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Overview

• Review of the α-relative Rényi entropies and the 2nd laws of thermodynamics

• Conformal field theories (CFTs) & correspondence to anti-de Sitter (AdS)

• Renormalisation group (RG), c-theorem, and CFTs

• Applying α-RRE to CFTs

• Path integral for a quenched state

• Implications for RG flows



Relative Rényi Entropies

• Quantum relative divergence (QRD): 𝑆 ሻ𝜌 𝜎 ≔ Tr 𝜌 ln 𝜌 − ln𝜎

• Standard measure of distinguishability between two states. Generalises von Neumann.

• By analogy with Rényi entropy, generalisable to one-parameter family?

• Proper[1] and standard: for 𝛼 ∈ 0, 1 , define[2] quantum Rényi entropy (QRE) as:

𝑆𝛼 ሻ𝜌 𝜎 ≔
1

1 − 𝛼
ln
Tr 𝜌𝛼 𝜎 1−𝛼

Tr 𝜌

• Extension[3,4] to 𝛼 ∈ 1, ∞ : sandwiched relative Rényi entropy (sandwiched-RRE).

𝑆𝛼 ሻ𝜌 𝜎 ≔
1

1 − 𝛼
ln
Tr 𝜎 ൗ1−𝛼

2𝛼 𝜌𝜎 ൗ1−𝛼
2𝛼

𝛼

Tr 𝜌

[1] – F. Hiai and D. Petz, Commun. Math. Phys. 143, 99 (1991).

[2] – H. Umegaki, Kodai Math. Sem. Rep. 14, 59 (1962).

[3] – M. Müller-Lennert et al., arXiv:1306.3142.

[4] – M. M. Wilde, A. Winter, and D. Yang, Comm. Math. Phys. 331, 593 (2014).

https://projecteuclid.org/euclid.cmp/1104248844
https://projecteuclid.org/euclid.kmj/1138844604
https://arxiv.org/abs/1306.3142
https://link.springer.com/article/10.1007%2Fs00220-014-2122-x


α-Free Energies
• Textbook free energy: 𝐹 𝜌 = 𝐸 𝜌 − 𝑇𝑆 𝜌 = 𝐻 𝜌 − 𝑇 Tr 𝜌 ln 𝜌

• Transitions from 𝜌𝑖 to 𝜌𝑓 only for 𝐹 𝜌𝑓 ≤ 𝐹 𝜌𝑖 ; i.e. if  Δ𝐹 ≔ 𝐹 𝜌𝑓 − 𝐹 𝜌𝑖 ≤ 0.

• Brandão et al.[5]: generalise to family of α-free energies:

𝐹𝛼 𝜌 ≔ −𝑘𝐵𝑇 ln 𝑍 + 𝑘𝐵𝑇 𝑆𝛼 ሻ𝜌 𝜌𝐺

• We can do this due to monotonicity of Rényi divergences: generalises 2nd Law.

• Transitions from 𝜌𝑖 to 𝜌𝑓 only for 𝐹𝛼 𝜌𝑓 ≤ 𝐹𝛼 𝜌𝑖 for all α.

• 𝑆𝛼 ሻ𝜌 𝜌𝐺 : relative entropy between 𝜌 and 𝜌𝐺 (thermal state).

• Question: what new insights can this give for conformal field theories?

[5] – F. G. S. L. Brandão et al., PNAS 112, 3275 (2015).

https://www.pnas.org/content/112/11/3275


CFT and AdS Correspondence
• Quantum field theories invariant under conformal transformations:

𝑔𝜇𝜈 𝑥𝜎 ↦ 𝑓 𝑥𝜎 𝑔𝜇𝜈 𝑥𝜎

• 𝑓 𝑥𝜎 ∈ ℝ+ is the scale factor, and must be positive definite.

• Scale-invariance: CFTs are fixed points of RG flows.

• QFTs are either CFTs (at a fixed point) or are at specific points in RG flows 

between fixed points.

• Maldacena[6]: gauge theories in an AdS space have a duality to a 

given CFT.

• AdS: spacetime with constant negative curvature.

• SO 2, 𝑛 − 1 symmetry: isomorphic to conformal group in 𝑛 − 1 dim.

Image modified from M. Natsuume, AdS/CFT Duality User Guide (Springer Nature, Tokyo, 2015), via Glen Faught.

[6] – J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

https://www.quantamagazine.org/string-theory-only-game-in-town-tests-20150218/
https://www.springer.com/us/book/9784431554400
https://link.springer.com/article/10.1023%2FA%3A1026654312961


Path Integral for Quenched Excited States
• In terms of Cauchy surfaces, a thermal state is[7] straightforward:

𝜌𝛽 = 𝑒−𝛽𝐻CFT =

• Similarly, a globally excited state at a specific point in time is simply:

𝜌𝛽 = 𝑒−𝛽𝐻CFT = න 𝐷𝜙 𝑒−𝑆CFT 𝜙 −𝜂 ׬ d𝑑𝑥 𝒪Δ 𝑥 =

• 𝒪Δ 𝑥 is an operator of conformal dimension Δ that generates the excited state.

• Conformal dimension: scale exponent 𝒪 ↦ 𝜆−Δ𝒪 under dilations 𝑥 ↦ 𝜆𝑥.

• 𝜂 is the amplitude of the excitation.

Images from A. Bernamonti, F. Galli, R. C. Meyers, and J. Oppenheim, J. High Energy Phys. 2018, 111 (2018).

[7] – A. Bernamonti, F. Galli, R. C. Meyers, and J. Oppenheim, J. High Energy Phys. 2018, 111 (2018).

https://link.springer.com/article/10.1007%2FJHEP07%282018%29111
https://link.springer.com/article/10.1007%2FJHEP07%282018%29111


Quenched State Relative Entropies

First image from A. Bernamonti et al., J. High Energy Phys. 2018, 111 (2018).

Second image from F. Galli (unpublished) [talk at PASCOS 2018 associated with this paper].

[7] – A. Bernamonti, F. Galli, R. C. Meyers, and J. Oppenheim, J. High Energy Phys. 2018, 111 (2018).

• To calculate Tr 𝜌𝛼 𝜌𝐺
1−𝛼 , BGMO[7] stitch these together:

Tr 𝜌𝛼 𝜌𝐺
1−𝛼 =

• AdS/CFT dictionary relates a finite temperature CFT to a black hole state in an AdS space:

https://link.springer.com/article/10.1007%2FJHEP07%282018%29111
https://link.springer.com/article/10.1007%2FJHEP07%282018%29111
https://indico.cern.ch/event/706475/contributions/2977882/attachments/1662332/2663685/Holographic2ndLaws05Jun.pdf


Renormalisation Group
• RG tells influence of coupling constants (CCs) in Hamiltonian over length scales.

• 𝐻 𝐾𝑎 . Examine 𝐾𝑎 → 𝐾𝑎 + 𝛿ℓ Τ𝜕𝐾𝑎 𝜕ℓ . Defines beta function: 𝛽 𝐾𝑎 ≔ Τ𝜕𝐾𝑎 𝜕ℓ.

• Fixed point: couplings invariant under renormalisations. (𝛽𝑎 = Τ𝜕 𝐾𝑎 𝜕ℓ = 0.)

• Ising model: 𝐻 = −𝐾σ 𝑖,𝑗 𝜎𝑖𝜎𝑗 . Examine how 𝐾 changes as we coarse-grain.

• Ising: 𝐻 → −𝐾1 σ 𝑖,𝑗 𝜎𝑖𝜎𝑗 − 𝐾2σ 𝑖,𝑗 𝜎𝑖𝜎𝑗 − 𝐾2σ 𝑖,𝑗 𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙 +⋯

Image from W. D. McComb, Renormalization Methods: A Guide for Beginners (Oxford University Press, Oxford, 2004).

https://global.oup.com/academic/product/renormalization-methods-9780199236527?cc=us&lang=en&


c-Theorem

• In CC space, 𝐻 represented by points 𝐾 ∈ ℝ𝑎. 

• RG maps points to other points.

• RG flow given by eigenvalues of RG transformation.

• Zamolodchikov[8]: fixed points are CFTs!

• β-function: velocity in CC space. Τd d𝑡𝐾 ≔ −𝛽𝑎 𝐾 Τ𝜕 𝜕 𝐾𝑎

• c-function: monotone decreasing along RG flow. Τd𝐶 d𝑡𝐾 ≤ 0.

• At fixed point, c-function yields central charge of a CFT.

• QFTs are points on RG flow between CFTs.

• Gives direction to RG flow: 𝑐IR ≤ 𝑐UV.

[8] – A. B. Zamolodchikov, JETP Lett. 43, 730 (1986).

Image from H. Casini, R. Medina, I. S. Landea, and G. Torroba, J. High Energy Phys. 2018, 166 (2018).

http://www.jetpletters.ac.ru/ps/1413/article_21504.shtml
https://link.springer.com/article/10.1007%2FJHEP09%282018%29166


Results for CFTs
• BGMO[7]: α-free energies yield extra restrictions on transitions!

• CMLT[9]: extra restriction on RG trajectories:

𝑆𝛼 ൯𝜌Δ, UV 𝜌𝐺,UV ≤ Τ𝑐UV − 𝑐IR ln Λ0𝑅 3

• Ugajin[10]: preliminary relation of 𝑆𝛼 to quasiparticle evolution[11] in CFTs.

[7] – A. Bernamonti, F. Galli, R. C. Meyers, and J. Oppenheim, J. High Energy Phys. 2018, 111 (2018).

[9] – H. Casini, R. Medina, I. S. Landea, and G. Torroba, J. High Energy Phys. 2018, 166 (2018).

Left image from [7]. Right image from [9].

[10] – T. Ugajin, arXiv:1812.01135.

[11] – A. Belin, A. Lewkowycz, and G. Sárosi, Phys. Lett. B. 789 (2019), 71.

https://link.springer.com/article/10.1007%2FJHEP09%282018%29166
https://link.springer.com/article/10.1007%2FJHEP09%282018%29166
https://link.springer.com/article/10.1007%2FJHEP07%282018%29111
https://link.springer.com/article/10.1007%2FJHEP07%282018%29111
https://arxiv.org/abs/1812.01135
https://www.sciencedirect.com/science/article/pii/S0370269318309304


Conclusions and Next Steps
• α-second laws offer powerful new constraints on conformal field theories.

• In quenched excited state, explicit case of  transitions forbidden by 𝛼 ≠ 1 second laws.

• Stronger bounds on transitions between CFTs, including 𝛼 ≠ 1 forbidden transitions.

• Can be used to examine set of  all possible allowed evolutions of  quasiparticles.

• Next steps

• Application to the entanglement wedge reconstruction.

• Application to specific CFTs, as well as fuller examination of  applications to CFT quasiparticles.

• Can be used to provide bounds relevant for examining topological quantum computation out of equilibrium.
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Abstract
The discovery of a family of second laws of thermodynamics based on the α-RRE provides a powerful tool to

examine transitions out of equilibrium, in particular yielding a full family of constraints on the types of

possible transitions available to a given system. Meanwhile, the discovery of the AdS/CFT correspondence

gave rise to the holographic entanglement entropy, a unique and rich way of examining the (equilibrium)

entanglement entropies of states in boundary CFTs in terms of the shared boundary surface areas.

A natural question to investigate nonequilibrium properties of boundary CFTs, then, is to investigate the effect

that nonequilibrium techniques of calculating entropies can have on the properties of the holographic

entanglement entropy. In this talk, I'll review properties of the holographic entanglement entropy that might

be unfamiliar to some, and then discuss recent applications of the second laws of thermodynamics to the

holographic entanglement entropy. In particular, I'll discuss the origin of the holographic entanglement

entropy from the AdS/CFT correspondence, recent techniques used to examine α-RREs of excited states of

CFTs, and recent results on the properties of mixed states in CFTs.





von Neumann, Rényi, and Relative Entropies

• von Neumann (vN) entropy of state with density matrix 𝜌: 𝑆 𝜌 = Tr 𝜌 ln 𝜌

• Generalise vN to 1-parameter family of entropies: Rényi entropies.

𝑆𝛼 𝜌 ≔
1

1 − 𝛼
ln
Tr 𝜌𝛼

Tr 𝜌

• Serves as a unifying family for various entropies: vN, min., max., etc.

• Generalise vN to a measure of distinguishability between two states: quantum 

relative divergence (QRD).

𝑆 ሻ𝜌 𝜎 ≔ Tr 𝜌 ln 𝜌 − ln 𝜎



Relative Rényi Entropy Candidates
• Is QRD generalisable to one-parameter family?

• Quantum Rényi entropy as previously defined is the standard.

• Problem: ∞ possible ways[12] of arranging 𝜌 and 𝜎 to get a valid expression.

• Example 1: sandwiched RRE[3,4]:

𝑆𝛼 ሻ𝜌 𝜎 ≔
1

1 − 𝛼
ln
Tr 𝜎 ൗ1−𝛼

2𝛼 𝜌 𝜎 ൗ1−𝛼
2𝛼

𝛼

Tr 𝜌

• Example 2: reversed-sandwiched RRE[12]:

𝑆𝛼 ሻ𝜌 𝜎 ≔
1

𝛼 − 1
ln

Tr 𝜌 ൗ𝛼 2 1−𝛼 𝜎 𝜌 ൗ𝛼 2 1−𝛼
1−𝛼

Tr 𝜌

[3] – M. Müller-Lennert et al., arXiv:1306.3142.

[4] – M. M. Wilde, A. Winter, and D. Yang, Comm. Math. Phys. 331, 593 (2014).

[12] – K. M. R. Audenaert and N. Datta, J. Math. Phys. 56, 022202 (2015).

https://arxiv.org/abs/1306.3142
https://link.springer.com/article/10.1007%2Fs00220-014-2122-x
https://aip.scitation.org/doi/10.1063/1.4906367


α-z-RRE

• Problem: 𝜌 and 𝜎 don’t commute, so there’s an infinite number of ways of 

slicing up powers of them to get a valid Rényi entropy.

• In order to encompass all possible ways we can do this, define[12] a two-

parameter family: the α-z-relative Rényi entropy. (α-z-RRE)

𝑆𝛼,𝑧 ሻ𝜌 𝜎 ≔
1

𝛼 − 1
ln
Tr 𝜌 Τ𝛼 𝑧 𝜎 ൗ1−𝛼

𝑧

𝑧

Tr 𝜌

• Specific Rényi entropies of interest are then specific cases of this.

[12] – K. M. R. Audenaert and N. Datta, J. Math. Phys. 56, 022202 (2015).

https://aip.scitation.org/doi/10.1063/1.4906367


α-z-RRE as an Encompassing Framework

• α-z-RRE encompasses all possible quantum entropies:

• Reduces to QRE for z = 1.

• Reduces to sandwiched RRE for z = α.

• Reduces to reversed-sandwiched RRE for z = 1 – α.

• Yet more possibilities! Examples:

𝑆𝛼,2 =
1

𝛼 − 1
ln
Tr 𝜌 ൗ𝛼 2 𝜎 ൗ1−𝛼

2 𝜌 ൗ𝛼 2 𝜎 ൗ1−𝛼
2

Tr 𝜌

𝑆𝛼,∞ = lim
𝑧→∞

1

𝛼 − 1
ln
Tr exp 𝛼 ln 𝜌 + 1 − 𝛼 ln ො𝜎

Tr 𝜌



Limiting Cases to Retrieve What We Want

• Familiar entropies serve as the limiting cases of various relative entropies derived from 

α-z-RRE:

• QRD: 𝑆1 ሻ𝜌 𝜎 ≔ Tr 𝜌 ln 𝜌 − ln𝜎 is 𝛼 → 1 limit of  QRE and sandwiched RRE:

Tr 𝜌 ln 𝜌 − ln 𝜎 = lim
𝛼↗1

1

1 − 𝛼
ln
Tr 𝜌𝛼 𝜎 1−𝛼

Tr 𝜌
= lim

𝛼↘1

1

1 − 𝛼
ln
Tr 𝜎 ൗ1−𝛼

2𝛼 𝜌 𝜎 ൗ1−𝛼
2𝛼

𝛼

Tr 𝜌

• 0-RRE: 𝑆0 ሻ𝜌 𝜎 ≔ − ln Tr
supp 𝜌

𝜎 is 𝛼 → 0 limit of  reversed-sandwiched RRE:

− ln Tr
supp 𝜌

𝜎 = lim
𝛼↗1

1

1 − 𝛼
ln
Tr 𝜌𝛼 𝜎 1−𝛼

Tr 𝜌



More Limiting Cases

• More limits:

• Min-RRE: 𝑆min ሻ𝜌 𝜎 = −2 ln 𝜌 𝜎 is 𝛼 = Τ1 2 value of sandwiched-RRE:

−2 ln 𝜌 𝜎 = ቮ1

1 − 𝛼
ln
Tr 𝜎 ൗ1−𝛼

2𝛼 𝜌 𝜎 ൗ1−𝛼
2𝛼

𝛼

Tr 𝜌
𝛼= Τ1 2

• Max-RRE: 𝑆max ሻ𝜌 𝜎 ≔ inf 𝜆 ∈ ℝ 𝜌 ≤ 𝑒𝜆𝜎 is 𝛼 → ∞ limit of sandwiched RRE:

inf 𝜆 ∈ ℝ 𝜌 ≤ 𝑒𝜆𝜎 = lim
𝛼→∞

1

1 − 𝛼
ln
Tr 𝜎 ൗ1−𝛼

2𝛼 𝜌 𝜎 ൗ1−𝛼
2𝛼

𝛼

Tr 𝜌

• Conclusion: α-z-RRE will give us every possible relative entropy, but we need to figure out 

which z is appropriate.



α-z-RRE Zoo

Image from A. May and E. Hijano, J. High Energy Phys. 2018, 36 (2018), simplified from P. Faist (unpublished)

https://link.springer.com/article/10.1007%2FJHEP10%282018%29036
https://www.its.caltech.edu/∼phfaist/entropyzoo


Conformal Field Theories
• A QFT that is invariant under conformal transformations:

𝑔𝜇𝜈 𝑥𝜎 ↦ 𝑓 𝑥𝜎 𝑔𝜇𝜈 𝑥𝜎

• 𝑓 𝑥𝜎 ∈ ℝ+ is the scale factor, and must be positive definite.

• Poincaré group is subgroup of  conformal group, since 𝑓 = 1.

• Invariance: conformal trans. preserve angles & unitarity.

• Scale-invariance: CFTs are fixed points of RG flows.

• Systems near critical point; effective theories on topological 

systems; theories without mass parameters in ℒ.

• QFTs are either CFTs (at a fixed point) or are at specific points in 

RG flows between fixed points.

Image from R. Blumenhagen and E. Plauschinn, Introduction to Conformal Field Theory with Applications to String Theory (Springer Nature, Berlin, 2009).

https://www.springer.com/us/book/9783642004490


Anti-de Sitter Space
• Generated by Einstein-Hilbert action with constant negative 

cosmological constant:

ℒAdS𝑛 = ൗ𝑔𝜇𝜈𝑅𝜇𝜈 − Λ 16𝜋𝐺 𝑛

• 𝑅𝜇𝜈 is Ricci curvature; 𝐺 𝑛 is 𝑛-dimensional gravitational constant.

• Solution: hyperboloid in 𝑛 − 1 dimensions.

• Constant negative curvature.

• Photons redshifted as they travel away from centre.

• Trajectories always periodic.

• Distance to edge is infinite, but photons reach in finite time.

• Exhibits SO 2, 𝑛 − 1 symmetry.

Image from M. Natsuume, AdS/CFT Duality User Guide (Springer Nature, Tokyo, 2015)

https://www.springer.com/us/book/9784431554400


AdS/CFT Correspondence
• Anti-de Sitter space: hyperboloid in 𝑛 dimensions.

• Metric: d𝑠2 = −𝐿2 ෤𝑟2 + 1 d ǁ𝑡2 + Τd𝑟2 ෤𝑟2 + 1 + 𝐿2 ෤𝑟2 dΩ𝑛−2
2

• Has SO 2, 𝑛 − 1 symmetry: isomorphic to conformal group in 𝑛 − 1 dimensions!

• GKP-Witten relation: 𝑍AdS = 𝑍CFT.

• Central conjecture of  AdS/CFT.

• Need a dictionary to map quantum gravity in AdSd to CFT on ℝ𝑛−1

Image modified from M. Natsuume, AdS/CFT Duality User Guide (Springer Nature, Tokyo, 2015), via Glen Faught.

https://www.springer.com/us/book/9784431554400
https://www.quantamagazine.org/string-theory-only-game-in-town-tests-20150218/


AdS/CFT Dictionary
Bulk: 𝒏-dimensional AdS space (AdSn) Boundary: CFT on 𝝏AdSn (=ℝ𝒏−𝟏)

Isometry group SO 2, 𝑛 − 1 Conformal group Conf ℝ1,𝑛 ≅ SO 2, 𝑛 − 1

Asymptotically locally AdS space Interacting QFT, with an RG fixed point.
• CFT at fixed point must be same as BCFT on 𝜕AdSn.

States with black holes Finite-temperature states

Internal gauge symmetry of quantum gravity Global symmetry

(Scalar) field 𝜙:

𝜙 ෤𝑟, ǁ𝑡, Ω = නd𝜗 d𝜏 𝐾 ෨𝜃, ෤𝑟; 𝜗, 𝜏 𝒪 𝜏, 𝜗

Conformal operator 𝒪 with dimension Δ:

𝒪 ǁ𝑡, Ω = lim
𝑟→∞

𝑟Δ 𝜙 ෤𝑟, ǁ𝑡, Ω

Linear combinations of states and operators, and 

their respective spaces:

𝜓 AdS ∈ ℋAdS; fields 𝜙AdS, 𝐴𝜇 AdS
, ℎ𝜇𝜈 AdS

Linear combinations of states and operators, and

their respective spaces:

𝜓 CFT ∈ ℋCFT; fields 𝒪CFT, 𝐽𝜇 CFT
, 𝑇𝜇𝜈 CFT



General Features of Path Integrals for 𝑆𝛼
• 𝜌 and 𝑓 𝜌, 𝜎 calculated[13] via Euclidean path integral over a Cauchy surface, e.g.:

𝜌 = න 𝒟𝜙 𝑒−𝑆 𝜙

𝜎 ൗ1−𝛼
2𝛼 𝜌𝜎 ൗ1−𝛼

2𝛼
𝑖𝑗
= න 𝒟𝜙 𝒟𝑎 𝒟𝑏 𝑗 𝜎 Τ1−𝛼 2𝛼 𝑎 𝑎 𝜌 𝑏 𝑏 𝜎 Τ1−𝛼 2𝛼 𝑖

• Time evolution of fields over Schwinger-Keldysh (in-in) contour.

Left image from X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016).

Right image modified from A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2011).

[13] – X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016).

https://link.springer.com/article/10.1007%2FJHEP11%282016%29028
https://link.springer.com/article/10.1007%2FJHEP11%282016%29028
https://www.cambridge.org/core/books/field-theory-of-nonequilibrium-systems/CEA995D5C5C7E043E9BAAE6DCA282354


Replica Trick
• Can simplify calculating expressions like 𝜌𝛼 by considering these as repeated copies 

of the Cauchy surface integral for 𝜌.

• Sheets are connected by branch cuts, due to imposition of boundary conditions on fields.

Image from X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016).

https://link.springer.com/article/10.1007%2FJHEP11%282016%29028


Entanglement Entropy in QFT
• Examine QFT on spacelike slice (Cauchy surface); divide region into and 𝐶 .

• is entangling surface.

• Integrate out 𝐶 degrees of freedom by defining domain of support (BCs) for .

• Insert δ-functional into ׬ 𝒟𝜙 : 𝜌 = ׬ 𝒟𝜙 𝑒−𝑆 𝜙 𝛿 𝜙 𝑡0− − 𝜙− 𝛿 𝜙 𝑡0+ − 𝜙+

𝐶

Image modified from M. Rangamani (unpublished) [talk at Quantum Matter, Spacetime, and Information associated with X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016)].

http://www2.yukawa.kyoto-u.ac.jp/~entangle2016/YRangamani.pdf
https://link.springer.com/article/10.1007%2FJHEP11%282016%29028


UV Divergence of QFT Entanglement Entropies
• Short-range correlations cut by entangling surface: UV divergence.

• Dependent on area of . UV divergence of entropy 𝑆 has area-law entanglement:

𝑆 = 𝑐𝑑−2
𝐿

𝜀

𝑑−2

+ 𝑐𝑑−4
𝐿

𝜀

𝑑−4

+⋯ = 𝛾
𝗔

𝜀𝑑−2
+⋯

Image modified from M. Rangamani (unpublished) [talk at Quantum Matter, Spacetime, and Information associated with X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016)].

𝐶
𝜀

http://www2.yukawa.kyoto-u.ac.jp/~entangle2016/YRangamani.pdf
https://link.springer.com/article/10.1007%2FJHEP11%282016%29028


Subleading Terms
• Universal properties of underlying QFT captured in subleading term સ :

𝑆 = ൞
𝑐𝑑−2 Τ𝐿 𝜀 𝑑−2 + 𝑐𝑑−4 Τ𝐿 𝜀 𝑑−4 +⋯+ 𝑐1 Τ𝐿 𝜀 + −1 Τ𝑑−1 2સ + 𝒪 𝜀

𝑐𝑑−2 Τ𝐿 𝜀 𝑑−2 + 𝑐𝑑−4 Τ𝐿 𝜀 𝑑−4 + −1 Τ𝑑−2 2સ ln Τ𝐿 𝜀 + 𝒪 𝜀

• Most other coefficients 𝑐𝑖 are RG scheme dependent.

Image modified from M. Rangamani (unpublished) [talk at Quantum Matter, Spacetime, and Information associated with X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energy Phys. 2016, 28 (2016)].

𝐶
𝜀

http://www2.yukawa.kyoto-u.ac.jp/~entangle2016/YRangamani.pdf
https://link.springer.com/article/10.1007%2FJHEP11%282016%29028


Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi

• RT[14] and HRT[15]: leading term found by minimising over 

surfaces homologous to :

𝑆 = min
𝗔

4𝐺 𝑛
+⋯

𝐿𝑑−1

𝐺 𝑛

𝗔

𝜀𝑑−2
+⋯

• Surfaces live in the (AdS) bulk.

• Reproduces area law.

• Reproduces Calabrese-Cardy result[16] for AdS3/CFT2 with charge 𝑐

𝑆 =
𝑐

3
ln

𝜋𝜀
sin

𝜋ℓ

[14] – S. Ryu and T. Takayanagi, J. High Energy Phys. 2006, 45 (2006).

[15] – V. E. Hubeny, M. Rangamani, and T. Takayanagi, J. High Energy Phys. 2007, 62 (2007).

[16] – P. Calabrese and J. Cardy, J. Stat. Mech. 406, 2 (2004).

minimal surface , 

homologous to 

circumference 𝒞, 

length ℓ

https://iopscience.iop.org/article/10.1088/1126-6708/2006/08/045/meta
https://iopscience.iop.org/article/10.1088/1126-6708/2007/07/062/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2004/06/P06002/meta


Holography for Quenched State CFT
• Similarly, the dictionary relates CFT with an excited state to a scalar field in AdS, and a 

quenched state to a scalar field with time-dependent boundary conditions:

Images from F. Galli (unpublished) [talk at PASCOS 2018 associated with this paper].

https://indico.cern.ch/event/706475/contributions/2977882/attachments/1662332/2663685/Holographic2ndLaws05Jun.pdf


Renormalisation Group Flow
• In CC space, 𝐻 represented by points 𝐾 ∈ ℝ𝑎. RG maps points to other points.

• RG flow given by eigenval. of linearised matrix transformation on 𝐻 close to fixed point.

• Eigenval. > 1: away from the fixed point. Relevant operator.

• Eigenval. < 1: towards the fixed point. Irrelevant operator.

• Eigenval. = 1: need higher-order terms or an alternate approach to analyse. Marginal operator.

Image from J. Cardy, Scaling and Renormalization in Statistical Physics (Oxford University Press, Oxford, 2004).

https://www.cambridge.org/core/books/scaling-and-renormalization-in-statistical-physics/924C0B0D39123F681CF3353C42E5E836

