
Surprise Minimizing Multi-Agent Learning with
Energy-based Models

Karush Suri1, Xiao Qi Shi2, Konstantinos Plataniotis1, Yuri Lawryshyn1

1 University of Toronto, 2 RBC Capital Markets
karush.suri@mail.utoronto.ca

Abstract

Multi-Agent Reinforcement Learning (MARL) has demonstrated significant suc-
cess by virtue of collaboration across agents. Recent work, on the other hand,
introduces surprise which quantifies the degree of change in an agent’s environ-
ment. Surprise-based learning has received significant attention in the case of
single-agent entropic settings but remains an open problem for fast-paced dynamics
in multi-agent scenarios. A potential alternative to address surprise may be realized
through the lens of free-energy minimization. We explore surprise minimization in
multi-agent learning by utilizing the free energy across all agents in a multi-agent
system. A temporal Energy-Based Model (EBM) represents an estimate of surprise
which is minimized over the joint agent distribution. Our formulation of the EBM
is theoretically akin to the minimum conjugate entropy objective and highlights
suitable convergence towards minimum surprising states. We further validate our
theoretical claims in an empirical study of multi-agent tasks demanding collabora-
tion in the presence of fast-paced dynamics. Our implementation and agent videos
are available at the Project Webpage.

1 Introduction

The rise of RL has led to an increasing interest in the study of multi-agent systems [34, 58], commonly
known as Multi-Agent Reinforcement Learning (MARL). In the case of partially observable settings,
MARL enables the learning of policies with centralised training and decentralised control [26]. This
has proven to be useful for exploiting value-based methods which motivate collaboration across large
number of agents. But how do agents behave in the presence of sudden environmental changes?

Consider the problem of autonomous driving wherein a driver (agent) autonomously operates a
vehicle in real-time. The driver learns to optimize the reward function by maintaining constant
speed and covering more distance in different traffic conditions. Whenever the vehicle approaches
an obstacle, the driver acts to avoid it by utilizing the brake and directional steering commands.
However, due to the fast-paced dynamics of the environment, say fast-moving traffic, the agent may
abruptly encounter an obstacle (a person running across the street) which may result in a collision.
Irrespective of the optimal action (pushing of brakes) executed by the agent, the vehicle may fail to
evade the collision as a result of the abrupt temporal change.

The above arises as a consequence of surprise, which is defined as a statistical measure of uncertainty.
Surprise minimization [3] is a recent phenomenon observed in the case of single-agent RL methods
which deals with environments consisting of rapidly changing states. In the case of model-based
RL [24], surprise minimization is used as an effective planning tool in the agent’s model [3]. In
the case of model-free RL, surprise minimization is witnessed as an intrinsic motivation [1, 36] or
generalization problem [9]. On the other hand, MARL does not account for surprise across agents as
a result of which agents remain unaware of drastic changes in the environment [35]. Thus, surprise
minimization in the case of multi-agent settings requires attention from a critical standpoint.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://karush17.github.io/emix-web/

A potential pathway to treat surprising states may be realized in light of free-energy minimization.
The free-energy principle depicts convergence to local niches and provides a general recipe for
stability among agents. Through this lens, we unify surprise with free-energy in the multi-agent
setting. We construct a temporal EBM which represents an estimate of surprise agents may face in
the environment. All agents jointly minimize this estimate utilizing temporal difference learning upon
their value functions and the EBM. Our formulation of free-energy minimization is theoretically akin
to minimizing the entropy in conjugate gradient space. This insight provides a suitable convergence
result towards minimum surprising states (or niches) of the agent state distributions. In an empir-
ical study of multi-agent tasks which present significant collaboration bottlenecks and fast-paced
dynamics, we validate our theoretical claims and motivate the practical usage of EBMs in MARL.

2 Related Work

Surprise Minimization: Despite the recent success of value-based methods [39, 22] RL agents suffer
from spurious state spaces and encounter sudden changes in trajectories. Quantitatively, surprise
has been studied as a measure of deviation [3, 9] among states encountered by the agent during
its interaction with the environment. While exploring [7, 56] the environment, agents tend to have
higher deviation among states which is gradually reduced by gaining a significant understanding of
state-action transitions. In the case of model-based RL, agents can leverage spurious experiences [3]
and plan effectively for future steps. On the other hand, in the case of model-free RL, surprise results
in sample-inefficient learning [1]. This is primarily addressed by making use of rigorous exploration
strategies [52, 31]. High-dimensional exploration further requires extrinsic feature engineering [27]
and meta models [16]. A suitable way to tackle high-dimensional dynamics is by utilizing surprise as
a penalty on the reward [9]. This leads to improved generalization for single-agent interactions [45].
Our proposed approach is parallel to the aforesaid methods.

Energy-based Models: EBMs have been successfully implemented in single-agent RL methods
[42, 19]. These typically make use of Boltzmann distributions to approximate policies [32]. Such a
formulation results in the minimization of free energy within the agent. While policy approximation
depicts promise in the case of unknown dynamics, inference methods [57] play a key role in optimizing
goal-oriented behavior.

A second type of usage of EBMs follows the maximization of entropy [65]. The maximum entropy
framework [20] highlighted in Soft Q-Learning (SQL) [19] allows the agent to obey a policy which
maximizes its reward and entropy concurrently. Maximization of agent’s entropy results in diverse and
adaptive behaviors [64] which may be difficult to accomplish using standard exploration techniques
[7, 56]. The maximum entropy framework is akin to approximate inference in the case of policy
gradient methods [49]. Such a connection between likelihood ratio gradient techniques and energy-
based formulations leads to diverse and robust policies [17]. Furthermore, their hierarchical extensions
[18] preserve the lower levels of hierarchies. In the case of MARL, EBMs have witnessed limited
applicability as a result of the increasing number of agents and complexity within each agent [8].
While the framework is readily transferable to opponent-aware multi-agent systems [63], cooperative
settings consisting of coordination between agents require a firm formulation of energy. This
formulation must be scalable in the number of agents [15] and account for environments consisting
of spurious states [62]. Our theoretical formulation is motivated by these methods in literature.

3 Preliminaries

Multi-Agent Learning: We review the cooperative MARL setup. The problem is modeled as a
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [43] defined by the
tuple (S,A, r,N, P, Z,O, γ) where the state space S and action space A are discrete, r : S ×A →
[rmin, rmax] presents the reward observed by agents a ∈ N where N is the set of all agents,
P : S×S×A → [0, 1] presents the unknown transition model consisting of the transition probability
to the next state s′ ∈ S given the current state s ∈ S and joint action u ∈ A (a combination of
each agent’s action ua ∈ Aa) at time step t and γ is the discount factor. Our setting consists of the
finite-horizon discounted problem case where episodes terminate at timestep T with the terminal
state being sT . As a result, task returns remain bounded for each episode. We consider a partially
observable setting in which each agent n draws individual observations z ∈ Z according to the
observation function O(s, u) : S × A → Z. We consider a joint policy πθ(u|s) as a function of

2

model parameters θ. Standard RL defines the agent’s objective to maximize the expected discounted
reward Eπθ [

∑T
t=0 γ

tr(st, ut)] as a function of the parameters θ. The joint action-value function for
agents is represented as Q(u, s; θ) = Eπθ [

∑T
t=1 γ

tr(s, u)|s = st, u = ut] which is the expected
sum of payoffs obtained in state s upon performing action u by following the policy πθ. We denote
the optimal policy πθ∗(shorthand π∗) such that Q(u, s; θ∗) ≥ Q(u, s; θ)∀s ∈ S, u ∈ A. In the case
of multiple agents, the joint optimal policy can be expressed as the Nash Equilibrium [40] of the
Stochastic Markov Game as π∗ = (π1,∗, π2,∗, ...πN,∗) such that Q(ua, s; θ∗) ≥ Q(ua, s; θ)∀s ∈
S, u ∈ A, a ∈ N . Q-Learning is an off-policy, model-free algorithm suitable for continuous and
episodic tasks. The algorithm uses semi-gradient descent to minimize the Temporal Difference (TD)
error in Equation 1.

L(θ) = E
s,u,s′∼R

[(
r + γmax

u′∈A
Q(u′, s′; θ−)−Q(u, s; θ)

)2
]

(1)

where y = r + γmax
u′∈A

Q(u′, s′; θ−) is the TD target consisting of θ− as the target parameters andR
denotes the replay buffer.

Energy-based Models: EBMs [29, 30] have been successfully applied in the field of machine learn-
ing [55] and probabilistic inference [37]. A typical EBM E formulates the equilibrium probabilities
[47] P (v, h) = exp (−E(v,h))∑

v̂,ĥ[exp (−E(v̂,ĥ))]
via a Boltzmann distribution [32] where v and h are the values

of the visible and hidden variables and v̂ and ĥ are all the possible configurations of the visible
and hidden variables respectively. The probability distribution over all the visible variables can be
obtained by summing over all possible configurations of the hidden variables. This is mathematically
expressed in Equation 2.

P (v) =

∑
h exp (−E(v, h))∑
v̂,ĥ exp (−E(v̂, ĥ))

(2)

Here, E(v, h) is called the equilibrium free energy which is the minimum of the variational free
energy and

∑
v̂,ĥ exp (−E(v̂, ĥ)) is the partition function.

4 Energy-based Surprise Minimization

We begin by constructing surprise minimization as an energy-based problem in the temporal setting.
The motivation behind an energy-based formulation stems from rapidly changing states as an unde-
sired niche among agents in the case of partially-observed settings. To steer agents away from this
niche, we further construct a method which incorporates the theoretical aspect of the study.

4.1 The Surprise Minimization Objective

To make analysis tractable towards valid function spaces and surprising states, we take into account
two assumptions which form the central basis of surprise minimization among multiple agents.

Assumption 1. (Completeness of value function space) The space Π : S ×A of all Q value
functions Q(s, u) ∈ Π, ∀s ∈ S, ∀u ∈ A is a nonempty complete metric space.

Assumption 1 restricts the formulation of individual agent value functions Qa to the nonempty
complete metric space. A nonempty space confirms the presence of candidate functions Qa upper
bounded by the optimal function Q∗, i.e.- Qa ≤ Q∗, ∀a ∈ N [5]. The completeness counterpart, on
the other hand, provisions a fixed interior int Π for optimization [6].

Assumption 2. (Constant surprise at Equilibrium) In the limit of convergence lim
πa→π∗

to an

optimal policy π∗, all agents a ∈ N incur a finite surprise ζ > 0 between consecutive states
s and s′ until termination state sT .

3

Assumption 2 is directly based on the constant and continuous temporal aspect of surprise minimiza-
tion [50, 12]. Corresponding to the lifetime of each agent a ∈ N , a desired minima bakes in the
optimal distribution of actions which correspond to minimum but finite instantaneous surprise.

We formulate the energy-based objective consisting of surprise as a function of states s, joint actions u
and standard deviation σ of observations for each agent a. In the case of high-dimensional state spaces
(such as multiple opponents), σ informs agents of the abrupt statistical change that would take place
upon executing action u. We formulate surprise as T V asurp(s, u, σ) which serves as an uncertainty
quantifier Unc(s,a) of the state-action distribution. Here V asurp(s, u, σ) denotes the surprise value
function which serves as a mapping from agent and environment dynamics to surprise. Define an
operator presented in Equation 3 which sums surprising configurations across all agents.

T V asurp(s, u, σ) = log

N∑
a=1

exp
(
V asurp(s, u, σ)

)
(3)

Remark 1. T V asurp(s, u, σ) intuitively provides a global estimate of surprise. If all agents are equally
likely to face a surprising state, then T V asurp(s, u, σ) captures their individual contributions.

The formulation makes use of the soft-maximum operator [2]. The operator T V asurp(s, u, σ) is similar
to prior energy formulations [19] where the energy across different actions is evaluated. In our case,
inference is carried out across all agents with actions as prior variables. However, in the special case
of using an EBM as a Q-function, our approach suitably generalizes to the above methods (details in
Appendix B).

Our choice of T V asurp(s, u, σ) is based on its unique mathematical properties which result in better
convergence. Of these properties, the most useful result is that T forms a contraction on the surprise
value function V asurp(s, u, σ) indicating a guaranteed minimization of surprise within agents. This
is formally stated in Theorem 1 while utilizing the completeness criterion of Assumption 1 which
provides a tractable value function space. All proofs are deferred to Appendix A.

Theorem 1. Given a surprise value function V asurp(s, u, σ) ∀a ∈ N , the energy operator
T V asurp(s, u, σ) = log

∑N
a=1 exp (V asurp(s, u, σ)) forms a contraction on V asurp(s, u, σ).

Theorem 1 provides a suitable guarantee of T V asurp(s, u, σ) converging to a fixed point niche. The
contraction result is directly based on Banach’s fixed point property and suggests the generalization
of convergence in any nonempty complete metric space (X, d) [5].

We now consider a weighted combination of Q(s, u) with T V asurp(s, u, σ) wherein we denote β as a
temperature parameter,

Q̂(u, s; θ) = Q(u, s; θ) + β log

N∑
a=1

exp (V asurp(s, u, σ))) (4)

Remark 2. Equation 4 is an instance of value function regularization wherein the Q values are
subject to a joint penalty while observing surprising states.

Interestingly, upon considering the Legendre transform f∗(x) [6, 14] (convex conjugate function
corresponding to the conjugate space X of a differentiable function f(z)) of T V asurp(s, u, σ), we
obtain the following,

f∗(x) = sup
z∈dom f

(
xTz− f(z)

)
, f(z) = T V asurp(s, u, σ) (5)

f∗(x) =
∑
x

x log(x) , x = ∇zf(z) ∈ X (6)

Remark 3. The Legendre Transform of T V asurp(s, u, σ) given by f∗(x) =
∑
x x log(x) when utilized

as value function regularization Q̂ = Q− f∗(x) corresponds to the minimum entropy formulation in

conjugate space Eπθ
[∑T

t=0 γ
t(r(st, ut)− λH(x))

]
for x = ∇zf(z) ∈ X .

Based on the above insight, minimizing entropy to express ∇zf(z) in conjugate space is akin to
minimizing uncertainty among all agents in the value function space Π. Intuitively, H(x) denotes
the uncertainty for each agent a ∈ N in the multi-agent population which is directly related to its

4

ability of accurately interpreting the environment. Minimizing H(x) leads to an increase in the
expressiveness of value function. This in turn, induces an expressive state visitation distribution
which steers the agent away from sudden changes in its environment. Note that the setting does
not minimize entropy in value function space which would stand contrary to the maximum entropy
formulation [20] (see Appendix B).

Figure 1: Agent populations (robots)
traverse the energy landscape (in
grey) during update steps (blue) to
seek energy minima (darker shade
at center). This results in surprise
minimization from high (red) to low
energy (green) niches.

Figure 1 presents an illustration of the intuition behind sur-
prise minimization using the energy-based scheme. Agents
collaborate in partially-observed worlds to attain a joint niche.
Interpreting the space of all surprising states as an energy
landscape, MARL agents move from high energy states to
low energy states which consist of minimum surprise. During
training, agents train to find policies which not only provide
rewarding actions, but also avoid risky states by minimizing
T V asurp(s, u, σ). Seeking these states leads to finding the min-
ima on the energy landscape. Thus, it is by virtue of regularized
value estimates Q̂ that the minimization scheme informs agents
of joint surprise.

4.2 Surprise
Minimization with Function Approximation

We utilize the above insights as surprise-based regularization
in the TD learning setting. Upon replacing Q(u, s; θ) with
Q̂(u, s, ; θ) in the RL construction of Equation 1 one obtains
the following,

L(θ) = E
s,u,s′∼R

[
1

2

(
ŷ−(Q(u, s; θ)+β log

N∑
a=1

exp (V asurp(s, u, σ)))

)2]
where ŷ is given by the following expression,

ŷ = r + γmax
u′
Q(u′, s′; θ−) + β log

N∑
a=1

exp (V asurp(s′, u′, σ′)) (7)

Collecting the log terms yields the following,

L(θ) = E
s,u,s′∼R

[
1

2

(
r + γmax

u′
Q(u′, s′; θ−)

+β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


L(θ) = E
s,u,s′∼R

[
1

2

(
r + γmax

u′
Q(u′, s′; θ−) + βE −Q(u, s; θ)

)2]
(8)

Here, E is defined as the surprise ratio. The surprise value function V asurp(s′, u′, σ′) is expressed as
the negative free energy and

∑N
a=1 exp (V asurp(s, u, σ)) as the partition function of a conventional

EBM described in Equation 2. Alternatively, V asurp(s, u, σ) can be formulated as the negative free
energy with

∑N
a=1 exp (V asurp(s′, u′, σ′)) as the partition function. The TD objective incorporates

the minimization of surprise across all agents as minimizing the energy in rapidly changing states.

Remark 4. The above formulation of βE can be realized as intrinsic motivation steering the agent
towards subgoals with reduced surprise.

The energy formulation E provides a tractable distribution over all surprising configurations in the
state space S . This guarantees convergence to minimum surprise at optimal policy π∗ and is formally
expressed in Theorem 2 (see Appendix C for a detailed convergence analysis).

5

Theorem 2. Upon agent’s convergence to an optimal policy π∗, total energy of π∗, expressed
by E∗ will reach a thermal equilibrium consisting of minimum surprise among consecutive
states s and s′.

Theorem 2 demonstrates an intuitive convergence result of agent populations collaborating to reside
in a mutual ecological niche [12]. The multi-agent population with minimum surprise exhibits the
optimal policy π∗ which results in minimum energy corresponding to each surprising state in the
state distribution S . Orthogonally, agents may continue to experience finite and constant surprise in
the long-horizon while acting optimally to visit non-surprising and rewarding states. This presents
surprise minimization as a secondary surrogate objective in MARL.

4.3 Energy-based MIXer (EMIX)

Figure 2: The EMIX architecture for learning surprise across global states.

Based on our theoretical analysis, we incorporate learning of surprise as global intrinsic motivation
across all agents in the multi-agent system. A global estimate of surprise, following the energy
operator T V asurp(s, u, σ), is befitting from a computational perspective as well. An individual
estimate of surprise for each agent may be intractable to obtain due to the non-stationarity of the
environment. Instead, we seek to minimize surprise jointly across all agents using an expressive
Energy-based MIXer (EMIX) architecture which is compatible with any multi-agent RL algorithm.
Figure 2 illustrates our learning scheme.

Learning of surprise in the high-dimensional value function space is cumbersome with the number
of actions scaling linearly in the number of agents. This imposes an inherent restriction to learn
global surprise efficaciously across all agents at a given timestep. Towards this goal, EMIX encodes
individual value functions Q1, Q2, ... Qn corresponding to each agent using local value encoders.
These encoders capture the local change in value functions arising over subsequent TD learning
iterations [60]. A global state encoder maps environment states s1, s2, ... sT to a low dimensional
representation. Further, a state deviation encoder encodes deviations across all states s1, s2, ... sT
within the given batch. Akin to a model-based method [23], the state deviation encoder accounts for
uncertainty in an agent’s state visitation distribution. Note that the encoder does not construct an
explicit model of states, but only represents their variation in the agent’s environment. This insight is
essential to account for abrupt dynamics encountered by agents. Representations obtained from state
and value function encoders are concatenated and compressed using a final surprise encoder which
estimates a distribution of surprise values. The distribution implicitly represents the density of states
wherein an agent may encounter most surprise. A value estimate V asurp(s, u, σ) sampled from the
surprise distribution depicts the variational free energy configuration upon application of T which
serves as global intrinsic motivation. Practical training of EMIX proceeds with backpropagation [46]
using gradient descent and the reparameterization trick [25] for sampling of V asurp(s, u, σ).

6

4.4 Practical Implementation

Algorithm 1 presents the EMIX framework (in green) combined with QMIX [44], an off-the-shelf
MARL algorithm. The total Q-value Qθtot is computed by the mixer network with its inputs as
the Q-values of all the agents conditioned on s via the hypernetworks. Similarly, the target mixers
approximate Qθ

−

i conditioned on s′. In order to evaluate surprise within agents, we compute the
standard deviations σ and σ′ across all observations z and z′ for each agent using s and s′ respectively.
The surprise value function, called the Surprise-Mixer, estimates surprise V asurp(s, u, σ) conditioned
on s, u and σ. The same computation is repeated using the Target-Surprise-Mixer for estimating
surprise V asurp(s′, u′, σ′) within next-states in the batch. Application of the energy operator along the
non-singleton agent dimension for V asurp(s, u, σ) and V asurp(s′, u′, σ′) yields the energy ratioE which
is used in Equation 8 to evaluate L(θ). We then use batch gradient descent to update parameters of
the mixer θ. Target parameters θ−i are updated every update− interval steps.

Algorithm 1 Energy-based MIXer (EMIX)

1: Initialize φ, θ, θ−1 ..., θ
−
m, agent and hypernetwork parameters.

2: Initialize learning rate α, temperature β and replay bufferR.
3: for environment step do
4: u←− (u1, u2..., uN)
5: R ←− R∪ {(s, u, r, s′)}
6: if |R| > batch-size then
7: for random batch do
8: Qθtot ←− Mixer-Network(Q1, Q2..., QN , s)
9: Qθ

−

i ←− Target-Mixeri(Q1, Q2..., QN , s
′), ∀i = 1, 2..,m

10: Calculate σ and σ′ using s and s′
11: V asurp(s, u, σ)←− Surprise-Mixer(s, u, σ)
12: V asurp(s′, u′, σ′)←− Target-Mixer(s′, u′, σ′)

13: E ←− log

(∑N
a=1 exp (V asurp(s

′,u′,σ′))∑N
a=1 exp (V asurp(s,u,σ))

)
14: Calculate L(θ) using E in Equation 8
15: θ ←− θ − α∇θL(θ)
16: end for
17: end if
18: if update-interval steps have passed then
19: θ−i ←− θ,∀i = 1, 2..,m
20: end if
21: end for

5 Experiments

Our experiments aim to evaluate the theoretical claims presented by EMIX along with its performance
to prior MARL methods. Specifically, we aim to answer the following questions;

(1) How does the provision of an EBM for surprise minimization compare to current MARL methods?

(2) Does the algorithm validate the theoretical claims corresponding to its components?

5.1 Energy-based Surprise Minimization

We assess the validity of EMIX, when combined with QMIX, on multi-agent StarCraft II microman-
agement scenarios [48] as these consist of a larger number of agents with different action spaces.
This in turn motivates a greater deal of coordination. Additionally, micromanagement scenarios
in StarCraft II consist of multiple opponents which introduce a greater degree of surprise within
consecutive states.

We compare our method to prior methods namely; (1) QMIX [44], constituting of nonlinear value
function factorization with monotonicity constraints; (2) Value Decomposition Networks (VDN)

7

Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
3m 94.90±0.39 93.94±0.22 93.43±0.20 94.58±0.58 84.75±7.93 94.79±0.50

3s_vs_4z 97.22±0.73 0.24±0.11 96.01±3.93 94.29±2.13 0.00±0.00 59.75±12.22
8m_vs_9m 71.03±2.69 69.90±1.94 68.28±2.30 58.81±4.68 4.17±0.58 28.48±22.38

10m_vs_11m 75.35±2.30 77.85±2.02 70.36±2.87 71.81±6.50 4.55±0.73 32.27±25.68
so_many_baneling 95.87±0.16 93.61±0.94 93.35±0.78 92.26±1.06 91.65±2.26 74.97±6.52

5m_vs_6m 37.07±2.42 33.27±2.79 34.42±2.63 35.63±3.32 0.52±0.13 14.78±2.72

Table 1: Comparison of success rate percentages between EMIX and prior MARL methods on
StarCraft II micromanagement scenarios. EMIX is comparable to or improves over QMIX agent. In
comparison to SMiRL-QMIX, EMIX demonstrates improved minimization of surprise. Results are
averaged over 5 random seeds.

[53], consisting of linear additive factorization of Q function; (3) Counterfactual Multi-Agent Policy
Gradients (COMA) [11], which consist of counterfactual actor-critic updates in a centralized critic;
and (4) Independent Q Learning (IQL) [54], wherein each agent acts independent of other agents. (5)
In order to compare our surprise minimization scheme against pre-existing mechanisms, we compare
EMIX additionally to a model-free implementation of SMiRL [3] in QMIX. We use the generalized
version of SMiRL as it demonstrates reduced variance across batches [9]. This implementation is
denoted as SMiRL-QMIX for comparisons. Details related to the implementation of EMIX are
presented in Appendix D.

Table 5 presents the comparison of success rate percentages between EMIX and prior MARL
algorithms on 6 StarCraft II micromanagement scenarios. Corresponding to each scenario, algorithms
demonstrating higher success rate values in comparison to other methods have their entries highlighted
in bold (see Appendix E.1 for a statistical analysis). Out of the 6 scenarios considered, EMIX presents
higher success rates on 5 of these scenarios depicting the suitability of the proposed approach. In
cases of so_many_baneling and 5m_vs _6m having large number of opponents and a greater level
of surprise, EMIX aptly improves over prior methods. When compared to QMIX, EMIX depicts
improved success rates on all of the 6 scenarios. On comparing EMIX with SMiRL-QMIX, EMIX
demonstrates higher average success rates indicating surprise robust policies.

5.2 Ablation Study

We now present the ablation study for the various components of EMIX. Our experiments aim to
determine the effectiveness of the energy-based surprise minimization method. Additionally, we
also aim to evaluate the utility of dual approximators for surprise estimation in accordance with the
precept from RL literature [21, 13, 20].

Figure 3: Ablations for each of EMIX’s
component. When compared to QMIX,
EMIX and TwinQMIX depict improve-
ments in performance and sample effi-
ciency.

EMIX Objective: To weigh the effectiveness of
energy-based scheme, we ablate the energy operator
T and only utilize V asurp. Since this implementation
employs dual approximators V asurp,(i) i ∈ {1, 2} for
stability, we call this implementation as TwinQMIX.
Thus, we compare between QMIX, TwinQMIX and
EMIX to assess the contributions of each of the pro-
posed methods.

Figure 3 presents the comparison of average success
rates for QMIX, TwinQMIX and EMIX on 3 different
scenarios. In comparison to QMIX, TwinQMIX adds
stability to the original objective by incorporating surprising estimates. On comparing TwinQMIX to
EMIX we note that dual approximators play little role in improving convergence. Thus, the energy-
based surprise minimization scheme is the main facet for significant performance improvement.
This is demonstrated in the 5m_vs_6m scenario wherein the EMIX implementation improves the
performance of TwinQMIX in comparison to QMIX by utilizing a surprise-robust policy. In the case
of so_many _baneling scenario which consists of a large number of opponents (27 banelings), EMIX
tackles surprise effectively by preventing a significant drop in performance which is observed in cases
of QMIX and TwinQMIX.

8

Figure 4: Variation of surprise minimization with temperature β. Learning of surprise is achieved by
making use of a suitable value of temperature parameter (β = 0.01) which controls the stability in
surprise minimization by utilizing E as intrinsic motivation.

Figure 5: Variation in success rates with
temperature β. A value of β = 0.01 is
found to work best.

Surprise Minimization with Temperature: The im-
portance of β can be validated by assessing its usage
in surprise minimization. We observe the variation of
E as it is a collection of surprise-based sample esti-
mates across the batch. Additionally, E consists of
prior samples V asurp(s, u, σ) for V asurp(s′, u′, σ′) which
makes inference tractable.

Figure 4 presents the variation of Energy ratio E with
the temperature parameter β during learning. We com-
pare two stable variations of E at β = 0.001 and β = 0.01. The objective minimizes E over the
course of learning and attains thermal equilibrium with minimum energy. Intuitively, equilibrium
corresponds to convergence to optimal policy π∗ which validates the claim in Theorem 2. With
β = 0.01, EMIX presents improved convergence and surprise minimization for 5 out of the 6
considered scenarios, hence validating the suitable choice of β. The choice of β is further validated
in Figure 5 wherein β = 0.01 provides consistent stable improvements over other values. Lower
values of β, such as β = 0.001, do little to minimize surprise or improve performance.

6 Qualitative Analysis

Figure 6: Task- so_many_baneling, (left) Behaviors learned by EMIX agents, (right) Behaviors
learned by QMIX agents

Figure 7: Task- 2s_vs_1sc, (left) Behaviors learned by EMIX agents, (right) Behaviors learned by
QMIX agents

We visualize and compare behaviors learned by surprise minimizing agents to the prior method of
QMIX. Fig. 6 presents the comparison of EMIX and QMIX agent trajectories (in yellow arrows) on

9

the challenging so_many_baneling task. The task consists of 27 baneling opponents which rapidly
attack the agent team on a bridge. QMIX agents naively move to the central alley of the bridge and
start attacking enemies early on. While QMIX agents naively maximize returns, EMIX agents learn a
different strategy. EMIX agents rearrange themselves first at the corners of the bridge. Note that these
corners provide cover from enemy’s fire. Thus, EMIX agents learn to take cover before approaching
the enemy head-on. This indicates that the surprise-robust policy is aware of the incoming fast-paced
assault.

As another example, Fig. 7 presents behaviors on the 2s_vs_1sc task wherein two agents must
collaborate together to defeat a SpineCrawler enemy. The enemy, having a long tentacle pointing to
the front, chooses to attack any one of the agents randomly in front of it. Additionally, the tentacle
has a fixed length and cannot extend beyond this range. Random intermittent attacks indicate that
the agents face a greater degree of surprise with no prior knowledge of the enemy’s movement. We
observe that QMIX agents take turns to attack the enemy by moving back and forth to minimize
damage. EMIX agents, on the other hand, learn a different strategy. One of the EMIX agents stands at
a distance to attack th enemy while the other agent goes around to attack from behind. This indicates
that the policy is aware of enemy’s limited movement.

6.1 Predator-Prey Benchmark

We extend our comparison of EMIX on the Predator-Prey (particle world) tasks. In addition to the
difficulty of task, we vary the number of opponents. This helps quantify the variation in performance
against increasing level of surprise under fixed dynamics. Table 2 presents average returns. While
all agents present comparable performance on the easier tasks, EMIX improves over QMIX and
TwinQMIX on the more challenging punish and hard tasks. In the case of punish, EMIX is the only
method to achieve greater than 20 returns. Additional results can be found in Appendix E.3.

Scenarios EMIX TwinQMIX SMiRL-QMIX QMIX VDN COMA IQL
predator_prey_easy 40.00 ± 0.13 40.00 ± 0.34 40.00 ± 0.98 40.00 ± 0.22 38.74 ± 0.64 27.49 ± 4.26 34.73 ± 2.92

predator_prey 40.00 ± 0.72 40.00 ± 1.92 40.00 ± 0.27 40.00 ± 0.16 36.23 ± 3.19 25.13 ± 0.92 31.59 ± 0.74
predator_prey_punish 24.17 ± 3.29 20.32 ± 4.15 19.31 ± 1.12 14.33 ± 3.81 17.21 ± 2.31 10.92 ± 4.35 7.86 ± 3.21
predator_prey_hard 12.34 ± 3.11 10.19 ± 1.15 10.47 ± 0.83 8.76 ± 4.33 5.19 ± 3.97 -4.37 ± 1.53 -9.26 ± 4.84

Table 2: Comparison of average returns between EMIX, its ablations and prior MARL methods on
Predator-Prey tasks. EMIX improves over QMIX and SMiRL-QMIX.

7 Discussion

Conclusion: In this paper, we presented an energy-based perspective towards surprise minimization
in multi-agent RL. Towards this goal we introduce EMIX, an energy-based intrinsic motivation
framework for surprise minimization in MARL algorithms. EMIX utilizes a temporal EBM to
estimate and minimize surprise jointly across all agents. Our theoretical claims on the formulation of
minimization of temporal energy with surprise are corroborated upon utilizing EMIX on a suite of
challenging MARL tasks requiring significant collaboration under fast-paced dynamics.

Future Work: While EMIX serves as a practical example of EBMs in cooperative MARL, it presents
several new avenues for future work. We shed light on 2 such aspects,

(1) Provision of an energy-based model naturally raises the question of how can we efficiently sample
from the surprise distribution? Advances in sampling methods depict promise towards this aspect.

(2) Although suitable for lower dimensions, the scalability of EBMs towards high dimensional
action spaces remains an open question. We conjecture that the utility of density-based methods and
generative models can address the scalability gap. These directions are left for future work.

10

References
[1] J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement learning,

2017.

[2] K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement learning. In
International Conference on Machine Learning, 2017.

[3] G. Berseth, D. Geng, C. Devin, D. Jayaraman, C. Finn, and S. Levine. Smirl: Surprise
minimizing rl in entropic environments. 2019.

[4] D. P. Bertsekas. Abstract dynamic programming. Athena Scientific Nashua, NH, USA, 2018.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming, volume 1. Athena Scientific,
1995.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study of
curiosity-driven learning. In ICLR, 2019.

[8] L. Buşoniu, R. Babuška, and B. De Schutter. Multi-agent reinforcement learning: An overview.
In Innovations in multi-agent systems and applications-1. 2010.

[9] J. Z. Chen. Reinforcement learning generalization with surprise minimization, 2020.

[10] L. Chenghao, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang. Celebrating diversity in shared
multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34,
2021.

[11] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients, 2017.

[12] K. Friston. The free-energy principle: a unified brain theory? Nature reviews neuroscience,
11(2):127–138, 2010.

[13] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods, 2018.

[14] B. Gao and L. Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning. arXiv preprint arXiv:1704.00805, 2017.

[15] J. Grau-Moya, F. Leibfried, and H. Bou-Ammar. Balancing two-player stochastic games with
soft q-learning. arXiv preprint arXiv:1802.03216, 2018.

[16] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine. Meta-reinforcement learning of
structured exploration strategies. In Advances in Neural Information Processing Systems 31.
2018.

[17] T. Haarnoja. Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement
Learning. PhD thesis, UC Berkeley, 2018.

[18] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine. Latent space policies for hierarchical
reinforcement learning. arXiv preprint arXiv:1804.02808, 2018.

[19] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based
policies. arXiv preprint arXiv:1702.08165, 2017.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[21] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

11

[22] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
arXiv preprint arXiv:1710.02298, 2017.

[23] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, 2019.

[24] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,
C. Finn, P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi, G. Tucker, and H. Michalewski.
Model-based reinforcement learning for atari, 2019.

[25] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, 2014.

[26] L. Kraemer and B. Banerjee. Multi-agent reinforcement learning as a rehearsal for decentralized
planning. Neurocomputing, 190, 02 2016.

[27] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In Advances in neural
information processing systems, 2016.

[28] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. NeurIPS 2020, 2020.

[29] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based
learning. Predicting structured data, 1, 2006.

[30] Y. LeCun, S. Chopra, M. Ranzato, and F.-J. Huang. Energy-based models in document
recognition and computer vision. In Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007), volume 1, 2007.

[31] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

[32] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, 2014.

[33] M. A. Lones. How to avoid machine learning pitfalls: a guide for academic researchers. arXiv
preprint arXiv:2108.02497, 2021.

[34] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments, 2017.

[35] L. Macedo and A. Cardoso. The role of surprise, curiosity and hunger on exploration of
unknown environments populated with entities. In 2005 portuguese conference on artificial
intelligence, 2005.

[36] L. Macedo, R. Reisezein, and A. Cardoso. Modeling forms of surprise in artificial agents:
empirical and theoretical study of surprise functions. In Proceedings of the Annual Meeting of
the Cognitive Science Society, volume 26, 2004.

[37] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, 2002.

[38] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. Annals of Mathematical Statistics, 18, 1947.

[39] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning, 2016.

[40] J. F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36(1), 1950.

[41] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.

12

[42] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih. Combining policy gradient and
q-learning. arXiv preprint arXiv:1611.01626, 2016.

[43] F. A. Oliehoek and C. Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

[44] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In ICML
2018: Proceedings of the Thirty-Fifth International Conference on Machine Learning, 2018.

[45] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems in multi-agent
coordination. In Proceedings of the 2005, American Control Conference, 2005., 2005.

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by Back-
propagating Errors. Nature, 323:533–536, 1986.

[47] B. Sallans and G. E. Hinton. Reinforcement learning with factored states and actions. Journal
of Machine Learning Research, 5, 2004.

[48] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson. The starcraft multi-agent challenge, 2019.

[49] J. Schulman, X. Chen, and P. Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017.

[50] P. Schwartenbeck, T. FitzGerald, R. Dolan, and K. Friston. Exploration, novelty, surprise, and
free energy minimization. Frontiers in psychology, 4:710, 2013.

[51] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International conference
on machine learning, 2019.

[52] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[53] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel. Value-decomposition networks for coop-
erative multi-agent learning based on team reward. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, page 2085–2087,
2018.

[54] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In In
Proceedings of the Tenth International Conference on Machine Learning, 1993.

[55] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse
overcomplete representations. Journal of Machine Learning Research, 4, 2003.

[56] S. B. Thrun. Efficient exploration in reinforcement learning. 1992.

[57] M. Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th annual international conference on machine learning, 2009.

[58] O. Vinyals, I. Babuschkin, W. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. Choi, R. Powell,
T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai,
J. Agapiou, M. Jaderberg, and D. Silver. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575, 11 2019.

[59] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. Qplex: Duplex dueling multi-agent q-learning. In
International Conference on Learning Representations, 2021.

[60] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang. {RODE}: Learning roles
to decompose multi-agent tasks. In International Conference on Learning Representations,
2021.

13

[61] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang. Dop: Off-policy multi-agent decomposed
policy gradients. In International Conference on Learning Representations, 2021.

[62] E. Wei, D. Wicke, D. Freelan, and S. Luke. Multiagent soft q-learning. arXiv preprint
arXiv:1804.09817, 2018.

[63] Y. Wen, Y. Yang, R. Luo, J. Wang, and W. Pan. Probabilistic recursive reasoning for multi-agent
reinforcement learning. arXiv preprint arXiv:1901.09207, 2019.

[64] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

[65] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, 2008.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A Proofs

Theorem 1. Given a surprise value function V asurp(s, u, σ)∀a ∈ N , the energy operator
T V asurp(s, u, σ) = log

∑N
a=1 exp (V asurp(s, u, σ)) forms a contraction on V asurp(s, u, σ).

Proof. We follow the process of [2]. Let us first define a norm on surprise values ||V1 − V2|| ≡
max
s,u,σ
|V1(s, u, σ)− V2(s, u, σ)|. Suppose ε = ||V1 − V2||,

log

N∑
a=1

exp (V1(s, u, σ)) ≤ log

N∑
a=1

exp (V2(s, u, σ) + ε)

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ log exp (ε)

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ ε+ log

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ))− log

N∑
a=1

exp (V2(s, u, σ)) ≤ ||V1 − V2|| (9)

Similarly, using ε with log
∑N
a=1 exp (V1(s, u, σ)),

log

N∑
a=1

exp (V1(s, u, σ) + ε) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= log exp (ε)

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ε+ log

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ||V1 − V2|| ≥ log

N∑
a=1

exp (V2(s, u, σ))− log

N∑
a=1

exp (V1(s, u, σ)) (10)

Results in Equation 9 and Equation 10 prove that the energy operation is a contraction.

Theorem 2. Upon agent’s convergence to an optimal policy π∗, total energy of π∗, expressed by E∗
will reach a thermal equilibrium consisting of minimum surprise among consecutive states s and s′.

Proof. We begin by initializing a set of M policies {π1, π2..., πM} having energy ratios
{E1, E2..., EM}. Consider a policy π1 with surprise value function V1. E1 can then be expressed as

E1 = log

[∑N
a=1 exp (V a1 (s′, u′, σ′))∑N
a=1 exp (V a1 (s, u, σ))

]
Invoking Assumption 2 for s and s′, we can express V a1 (s′, u′, σ′) = V a1 (s, u, σ) + ζ1 where ζ1 is a
constant. Using this expression in E1 we get,

E1 = log

[∑N
a=1 exp (V a1 (s, u, σ) + ζ1)∑N
a=1 exp (V a1 (s, u, σ))

]

E1 = log

[
exp (ζ1)

∑N
a=1 exp (V a1 (s, u, σ))∑N

a=1 exp (V a1 (s, u, σ))

]
E1 = ζ1

16

Similarly, E2 = ζ2,E3 = ζ3...,EM = ζM . Thus, the energy residing in policy π is proportional to the
surprise between consecutive states s and s′. Clearly, an optimal policy π∗ is the one with minimum
surprise. Mathematically,

π∗ ≥ π1, π2..., πM =⇒ ζ∗ ≤ ζ1, ζ2..., ζM
= π∗ ≥ π1, π2..., πM =⇒ E∗ ≤ E1, E2..., EM

Thus, proving that the optimal policy consists of minimum surprise at thermal equilibrium.

B Relation to Maximum Entropy Framework
B.1 Similarities & Differences

We conceptually compare EMIX to the maximum entropy framework.

Similarities: Both methods utilize an auxilary objective as intrinsic motivation to tackle uncertainty.
While the maximum entropy formulation assigns low energy to uncertain actions, our method assigns
low energy to uncertain encoded representations od states (as presented in Fig. 2).

Differences: Our method differs from maximum entropy in its optimization process and learning
scheme. The maximum entropy formulation aims to maximize entropy in the value function space so
as to motivate exploration. Our proposed scheme, on the other hand, aims to minimize surprise in the
low-dimensional representation space to obtain dynamics-aware robust policies.

B.2 Connection to Soft Q-Learning

The Soft Q-Learning objective with V θ
−

soft(s
′) and Qsoft(u, s; θ) as state and action value functions

respectively is given by-

JQ(θ) = Es,u∼R
[

1

2

(
r + γEs′∼R[V θ

−

soft(s
′)]−Qsoft(u, s; θ)

)2]

= JQ(θ) = Es,u∼R

1

2

(
r + γEs′∼R

[
log
∑
u∈A

expQsoft(u
′, s′; θ−)

]
−Qsoft(u, s; θ)

)2


The gradient of this objective can be expressed as-

∇θJQ(θ) = Es,u∼R

[(
r + γEs′∼R

[
log
∑
u∈A

expQ(u′, s′; θ−)

]
−Qsoft(u, s; θ)

)]
∇θQsoft(u, s; θ)

(11)

And the gradient of the EMIX objective is obtained as-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′, s′; θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


∇θL(θ) = Es,u,s′∼R

[(
r + γmax

u′
Q(u′, s′; θ−)

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)]
∇θQ(u, s; θ) (12)

Comparing Equation 11 to Equation 12 we notice that Soft Q-Learning and EMIX are related to
each other as they utilize EBMs. Soft Q-Learning makes use of a discounted energy function
which downweights the energy values over longer horizons. Actions consisting of lower energy
configurations are given preference by making use of Qsoft(u, s; θ) as the negative energy. On
the other hand, EMIX makes use of a constant energy function weighed by β which minimizes
surprise-based energy between consecutive states. Both the objectives can be thought of as energy
minimizing models which search for an optimal energy configuration. Soft Q-Learning searches for
an optimal configuration in the action space whereas EMIX favours optimal behavior on spurious
states. In fact, EMIX can be realized as a special case of Soft Q-Learning if the mixer agent utilizes
an energy-based policy and attains thermal equilibrium. This leads us to express Theorem 3.

17

Theorem 3. Given an energy-based policy π with its target function V (s′) =
log
∑
u∈A expQ(u′, s′; θ−), the surprise minimization objective L(θ) reduces to the Soft Q-

Learning objective L(θsoft) in the special case surprise absent between consecutive states,∑N
a=1 exp (V asurp(s′, u′, σ′)) =

∑N
a=1 exp (V asurp(s, u, σ)).

Proof. We know that the EMIX objective is given by-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′; s′, θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


(13)
Replacing the greedy policy term max

u′
Q(u′, s′; θ−) with the energy-based value function V (s′) =

log
∑
u′∈A expQ(u′, s′; θ−), we get,

L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R[V (s′)] + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2


(14)

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2]

At thermal equilibrium,
∑N
a=1 exp (V asurp(s, u, σ)) =

∑N
a=1 exp (V asurp(s′, u′, σ′)),

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s′, u′, σ′))

)
−Q(u, s; θ)

)2]

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
+ β log(1)−Q(u, s; θ)

)2


(15)

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
−Q(u, s; θ)

)2
 (16)

Equation 16 represents the Soft Q-Learning objective, hence proving the result.

C Convergence Analysis
We now analyze convergence of the surprise minimization scheme during policy optimization. Our
notation denotes BVk−1 = r + γVk−1 as the Bellman operator which obeys monotonicity and
contraction.

Monotonicity: V1 ≤ V2 =⇒ BV1 ≤ BV2 ; Contraction: ‖BV1 − BV2‖2 ≤ γ‖V1 − V2‖2

We now denote V̂k = rk + γV̂k−1 + β log
∑N
a=1 exp(V asurp,(k)(s, u, σ)) as the total value at step k.

As per the definition of B, this gives us V̂k = BV̂k−1 + β log
∑N
a=1 exp(V asurp,(k)(s, u, σ)).

18

Consider
∥∥∥∥V̂k − V ∗∥∥∥∥

2

with V ∗ being the optimal value at convergence,

∥∥∥∥V̂k − V ∗∥∥∥∥
2

≤
∥∥∥∥BV̂k−1 + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(17)

Where β log
∑N
a=1 exp(V asurp,(k)) > 0 as per constant positive surprise ζ > 0 in 2. We impose this

constraint by adding ReLU nonlinearities in surprise encoder to obtain positive V asurp,(k) values.

≤
∥∥∥∥B2V̂k−2 + β log

N∑
a=1

exp(V asurp,(k−1)) + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(18)

≤
∥∥∥∥B2V̂k−2 + β

(
log

N∑
a=1

exp(V asurp,(k−1)) + log

N∑
a=1

exp(V asurp,(k))

)
− V ∗

∥∥∥∥
2

(19)

≤
∥∥∥∥B2V̂k−2 + β

(
log

[
N∑
a=1

exp(V asurp,(k−1))

][
N∑
a=1

exp(V asurp,(k))

])
− V ∗

∥∥∥∥
2

(20)

Thus, for k iterations, we have,

≤
∥∥∥∥BkV0 + β

(
log

k∏
i=1

[
N∑
a=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(21)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
k∏
i=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(22)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
exp(

k∑
i=1

V asurp,(i))

])
− V ∗

∥∥∥∥
2

(23)

We now absorb the sum of surprise values from time index i = 1, .., k in a single variable V atot. Thus,
using V atot =

∑k
i=1 V

a
surp,(i) and utilizing the Triangle Inequality, we get,

=

∥∥∥∥BkV0 − V ∗∥∥∥∥
2

+

∥∥∥∥β
(

log

N∑
a=1

[exp(V atot)]

)∥∥∥∥
2

(24)

We now bound the two terms separately. Considering the first term and following the results of value
iteration convergence [5], ∥∥∥∥BkV − V ∗∥∥∥∥

2

≤ γk
∥∥∥∥V − V ∗∥∥∥∥

2

(25)∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
∥∥∥∥V + Vµ − Vµ − V ∗

∥∥∥∥
2

(26)

wherein Vµ denotes an approximation to V . Utilizing the triangle inequality yields,∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
∥∥∥∥V − Vµ∥∥∥∥

2

+ γk
∥∥∥∥Vµ − V ∗∥∥∥∥

2

(27)

The two terms are bounded using the convergence result of [4].∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
√
rmax + γk

√
rmax|S|
1− γ

(28)

Now, considering the second term in Equation 24 and denoting V ∗tot =
∑k
i=1 V

∗
surp,(i) as the sum of

optimal surprise values,

β

∥∥∥∥ log

N∑
a=1

exp(V atot)

∥∥∥∥
2

= β

∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot) + log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(29)

19

using the triangle inequality,

≤ β
∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(30)

Since T = log
∑N
a=1 exp(V atot) is a contraction following Theorem 1, for the first term we have,

≤ βγ
∥∥∥∥V atot − V ∗tot∥∥∥∥

2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(31)

The second term in the above relation is bounded due to the completeness assumption,∥∥∥∥ log
∑N
a=1 exp(V ∗tot)

∥∥∥∥
2

. The first term, on the other hand, is simplified by applying

Jensen’s Inequality on the definitions of V atot and V ∗tot,
∥∥∥∥∑k

i=1 V
a
surp,(i) −

∑k
i=1 V

∗
surp,(i)

∥∥∥∥
2

=∥∥∥∥∑k
i=1

(
V asurp,(i) − V

∗
surp,(i)

)∥∥∥∥
2

≤
∑k
i=1

∥∥∥∥V asurp,(i) − V ∗surp,(i)

∥∥∥∥
2

. Denoting
∥∥∥∥V asurp,(i) −

V ∗surp,(i)

∥∥∥∥
2

= RMSE(V asurp,(i)), we obtain the following result,

≤ βγ
k∑
i=1

RMSE(V asurp,(i)) + βζ , ζ > 0 (32)

Finally, combining Equation 28 and Equation 32 in Equation 24, we obtain the desired convergence
bound. ∥∥∥∥Vk − V ∗∥∥∥∥

2

≤ γk
(
√
rmax +

√
rmax|S|
1− γ

)
+ β

(
γ

k∑
i=1

RMSE(V asurp,(i)) + ζ

)
(33)

While the first term in Equation 33 denotes the convergence of policy optimization, the second
term indicates the bounded convergence of surprise to ecological niches with finite (yet nonzero)
surprising elements. The policy optimization process converges at a geometric rateO(γk) towards its
stable fixed points. The surprise minimization process, on the other hand, demonstrates an annealing
behavior which depends on the temperature parameter β. Furthermore, convergence to stable fixed
point V atot is bounded in respect to each agents individual surprise values V atot. This insight indicates
that different agents converge towards different locally optimal values of surprise. Finally, the
presence of constant ζ corroborates prior claims [50, 12] that agents continue to experience surprise
irrespective of their convergence to minimum energy niches. To further develop intuition for this
claim, consider the special case wherein

∑k
i=1 RMSE(V asurp,(i))→ 0, i.e.- surprise estimation error

for all iterations goes to zero. Irrespective of global convergence among all agents, a finite yet small

ζ continues to contribute to the upper bound of
∥∥∥∥Vk − V ∗∥∥∥∥

2

.

Role of β: We further discuss the role of β which is of balancing the terms at successive iterations.
While the first term geometrically decays with O(γk) rate, the second term approaches a finite
constant βζ as V atot → V ∗tot. Irrespective of our choice of β, the LHS ‖Vk − V ∗‖2 is upper bounded
by a constant which validates the claims of minimum yet finite surprise values. We do note that a
small β is still desirable to remove any approximation errors in order to push Vk → V ∗. However,
this comes at the cost of increased surprise if β is not selected appropriately.

D Implementation Details

D.1 Model Specifications

Architecture: This section highlights model architecture for the surprise value function. At the
lower level, the architecture consists of 3 independent networks called state_net, q_net and surp_net.

20

Each of these networks consist of a single layer of 256 units with ReLU non-linearity as activations.
Similar to the mixer-network, we use the ReLU non-linearity in order to provide monotonicity
constraints across agents. Using a modular architecture in combination with independent networks
leads to a richer extraction of joint latent transition space. Outputs from each of the networks are
concatenated and are provided as input to the main_net consisting of 256 units with ReLU activations.
The main_net yields a single output as the surprise value V asurp(s, u, σ) which is reduced along the
agent dimension by the energy operator. Alternatively, deeper versions of networks can be used in
order to make the extracted embeddings increasingly expressive. However, increasing the number of
layers does little in comparison to additional computational expense.

Computation of σ: The deviation σ corresponds to the standard deviation across each dimension of
the state s. Considering the state as a tensor of size B ×A×M with B as the batch size, A as the
number of agents and M as the observation dimension, we compute σ by calculating the standard
deviation across the M dimension. This yields σ as a B ×A× 1 dimensional array.

Computation of surprise estimates: Vsurp denotes the surprise value function which quantifies the
amount of surprise experienced by agents. Analogous to a Q value function which provides estimates
of returns, Vsurp provides estimate of surprise. Our framework learns Vsurp much like any other
value function (using a neural network), but by additionally undergoing a log

∑
exp transformation

to obey the fixed point property. This is achieved by realizing log-sum-exp as an energy operator
T = log

∑
exp which can be computed using standard computation libraries. Since our code is

implemented in PyTorch, we implement this as T_V = torch.logsumexp(V_surp, dim=1).

Global State Encoder: The global state encoder serves as a mapping from the state space to a low
dimensional representation space S → Z . The encoder takes in a sequence of states {s1, s2, ..., sT }
as input and outputs a latent representation zstate. We use a standard pyramid MLP network consisting
of 2 hidden layers of 256 units each with ReLU non-linearity. Embeddings obtained from the encoder
are concatenated with other latent embeddings before being passed to the final surprise encoder.

Standard Deviation Encoder: The standard deviation encoder serves as a mapping from standard
deviations across state dimensions to a low dimensional representation space. Each standard deviation
σ is computed across dimensions of the state st. These deviations are then packed in a sequence
{σ1, σ2, ..., σT } and passed as inputs to the standard deviation encoder. Intuitively, the encoder learns
changes across states in a batch of observations. This is similar to a dynamics model predicting future
states, except that we map these states to a low dimensional embedding. We use a standard pyramid
MLP network consisting of 2 hidden layers of 256 units each with ReLU non-linearity. Embeddings
obtained from the encoder are concatenated with other latent representations and used by the final
surprise encoder to estimate the surprise distribution.

D.2 Hyperparameters

Table 3 presents hyperparameter values for EMIX. A total of 2 target Q-functions were used as the
model is found to be robust to any greater values.

Hyperparameters Values
batch size b = 32

learning rate α = 0.0005
discount factor γ = 0.99

target update interval 200 episodes
gradient clipping 10

exploration schedule 1.0 to 0.01 over 50000 steps
mixer embedding size 32

agent hidden size 64
temperature β = 0.01

target Q-functions 2
Table 3: Hyperparameter values for EMIX agents

21

D.3 Selection & Tuning of β

One can manually tune β using a fine-grained hyperparameter search. We tune β between 0.001 and
1 in intervals of 0.01 with best performance observed at β = 0.01. However, we find two additional
methods helpful for obtaining more accurate values. These are described as follows-

Armijo’s Line Search: One can borrow from optimization theory and utilize Armijo’s line search
[41] by setting a termination condition. The method starts with a constant value of β which is
iteratively incremented/decremented until a termination criterion (example- ‖∇L(θ)‖ < ε with ε a
constant) is reached. While line search is proven to converge towards globally optimal values, its
O(n2) convergence may be computationally expensive that too in the MARL setting. Thus, we turn
to the more efficient automatic tuning.

Algorithm 2 Armijo’s Line Search

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: while EMIX(Q+β∗T V asurp)> EMIX(Q)

+ α ∗ β ∗ ∇EMIX(Q)TT V asurp do
3: β = δ ∗ β
4: end while
5: return β

Algorithm 3 Automatic Tuning

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: EMIX(Q+ β ∗ T V asurp)
3: beta_loss = β ∗ 0.5 ∗ (T V asurp − 0)2

4: beta_loss.backward()
5: return β

Automatic Tuning: We choose to automatically tune β following single-agent RL literature [20, 28].
This is achieved by treating β as a parameter and adaptively optimizing over it using Adam. We treat
a surprise value of 0 as our target value. The method works well in practice and provides β values
closer to 0.01 (our manual selection).

E Additional Results

E.1 Statistical Significance

Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s_vs_1sc 14 7 - 21 25 4

2s3z 15 9 - 6 0 0
3m 17 0 - 0 2 12

3s_vs_3z 11 3 - 0 0 1
3s_vs_4z 21 0 - 2 0 0
3s_vs_5z 5 0 - 25 0 0

3s5z 7 13 - 0 0 0
8m 15 1 - 1 3 0

8m_vs_9m 7 11 - 0 0 0
10m_vs_11m 14 25 - 6 0 0

so_many_baneling 24 14 - 9 4 0
5m_vs_6m 21 15 - 18 0 0

Table 4: Comparison of the U statistic on StarCraft II benchmark. U here denotes the statistical
significance of an algorithm against QMIX (higher is better).

We follow the recommendation of [33] and evaluate the statistical significance of our results by
carrying out the Mann-Whitney U test [38]. All 5 seeds of an algorithm (on each task) are compared
to that of QMIX to yield the U statistic. U here denotes the statistical significance of performance
with higher values being desirable.

Table 4 presents the comparison of U statistic on the StartCraft II benchmark. EMIX demonstrates
consistently high values of U across a diverse set of tasks when compared to SMiRL and prior MARL
agents. This highlights the consistent surprise-minimizing performance of EMIX across random
seeds.

22

E.2 StarCraft II Benchmark

Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s_vs_1sc 90.33 ± 0.72 88.41 ± 1.31 89.19 ± 3.23 91.42 ± 1.23 96.90 ± 0.54 86.07 ± 0.98

2s3z 95.40±0.45 94.93±0.32 95.30±1.28 92.03±2.08 43.33±2.70 55.74±6.84
3s_vs_3z 99.58±0.07 97.63±1.08 99.43±0.20 97.90±0.58 0.21±0.54 92.32±2.83
3s_vs_5z 52.91±11.80 0.00±0.00 43.44±7.09 68.51±5.60 0.00±0.00 18.14±2.34

3s5z 88.88±1.07 88.53±1.03 88.49±2.32 63.58±3.99 0.25±0.11 7.05±3.52
8m 94.47±1.38 89.96±1.42 94.30±2.90 90.26±1.12 92.82±0.53 83.53±1.62

Table 5: Comparison of success rate percentages between EMIX and prior MARL methods on
StarCraft II micromanagement scenarios. EMIX is comparable to or improves over QMIX agent. In
comparison to SMiRL-QMIX, EMIX demonstrates improved minimization of surprise. Results are
averaged over 5 random seeds.

E.3 Predator-Prey Benchmark

Figure 8: Variation
in performance with
increasing number of
agents.

We consider a simple toy task from the Predator-Prey benchmark to
demonstrate the importance of surprise minimization. We select preda-
tor_prey_easy due to its simplicity and convenient dynamics. The task
consists of 3 agents and 3 opponents. We increase the number of opponents
while keeping the task fixed. This way the dynamics of the MDP remain
unchanged and the only changing factor is opponent behaviors.

Fig. 8 presents the variation of average returns for EMIX and QMIX
over 5 random seeds. While QMIX agents undergo a steady decrease in
performance, EMIX agents are found robust to this fast degradation. Even
after the addition of 20 opponents (against only 3 agents), EMIX is able
to retain positive returns. The algorithm acquires a surprise robust-policy
early on during training to tackle fast-paced changes introduced by the large
number of agents.

E.4 Note on Minimum Entropy Conjugate Objective

The minimum conjugate entropy objective denotes the dual problem to surprise minimiza-
tion. If we compute the Legendre Transform of our energy-based operator T V asurp(s, u, σ) =

log
∑N
a=1 exp(V asurp(s, u, σ)) we obtain the entropy functionH(x) where x is the gradient of the oper-

ator, x = T V asurp(s, u, σ). This insight indicates that minimizing the energy operator T V asurp(s, u, σ)
is same as minimizing entropy in the space of gradients. Intuitively, our objective aims to minimize
uncertainty in the learning signal.

F Additional Related Work on Multi-Agent Value Factorization

We discuss recent MARL methods within the Centralised Training and Decentralised Control
paradigm [26] which improve value factorization. The original work of QTRAN [51] improves
representational capacity of factorization schemes by generalizing methods such as QMIX [44] and
VDN [53]. More recent advances combine techniques from dueling networks and temporal abstrac-
tion to learn MARL agent factorizations with sufficient representations [59]. A notable work is that
of [60] which employs pretrained action representations to learn agent-specific roles. Decomposing
policy optimization into role selection and role execution stages allows larger number of MARL
agents to collaborate well even in unseen scenarios. Alternate works consider information theoretic
objectives to introduce diversity in optimization and representation of shared multi-agent parameters
[10]. Lastly, [61] extend these ideas by decomposing value learning in multi-agent actor-critic
methods. Within the off-policy setting, these agents highlight sufficient representational capacity in
both discrete and continuous action spaces.

23

	Introduction
	Related Work
	Preliminaries
	Energy-based Surprise Minimization
	The Surprise Minimization Objective
	Surprise Minimization with Function Approximation
	Energy-based MIXer (EMIX)
	Practical Implementation

	Experiments
	Energy-based Surprise Minimization
	Ablation Study

	Qualitative Analysis
	Predator-Prey Benchmark

	Discussion
	Proofs
	Relation to Maximum Entropy Framework
	Similarities & Differences
	Connection to Soft Q-Learning

	Convergence Analysis
	Implementation Details
	Model Specifications
	Hyperparameters
	Selection & Tuning of

	Additional Results
	Statistical Significance
	StarCraft II Benchmark
	Predator-Prey Benchmark
	Note on Minimum Entropy Conjugate Objective

	Additional Related Work on Multi-Agent Value Factorization

