
MATH 60604A Exercise 1 - solutions

1.1 Price of high-speed train tickets: the renfe data contains information about 10 000 train ticket sales from Renfe,

the Spanish national train company. The data include:

• price: price of the ticket (in euros);

• dest: binary variable indicating the journey, either Barcelona to Madrid (0) or Madrid to Barcelona (1);

• fare: categorical variable indicating the ticket fare, one of AdultoIda, Promo or Flexible;

• class: ticket class, either Preferente, Turista, TuristaPlus or TuristaSolo;

• type: categorical variable indicating the type of train, either Alta Velocidad Española (AVE), Alta Velocidad

Española jointly with TGV (parternship between SNCF and Renfe for trains to/from Toulouse and beyond)

AVE-TGV or regional train REXPRESS; only trains labelled AVE or AVE-TGV are high-speed trains.

• duration: length of train journey (in minutes);

• wday integer denoting the week day, ranging from Sunday (1) to Saturday (7).

The goal of the analysis is to explore what factors influence the price of high speed trains. We consider travel time

for high-speed (AVE and AVE-TGV) trains. The true “population” median travel time between cities is known to be

ν= 2.833 hours, whereas the true “population” mean is µ= 2.845 hours (the instructor has access to the full dataset

of more than 2.3 millions records, so these are known quantities, unlike in most practical settings).

A simulation study is performed to assess the behaviour of univariate tests under repeated sampling. The following

algorithm was repeated 10 000 times

(a) Select a random subsample of size n = 100.

(b) Compute the one-sample t-test statistic for H0 :µ=µ0 (versus H0 :µ 6=µ0) for different values of µ0.

(c) Compute the signed test for the bilateral test H0 : ν= ν0 for different values of ν0.

(d) Compute the Wilcoxon signed-rank test H0 : ν= ν0 for different values of ν0.

(e) Return the p-values of the three tests.

Note that both the signed test and Wilcoxon signed-rank test are tests for the median.

Figure 1 shows the percentage of the 10 000 p-values that are less than 0.05, i.e. the percentage of rejection (at the

5% level) of H0 : µ= µ0 against the two-sided alternative at µ0 ∈ {2.83,ν,2.835,2.84, . . . ,2.995,3} (for the signed and

signed-rank test, we are testing for the median at these values). Use the resulting power curve (Figure 1) for the

three location tests to answer the following questions:

(a) Explain why the values of each test increase towards the right of the plot.

(b) Suppose we repeated the simulation study, but this time with subsamples of size n = 1000. How would the

points compare for the one-sample t-test: should they be higher, equal, or lower than their current values?

(c) Explain why the value for the one-sample t-test around µ= 2.845 should be approximately 0.05 (and similarly

the value of the signed test and the signed-rank test should be approximately 0.05 around ν= 2.833).

(d) According to Figure 1, how often would you reject the null hypothesis for the Wilcoxon signed-rank test at

ν= 2.833? Explain the consequences for your inference.

(e) Is the assumption of the one-sample t-test valid in this example? Produce a quantile-quantile plot and hence

comment on the robustness of the t-test to departures from the normality assumption.

Solution

(a) The curve is the power curve, i.e., the percentage of rejection of the null hypothesis for one-sample t-test.

The further away from the true value µ, the higher the ability to detect departures from H0. Because we set

α= 0.05, the curve should be around 0.05 near µ and increase towards 1 as we move away from the true mean

(or median).

(b) Power increases if n increases, so we expect to see the curve be higher everywhere, but at µ where it should be

close to 0.05 if the test is calibrated; the value at µ for the one-sample t-test (respectively ν for the signed test

and the signed-rank test) on the curve is the level α, here 5%.

(c) The data are clearly not normal and heavily discretized, yet the power curve of the one-sample t-test is steadily

increasing and the nominal level matches the empirical one. This illustrates the robustness of the test to
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Figure 1: Power curve for three tests of location, either one-sample t-test (full dots), Wilcoxon signed rank test (crosses) or
signed test (empty circles), as a function of travel time. The grey horizontal line is at 0.05, the dashed vertical line indicates
the true median ν and the vertical dotted line the true mean µ.

departures from normality.

(d) The level of the test is 5%, so we should reject at least 5% of the time under the null.

(e) The empirical level of the Wilcoxon signed-rank test is 0.44, very far from the (expected) nominal error rate of

0.05. Far from ν, the test behaves as expected (i.e., power increase far away from the true median ν), but the

lack of symmetry and the presence of ties severely affects the conclusions of the test under H0, showing that

nonparametric tests are not a panacea either. The consequence is a large Type I error.

1.2 Suppose we want to compare the mean fare for high-speed train tickets for the two destinations, i.e. Madrid to

Barcelona versus Barcelona to Madrid. We run a simulation study where we perform a two-sided Welch test for

this hypothesis repeatedly with random subsamples of size n = 1000. The data renfe_simu contains the mean

difference (meandif), the test statistic (Wstat), the p-value (pval) and the confidence interval (cilb and ciub)

for these 1000 repetitions. Based on the entire database, the true mean difference is known to be −0.28e. Use the

simulated data to answer the following questions and briefly comment on each item

(a) What is the empirical coverage of the 95% confidence intervals (i.e., the percentage of intervals covering the

true mean difference value)?

(b) Plot an histogram of the mean differences and superimpose the true mean difference in the population.

(c) Compute the power of the test (percentage of rejection of the null hypothesis).

Solution

(a) The empirical coverage is 0.947. The coverage is not far from nominal coverage of 0.95, indicating the test is

well calibrated.

(b) The histogram for the mean difference in Figure 2 looks normally distributed and centered around 0.28,

whereas the p-values are scattered in the unit interval, with some values closer to zero.

(c) The power is 0.105. Under the alternative regime (since ∆ = 0.28e), we only reject 10.5% of the time. While
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Figure 2: Histogram of the mean difference price for high-speed train tickets from Madrid to Barcelona versus Barcelona
to Madrid, along with average (gray vertical line).

this number is low, it is due to the small size of the true mean difference, which is hard to detect unless the

sample size is enormous. The estimated mean difference for the sample is 0.274e.

1.3 Using the renfe data, test whether the average ticket price of AVE-TGV trains is different from that of Regio Express

trains (REXPRESS). Make sure to

• State your null and alternative hypothesis.

• Carefully justify your choice of test statistic.

• Report the estimated mean difference and a 90% confidence interval for that difference.

• Conclude within the setting of the problem.

Solution

Careful here, as the price of the REXPRESS tickets is fixed at 43.25e. The only random sample is for the other class

of train!

• The null hypothesis is H0 :µAVE-TGV = 43.25eagainst the alternative H1 :µAVE-TGV 6= 43.25e, where µAVE-TGV is

the average AVE-TGV ticket price.

• Since this is a one-sample location problem, we use a one-sample t-test.

• The estimated mean difference is 45.63e= 88.88e−43.25e, with 90% confidence interval for the mean differ-

ence of [44.14,47.12].

• The t-statistic is 50.519 with 428 degrees of freedom, which has a negligible p-value.

1.4 The insurance data contains (simulated) records for health insurance premium in the United States for 1338 indi-

viduals, including information about

• age: age (in years)

• sex: sex (male or female)

• bmi: body mass index (in kg/m2)
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• children: number of dependent children

• smoker: logical indicator, yes if the person is a smoker and no otherwise

• region: geographical location with the US, one of southwest, southeast, northwest and northeast
• charges: individual medical costs billed by health insurance (in USD)

The data come from

Lantz, Brett (2013), Machine Learning with R , Packt Publishing, 396p.

The World Health Organization (WHO) uses the classification of body mass index (BMI) presented in Table 1 to

assess health status of population.

Classification BMI (kg/m2)

< 18.5 Underweight
18.5–24.9 Normal range
25.0–29.9 Overweight
30.0–34.9 Obesity class I
35.0–39.9 Obesity class II and III

Table 1: International classification of adult underweight, overweight and obesity according to BMI (WHO)

Use the insurance data to answer the following questions.

(a) Perform an explanatory data analysis of the insurance data: what are important features explaining medical

costs?

Solution

i. The distribution of charges is strictly positive, right skewed and asymmetric, meaning that the mean is

larger than the median. We also note the presence of potential outliers. In contrast, the distribution of

bmi is symmetric and centered around 30.

ii. Graphics presented in Figure 3 show a clear linear increase of charges with age, but evidence of three

clusters, with higher heterogeneity for people facing higher charges. All individuals in the top payment

category are smokers. The body mass index covariate is only important when combined with smoking

status. There is a clear dichotomy smoker/non-smoker and a jump in charges for smokers (red) with a

body mass index larger than 30kg/m2, corresponding to obesity according to the WHO definition (bottom

panel).

(b) Do smokers pay on average the same charges as non-smokers? Justify your answer.

Solution

No, they pay significantly more as evidenced by Figure 3, which shows high heterogeneity and unequal vari-

ance; Levene’s test confirms this finding, with a 95% confidence interval for the ratio of variance of [0.22,0.32]

derived using Levene’s test for equality of variance. We reject the null hypothesis that µS = µN in favor of the

alternative µS 6= µN , where µS (µN ) is the average health medical costs (in USD) for smokers (non-smokers).

Welch’s test statistic is 32.75 and the p-value is less than 10−15; even if the data are not normal, the conclusion

is unequivocal given the sample size and the difference in mean of 23616$.

(c) Do obese smoker (i.e., bmi ≥ 30) face higher charges relative to other smokers? Give 90%, 95% and 99% con-

fidence intervals for the mean difference between obese and non-obese smokers. Compare the intervals and

explain how they change with varying confidence levels.

Solution

Yes, obese smokers face significantly higher medical costs than non-obese, as can be seen from the bottom

right panel of Figure 3. We can assess this formally by testing H0 :µ0 ≤µ1 against the alternative H1 :µ0 >µ1,
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Figure 3: Histogram of annual medical costs in USD (top left), box-and-whiskers plots of charges per sex (top right)
and per smoker status (middle left). Scatterplot of charges versus age (middle right), showing a clear linear trend for
three separate clusters corresponding to non-smokers non-obese individuals (black), non-obese smokers (red) and obese
smokers (green), also shown with boxplots (bottom right). Scatterplot of charges as a function of body mass index with
smokers (red) and non-smokers (black); the vertical line indicates the obesity threshold (bottom left).
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Figure 4: Histogram of body mass index (in kg/m2) with rugs (top left), and box-and-whiskers plots showing interactions
of body mass index with smoking status (top right), sex (bottom left) and region (bottom right).

where µ0 (µ1) is the average health charges for a obese (non-obese) smoker. The confidence intervals for the

mean difference derived using Welch’s test statistic for confidence level 90%, 95% and 99% are respectively

(−∞,−19333.08), (−∞,−19087.71) and (−∞,−18625.11). The larger the significance level α, the larger the

upper bound and the shorter the confidence interval, which are nested.

1.5 Calculating the power of a statistical test

The SAS program power.sas contains code by Rick Wicklin from SAS Institute Inc. to perform a simulation study

for computing the power of the two-sample t-test, which is the same as that of the binary variable indicating group

in a simple linear regression model.

(a) Briefly explain in your own words the steps of the simulation study.
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Solution

The Monte Carlo study is used to compute the power of a two-sample t-test for samples Y and Z as a function

of their mean difference. More specifically, we are interested in testing H0 : ∆ = 0 against two-sided alter-

natives, for different values of ∆. For each of these values of ∆, two independent samples of size n = 10 are

drawn from normal distributions, with Yi ∼ No(µ,1) and Zi ∼ No(µ+∆,1). For each of these B replications,

we simulate the sample, compute the t-test statistic, and then a binary indicator equal to 1 if we reject the

null hypothesis at level 5% based on the null distribution, here St(n −2). We repeat this calculation B times

for each ∆ and return an estimate of the power, namely the proportion of rejection of H0: this is simply the

sample mean of the binary variables.

(b) Plot and comment on the graph produced with parameters n1 = n2 = 10, σ= 1 and B = 10 000.

Solution

The V -shape curve is symmetric around ∆= 0. If ∆= 0, the null hypothesis is true: we should obtain the level

of the test, 5%, as percentage of rejection since all of the postulates are true, with normal homoscedastic data.

The power increases with |∆| up until about 1 when |∆| > 2.

(c) Vary the number of simulations from B = 100 to B = 10 000. What do you notice when the number of simula-

tions is small? Explain why this effect vanishes as the number of simulations increase.

Solution

We are trying to approximate the true proportion of rejection πi for each value of ∆i based on a sample from

a binomial distribution with B trials; the sample mean is an unbiased estimator of πi . With B = 100, there is

more variability (and more so if we are close to 0.5 as the variance of the sample mean is πi (1−πi )/B). The

curve obtained from B = 100 changes from one replication to the next, is discontinuous and fluctuates with

∆. With B = 10 000, the curve is smooth and monotonically increases as we move away from zero.

(d) Modify the code so that the size of the groups is (a) n1 = 10,n2 = 30 and (b) n1 = 20,n2 = 20. In which of these

two scenarios is the power highest and why?

Solution

The power is higher in the cases of balanced (i.e., equal) samples, even if the overall sample size, n1 +n2 = 40,

is the same in both cases. The mean and variance estimators are unbiased, regardless of the sample size,

because the data are sampled from homoscedastic normal distributions. The different powers are due to the

pooled variance estimator,

S2
p

(
1

n1
+ 1

n2

)
.

Since 1/10+1/30 = 4/30 > 3/30 = 1/20+1/20, the power is higher in the second case (smaller variance, leading

to higher statistics values for the same set of samples). This statement holds more generally provided all

samples have the same variance.

(e) Modify the code to simulate n = 20 observations in each group from a normal distribution with different

standard deviations, σ1 = 1, σ2 = 5 with B = 100 000. Report the estimated level of the test along with the

number of simulations and a 90% confidence interval. Explain how you derived the latter.

Solution

Since each replication is independent and the probability of success is the same, the number of success follows

a binomial distribution with B trials and success probability p. The number of success is random: with 100 000

simulations, I got an estimate of p̂ = 0.05512, far from the postulated level 5%. A Wald-based 90% confidence

interval is

p̂ ±Φ−1(0.95)
√

p̂ · (1− p̂)/B = 0.05512±1.64485
√

0.05512 ·0,94488/100 000 = [0.05280.0574]
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We thus conclude, at level that the type I error is significatively different from the postulated level of the test

(the null distribution is derived under the hypothesis of equal variance, so it is possible the approximation

is off when the latter is false). We could fit a generalized linear model for the binomial distribution. The

likelihood ratio test-based confidence interval for my sample is [0.0537;0.0565].
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