_xs(x,y,s,sigmas[k])
ax[k].plot(xx,xx,linewidth=3, color='red')
ax[k].plot(xs[0,:], xs[1,:], '-o')
ax[k].set_title("$\sigma$={:f}".format(sigmas[k]))
ax[k].set_xlabel('$x_1s_1$')
ax[k].set_ylabel('$x_5s_5$')
plt.show()

Solution to Problem 6.5¶

This problem is a special case of Problem 6.3. We nevertheless solve it from scratch. First compute the gradient of all terms,

\begin{equation*} \nabla (\vct{x}^{\trans}\mtx{\Sigma} \vct{x}) = 2\mtx{\Sigma} \vct{x}, \quad \nabla (\vct{x}^{\trans}\vct{e}) = \vct{e}, \quad \nabla (\vct{x}^{\trans}\vct{r})=\vct{r}. \end{equation*}

Then the Lagrange equation is given by (we absorbed the factor $2$):

\begin{equation*} \mtx{\Sigma} \vct{x}-\lambda \vct{e}-\eta \vct{r} = \zerovct \Leftrightarrow \vct{x} = \lambda \mtx{\Sigma}^{-1}\vct{e}+\eta\mtx{\Sigma}^{-1}\vct{r}. \end{equation*}

Multiplying with $\vct{e}^{\trans}$ and $\vct{r}^{\trans}$ we get $\lambda$ and $\eta$ as the solution of a system of equations

\begin{align*} 1 = \vct{e}^{\trans}\vct{x} &= \lambda \vct{e}^{\trans}\mtx{\Sigma}^{-1}\vct{e}+ \eta \vct{e}^{\trans}\mtx{\Sigma}^{-1}\vct{r}\\ \mu = \vct{r}^{\trans}\vct{x} &= \lambda \vct{r}^{\trans}\mtx{\Sigma}^{-1}\vct{e}+ \eta \vct{r}^{\trans}\mtx{\Sigma}^{-1}\vct{r}. \end{align*}

Setting $a=\vct{e}^{\trans}\mtx{\Sigma}^{-1}\vct{e}$, $b=\vct{e}^{\trans}\mtx{\Sigma}^{-1}\vct{r}$ and $c=\vct{r}^{-1}\mtx{\Sigma}^{-1}\vct{r}$, this corresponds to the system of equations

\begin{equation*} \begin{pmatrix} a & b\\ b& c\end{pmatrix} \begin{pmatrix} \lambda \\ \eta\end{pmatrix} = \begin{pmatrix} 1\\ \mu\end{pmatrix}. \end{equation*}

Using Cramer's rule for the solution of a $2\times 2$ system of equations (or solving this by Gaussian elimination directly), we get

\begin{equation*} \begin{pmatrix} \lambda\\ \eta\end{pmatrix} = \frac{1}{ac-b^2} \begin{pmatrix} a\mu-b\\c-b\mu \end{pmatrix}. \end{equation*}

Plugging these into the first equation, the closed-form solution is

\begin{equation*} \vct{x} = \frac{1}{ac-b^2} \left(c\mtx{\Sigma}^{-1}\vct{r}-b\mtx{\Sigma}^{-1}\vct{e}\right)+\mu\cdot \left(a\mtx{\Sigma}^{-1}\vct{e}-b\mtx{\Sigma}^{-1}\vct{r}\right). \end{equation*}

Note that this is an affine function in $\mu$, the target return. The variance itself is then

\begin{equation*} \vct{x}^{\trans}\mtx{\Sigma}\vct{x}. \end{equation*}

Plotting the variance against the target return gives the following graph

(images/portfolio_cropped.pdf)

As we see, the smallest risk occurs when targeting around 6-8\% return.

In [9]:
S = np.array([[185, 86.5, 80, 20],
[86.5, 196, 76, 13.5],
[80, 76, 411, -19],
[20, 13.5, -19, 25]])
r = np.array([14,12,15,7])
e = np.ones(4)
In [10]:
Se = la.solve(S, e)
Sr = la.solve(S, r)
a = np.dot(e, Se)
b = np.dot(e, Sr)
c = np.dot(r, Sr)
d = (c*Sr-b*Se)/(a*c-b**2)
s = (a*Se-b*Sr)/(a*c-b**2)
In [11]:
mu = np.linspace(0,30,300)
xx = np.outer(d.reshape((len(d),1)),np.ones((len(mu),1)))+np.outer(s.reshape((len(s),1)),mu.reshape((len(mu),1)))
temp = np.dot(S,xx)
risk = np.zeros(xx.shape[1])
for i in range(xx.shape[1]):
risk[i] = np.dot(xx[:,i],temp[:,i])
plt.plot(mu, risk, linewidth=3)
plt.show()