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1: Bloch’s Theorem 

As always, the simplest place is to start with what we know well, which in this case is nonrelativistic quantum 

mechanics. In particular, we’ll start with the proof of Bloch’s theorem for periodic potentials, and then examine 

how this generalizes to the classical Floquet theory for ordinary differential equations. 

1.1: Bravais Lattice Vectors 

We start with the single-electron Schrödinger equation in a lattice. The underlying structure of the lattice is 

defined by the Bravais lattice vectors {𝑅𝜇} ⊂ ℝ𝑚, which are the set of vectors from the origin that define the 

entire lattice. We can define the {𝑅𝜇} s in terms of a set of primitive basis vectors {𝑎𝑖
𝜇} ⊂ ℝ𝑚: 

𝑅𝜇 = ∑ 𝑛𝑖  𝑎𝑖
𝜇

𝑖

(1) 

Here, 𝑛𝑖 ∈ ℤ. The primitive basis vectors are a set of vectors in ℝ𝑚 where at least two of the vectors are not 

coplanar. Unsurprisingly, this is just a new basis for m-dimensional space; all points in space can be reached 

by some linear combination of the 𝑎𝑖
𝜇   s. This basis ultimately lets us define the primitive cell of the lattice, 

and the goal here will be to distinguish intra-cell dynamics, useful because of the periodicity of most of the 

dynamics. 

(This is the goal of most of the times we use the lattice; although the primitive cell the {𝑎𝑖
𝜇} s define isn’t 

unique, because the periodicity is an inter-cell property, we can define our cell and then examine intra-cell 

dynamics. If we’re pressed for uniqueness, we can always use the locus of points closer to a given lattice point 

than any other lattice points: this is the Wigner-Seitz cell, which is unique.) 

We can further define the reciprocal lattice as the set of the wave vectors 𝐾𝜇 that satisfy 𝑒𝑖𝐾𝜇𝑅𝜇
= 1. The 

set of 𝐾𝜇 that satisfy this relation forms its own Bravais lattice in momentum space; naturally, this lattice is 

the dual lattice to the original lattice. Unsurprisingly, the double dual (i.e. the dual of the reciprocal lattice) 

is just the original lattice again. In terms of the Bravais lattice basis vectors 𝑎𝑖
𝜇, we have the reciprocal lattice 

basis vectors 𝑏𝑖𝜇
 as: 

𝑏1𝜇 = 2𝜋
𝑎2

𝜈  𝑎3
𝜎  𝜖𝜇𝜈𝜎

𝑎1
𝜌  𝑎2

𝜈  𝑎3
𝜎  𝜖𝜈𝜎𝜌

, 𝑏2𝜇 = 2𝜋
𝑎3

𝜈  𝑎1
𝜎  𝜖𝜇𝜈𝜎

𝑎1
𝜌  𝑎2

𝜈  𝑎3
𝜎  𝜖𝜈𝜎𝜌

, 𝑏3𝜇
= 2𝜋

𝑎1
𝜈  𝑎2

𝜎  𝜖𝜇𝜈𝜎

𝑎1
𝜌  𝑎2

𝜈  𝑎3
𝜎  𝜖𝜈𝜎𝜌

(2) 

Particularly notable is that the 𝑎𝑖
𝜇  s and 𝑏𝑖𝜇

 s satisfy: 

𝑏𝑖𝜇
 𝑎𝑗

𝜇 = 2𝜋𝛿𝑖𝑗 (3) 
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1.2: Properties of Translation Operators 

Before we rederive Bloch’s theorem, we also need to use the properties of translation operators, which we’ll 

list and prove here. We’ll start with the general translation operator �̂�(𝑟𝜇), defined by �̂�(𝑟𝜇){𝑓(𝑥𝜇)} ≔

𝑓(𝑥𝜇 + 𝑟𝜇), as well as the definition of the momentum operator as the generator of translations: 

�̂�𝜇 = 𝑖ℏ (𝜕𝜇�̂�(𝑟𝜇))
𝑟𝜇 = 0𝜇

= 𝑖ℏ
𝑟𝜇

‖𝑟𝜇‖
  lim
𝜖 → 0

�̂�(𝜖 𝑟𝜇) − 𝟙

𝜖
(4) 

The properties of translation operators, with brief proofs, are: 

1.) �̂�(0𝜇) = 𝟙. 

– Pf.: Applying �̂�(0𝜇) to a position eigenstate |𝑞𝜇⟩ gives: �̂�(0𝜇)|𝑞𝜇⟩ = |𝑞𝜇 + 0𝜇⟩ = |𝑞𝜇⟩ = 𝟙 |𝑞𝜇⟩.// 

2.) �̂�(𝑟𝜇) �̂�(𝑠𝜇) = �̂�(𝑟𝜇 + 𝑠𝜇). 

– Pf.: Applying �̂�(𝑟𝜇) �̂�(𝑠𝜇) to |𝑞𝜇⟩ gives:  

�̂�(𝑟𝜇) �̂�(𝑠𝜇)|𝑞𝜇⟩ = �̂�(𝑟𝜇)|𝑞𝜇 + 𝑠𝜇⟩ = |𝑞𝜇 + 𝑠𝜇 + 𝑟𝜇⟩ 

�̂�(𝑟𝜇) �̂�(𝑠𝜇)|𝑞𝜇⟩ = |𝑞𝜇 + (𝑟𝜇 + 𝑠𝜇)⟩ = �̂�(𝑟𝜇 + 𝑠𝜇)|𝑞𝜇⟩.// 

3.) (�̂�(𝑟𝜇))
−1

= �̂�(−𝑟𝜇). 

– Pf.: 𝟙 = �̂�(0𝜇) = �̂�(𝑟𝜇 − 𝑟𝜇) = �̂�(𝑟𝜇) �̂�(−𝑟𝜇).// 

4.) �̂�(𝑟𝜇) is unitary. 

– Pf.: In position space, ⟨𝜙(𝑥𝜇)|𝜓(𝑥𝜇)⟩ is given by: 

⟨𝜙(𝑥𝜇)|𝜓(𝑥𝜇)⟩ = ∫ d𝑘𝑥𝜇  𝜙∗(𝑥𝜇) 𝜓(𝑥𝜇) (5) 

Meanwhile, ⟨�̂�(𝑟𝜇){𝜙(𝑥𝜇)}|�̂�(𝑟𝜇){𝜓(𝑥𝜇)}⟩ is given by: 

⟨�̂�(𝑟𝜇){𝜙(𝑥𝜇)}|�̂�(𝑟𝜇){𝜓(𝑥𝜇)}⟩ = ⟨𝜙(𝑥𝜇 + 𝑟𝜇)|𝜓(𝑥𝜇 + 𝑟𝜇)⟩ = ∫ d𝑘𝑥𝜇  𝜙∗(𝑥𝜇 + 𝑟𝜇) 𝜓(𝑥𝜇 + 𝑟𝜇) 

Under the change of variables 𝑥𝜇 ↦ 𝑦𝜇 ≔ 𝑥𝜇 + 𝑟𝜇, we have d𝑦𝜇 = d[𝑥𝜇 + 𝑟𝜇] = d𝑥𝜇 + d𝑟𝜇 =

d𝑥𝜇, giving: 

⟨�̂�(𝑟𝜇){𝜙(𝑥𝜇)}|�̂�(𝑟𝜇){𝜓(𝑥𝜇)}⟩ = ∫ d𝑘𝑥𝜇  𝜙∗(𝑥𝜇 + 𝑟𝜇) 𝜓(𝑥𝜇 + 𝑟𝜇) = ∫ d𝑘𝑦𝜇  𝜙∗(𝑦𝜇) 𝜓(𝑦𝜇) 

Since this is the exact same expression as we had with ⟨𝜙(𝑥𝜇)|𝜓(𝑥𝜇)⟩, this gives: 

⟨�̂�(𝑟𝜇){𝜙(𝑥𝜇)}|�̂�(𝑟𝜇){𝜓(𝑥𝜇)}⟩ = ⟨𝜙(𝑥𝜇)|𝜓(𝑥𝜇)⟩ 

Thus, �̂�† = �̂�−1.// 

5.) [�̂�(𝑟𝜇),   �̂�(𝑠𝜇)] = 0. 

– Pf.: �̂�(𝑟𝜇) �̂�(𝑠𝜇) = �̂�(𝑟𝜇 + 𝑠𝜇) = �̂�(𝑠𝜇 + 𝑟𝜇) = �̂�(𝑟𝜇) �̂�(𝑠𝜇).//  
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6.) [�̂�𝜇 ,   �̂�(𝑟𝜇)] = 𝑟𝜇  �̂�(𝑟𝜇). 

– Pf.: Applying [�̂�𝜇 ,   �̂�(𝑟𝜇)] to |𝑞𝜇⟩ gives: 

[�̂�𝜇,   �̂�(𝑟𝜇)]|𝑞𝜇⟩ = �̂�𝜇  �̂�(𝑟𝜇)|𝑞𝜇⟩ − �̂�(𝑟𝜇) �̂�𝜇|𝑞𝜇⟩ = �̂�𝜇|𝑞𝜇 + 𝑟𝜇⟩ − 𝑞𝜇  �̂�(𝑟𝜇) |𝑞𝜇⟩ 

[�̂�𝜇 ,   �̂�(𝑟𝜇)]|𝑞𝜇⟩ = (𝑞𝜇 + 𝑟𝜇)|𝑞𝜇 + 𝑟𝜇⟩ − 𝑞𝜇  |𝑞𝜇 + 𝑟𝜇⟩ = 𝑟𝜇|𝑞𝜇 + 𝑟𝜇⟩ 

As an operator, this is just a translation operator times the translation scale factor: 

[�̂�𝜇 ,   �̂�(𝑟𝜇)]|𝑞𝜇⟩ = 𝑟𝜇|𝑞𝜇 + 𝑟𝜇⟩ = 𝑟𝜇  �̂�(𝑟𝜇) |𝑞𝜇⟩.// 

7.) [�̂�𝜇 ,   �̂�(𝑥𝜇)] = 0. 

– Pf.: We start again with the definition of momentum in terms of the translation operator: 

�̂�𝜇 = 𝑖ℏ (𝜕𝜇�̂�(𝑟𝜇))
𝑟𝜇 = 0𝜇

= 𝑖ℏ
𝑟𝜇

‖𝑟𝜇‖
  lim
𝜖 → 0

�̂�(𝜖 𝑟𝜇) − 𝟙

𝜖
= 𝑖ℏ

𝑟𝜇

‖𝑟𝜇‖
  lim
𝜖 → 0

�̂�(𝜖 𝑟𝜇) − �̂�(0𝜇)

𝜖
 

This gives the commutator as: 

[�̂�𝜇 ,   �̂�(𝑟𝜇)] = [𝑖ℏ
𝑟𝜇

‖𝑟𝜇‖
  lim
𝜖 → 0

�̂�(𝜖 𝑟𝜇) − �̂�(0𝜇)

𝜖
,   �̂�(𝑥𝜇)] 

[�̂�𝜇 ,   �̂�(𝑟𝜇)] = 𝑖ℏ
𝑟𝜇

‖𝑟𝜇‖
  lim
𝜖 → 0

1

 𝜖 
([�̂�(𝜖 𝑟𝜇),   �̂�(𝑥𝜇)] − [�̂�(0𝜇),   �̂�(𝑥𝜇)]) 

As shown earlier, [�̂�(𝑟𝜇),  �̂�(𝑠𝜇)] = 0, so both of these commutators vanish, and [�̂�𝜇 ,   �̂�(𝑟𝜇)] =

0.// 

Before moving on, it’s worth noting that the set of all translation operators forms a continuous Abelian group 

(unsurprisingly called the translation group, T(𝑚)). If we consider the group of all of the transformations that 

preserve distances in ℝ𝑚 (i.e. the translations, rotations, and reflections), called the Euclidean group E(𝑚). 

Then, T(𝑚) is the quotient group T(𝑚) = E(𝑚) O(𝑚)⁄ , where O(𝑚) is the orthogonal group.  

1.3: Bloch’s Theorem 

Now, finally, with the Bravais lattice vectors and the properties of translation operators in hand, we can 

examine the one-electron Schrödinger equation: 

�̂�|Ψ⟩ = (−
ℏ2 ∂𝜇  𝜕𝜇

2𝑚
+ �̂�(𝑟𝜇)) |Ψ⟩ = (

�̂�𝜇
2

2𝑚
+ �̂�(𝑟𝜇)) |Ψ⟩ = 𝐸|Ψ⟩ (6) 
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Here, we enforce that �̂�(𝑟𝜇) is a periodic potential; i.e. for all 𝑅𝜇, we have �̂�(𝑟𝜇 + 𝑅𝜇) = �̂�(𝑟𝜇). With this, 

we have Bloch’s theorem[1] as: 

Bloch’s Theorem Claim 

The eigenstates {|𝜓𝑘, 𝑛⟩} of a Hamiltonian with a periodic potential �̂�(𝑟𝜇 + 𝑅𝜇) = �̂�(𝑟𝜇) have the form 

{|𝜓𝑘, 𝑛⟩} = 𝑒𝑖𝑘𝜇  𝑟𝜇
 {|𝑢𝑘, 𝑛(𝑟𝜇)⟩} , where |𝑢𝑘, 𝑛(𝑟𝜇 + 𝑅𝜇)⟩ = |𝑢𝑘, 𝑛(𝑟𝜇)⟩  for all Bravais lattice vectors 𝑅𝜇  and 

some 𝑘𝜇. 

Bloch’s Theorem Proof 

For the Bravais lattice vectors 𝑅𝜇, we define the translation operator �̂�𝑅 as �̂�𝑅  𝑓(𝑟𝜇) ≔ 𝑓(𝑟𝜇 + 𝑅𝜇). The set 

of all {�̂�𝑅} s form a (normal Abelian) group; it’s actually this set that defines the Bravais lattice properly.  

We can immediately note that �̂�(𝑅𝜇) for a generic lattice vector 𝑅𝜇 commutes with �̂�. Starting with [�̂�𝑅 ,   �̂�], 

we have: 

[�̂�𝑅 ,   �̂�] = [�̂�𝑅 ,  
�̂�𝜇

2

2𝑚
+ �̂�(𝑟𝜇)] = [�̂�𝑅 ,  

�̂�𝜇
2

2𝑚
] + [�̂�𝑅 ,   �̂�(𝑟𝜇)] 

We get [�̂�𝑅 ,   �̂�(𝑟𝜇)] = 0 when examining the action on a generic state |Ψ(𝑟𝜇)⟩: 

[�̂�𝑅 ,  �̂�(𝑟𝜇)]|Ψ(𝑟𝜇)⟩ = �̂�𝑅  {�̂�(𝑟𝜇) |Ψ(𝑟𝜇)⟩} − �̂�(𝑟𝜇) {�̂�𝑅  {|Ψ(𝑟𝜇)⟩}} 

[�̂�𝑅 ,   �̂�(𝑟𝜇)]|Ψ(𝑟𝜇)⟩ = �̂�(𝑟𝜇 + 𝑅𝜇) |Ψ(𝑟𝜇 + 𝑅𝜇)⟩ − �̂�(𝑟𝜇) |Ψ(𝑟𝜇 + 𝑅𝜇)⟩ 

[�̂�𝑅 ,   �̂�(𝑟𝜇)]|Ψ(𝑟𝜇)⟩ = �̂�(𝑟𝜇 + 𝑅𝜇) |Ψ(𝑟𝜇 + 𝑅𝜇)⟩ − �̂�(𝑟𝜇) |Ψ(𝑟𝜇 + 𝑅𝜇)⟩ = 0 (7) 

Additionally, since all of the {�̂�𝑅} s commute with each other, we have {�̂�,  �̂�𝑅} as a set of commuting operators 

(not a complete set yet, though!), and thus we can simultaneously diagonalize them. For the eigenstates |𝜓⟩ 

of �̂� with eigenvalue 𝐸𝑛, we have: 

�̂� |𝜓(𝑟𝜇)⟩ = 𝐸𝑛  |𝜓(𝑟𝜇)⟩; �̂�𝑅  |𝜓(𝑟𝜇)⟩ = 𝑐 (𝑅𝜇) |𝜓(𝑟𝜇)⟩ (8) 

(Here, the 𝑐 (𝑅𝜇) s are just the eigenvalues of the translation operator.) However, due to the composition 

property �̂�𝑅  �̂�𝑆 = �̂�𝑅 + 𝑆 of translation vectors, the 𝑐 (𝑅𝜇) s are related with each other. Applying this property 

to the eigenvalues:  

�̂�𝑅  �̂�𝑆  |𝜓(𝑟𝜇)⟩ = 𝑐 (𝑅𝜇) 𝑐 (𝑆𝜇) |𝜓(𝑟𝜇)⟩; �̂�𝑅 + 𝑆  |𝜓(𝑟𝜇)⟩ = 𝑐 (𝑅𝜇 + 𝑆𝜇) |𝜓(𝑟𝜇)⟩ 

𝑐 (𝑅𝜇) 𝑐 (𝑆𝜇) = 𝑐 (𝑅𝜇 + 𝑆𝜇) (9) 

Heuristically, this implies that 𝑐(𝑅𝜇) will be an exponential. Thus, as a function of the Bravais lattice vector, 

𝑐(𝑅𝜇) will look something like 𝑐 (𝑅𝜇) = 𝑒𝓅𝜇  𝑅𝜇
 or 𝑐 (𝑅𝜇) = 𝑒𝑔𝜇𝜈 𝑣𝜇  𝑅𝜈

 for some appropriate 𝑣𝜇 or 𝓅𝜇. (I think 

this can be formally proved, but I don’t really have the time or the motivation; heuristic is good enough.) As 

a scalar, this is just a complex exponential: 𝑐 (𝑅𝜇) = 𝑒𝜔 for some 𝜔 ∈ ℂ. 

We’ll set the eigenvalue of �̂�𝑎𝑖
 as �̂�𝑎𝑖

 |𝜓(𝑟𝜇)⟩ = 𝑒2𝜋𝑖 𝜃𝑖  |𝜓(𝑟𝜇)⟩, and deal entirely with the {𝜃𝑖} s now. (The 

extra factor of 2𝜋𝑖 will help later.) Since the {𝑎𝑖
𝜇}  s formed a basis for every 𝑅𝜇, we had 𝑅𝜇 = ∑ 𝑛𝑖  𝑎𝑖

𝜇
𝑖 , so 

�̂�𝑅 = �̂�∑ 𝑛𝑖 𝑎𝑖𝑖
.  
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Using the composition property �̂�𝑅  �̂�𝑆 = �̂�𝑅 + 𝑆, this gives an expression for 𝑐 (𝑅𝜇) in terms of the {𝜃𝑖} s: 

�̂�𝑅  |𝜓(𝑟𝜇)⟩ = �̂�∑ 𝑛𝑖 𝑎𝑖𝑖
  |𝜓(𝑟𝜇)⟩ = ∏ �̂�𝑛𝑖  𝑎𝑖

 |𝜓(𝑟𝜇)⟩

𝑖

= ∏ �̂�
∑ 𝑎𝑖

𝑛𝑖
𝑗

 |𝜓(𝑟𝜇)⟩

𝑖

= ∏ ∏ �̂�𝑎𝑖
 |𝜓(𝑟𝜇)⟩

𝑛𝑖

𝑗 = 1𝑖

 

�̂�𝑅  |𝜓(𝑟𝜇)⟩ = ∏(�̂�𝑎𝑖
)

𝑛𝑖  |𝜓(𝑟𝜇)⟩

𝑖

= ∏(𝑒2𝜋𝑖 𝜃𝑖)
𝑛𝑖

 |𝜓(𝑟𝜇)⟩

𝑖

= ∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖  |𝜓(𝑟𝜇)⟩

𝑖

(10) 

(Explicitly, we have 𝑐 (𝑅𝜇) = ∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖
𝑖 .) Now, we can finally prove Bloch’s theorem: defining 𝑘𝜇 ≔ ∑ 𝜃𝑗  𝑏𝑗𝜇𝑗 , 

where the {𝜃𝑗} s are the same as the {𝜃𝑖} s in the eigenvalues 𝑒2𝜋𝑖 𝜃𝑖 of the {𝑎𝑖} s, we can define the function 

|𝑢(𝑟𝜇)⟩ ≔ 𝑒−𝑖𝑘𝜇  𝑟𝜇
 |𝜓(𝑟𝜇)⟩. Then, the action of �̂�𝑅 on |𝑢(𝑟𝜇)⟩ gives: 

�̂�𝑅  |𝑢(𝑟𝜇)⟩ = �̂�𝑅{𝑒−𝑖𝑘𝜇  𝑟𝜇
 |𝜓(𝑟𝜇)⟩} = 𝑒−𝑖𝑘𝜇  (𝑟𝜇+𝑅𝜇)  (�̂�𝑅|𝜓(𝑟𝜇)⟩) = 𝑒−𝑖𝑘𝜇  𝑟𝜇

 𝑒−𝑖𝑘𝜇  𝑅𝜇
(∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) |𝜓(𝑟𝜇)⟩ 

�̂�𝑅  |𝑢(𝑟𝜇)⟩ = 𝑒−𝑖𝑘𝜇  𝑟𝜇
 (exp {−𝑖 ∑ (𝜃𝑗  𝑏𝑗𝜇

) (𝑛𝑖  𝑎𝑖
𝜇)

𝑖, 𝑗

}) (∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) |𝜓(𝑟𝜇)⟩ 

Equation (3) gave us 𝑏𝑗𝜇
 𝑎𝑖

𝜇 = 2𝜋𝛿𝑖𝑗, so this simplifies to: 

�̂�𝑅  |𝑢(𝑟𝜇)⟩ = 𝑒−𝑖𝑘𝜇  𝑟𝜇
 (exp {−2𝜋𝑖 ∑ 𝜃𝑗  𝑛𝑖  𝛿𝑖𝑗

𝑖, 𝑗

}) (∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) |𝜓(𝑟𝜇)⟩ 

�̂�𝑅  |𝑢(𝑟𝜇)⟩ = 𝑒−𝑖𝑘𝜇  𝑟𝜇
 𝑒−2𝜋𝑖 ∑ 𝑛𝑖  𝜃𝑖  𝑖 (∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) |𝜓(𝑟𝜇)⟩ = 𝑒−𝑖𝑘𝜇  𝑟𝜇
 (∏ 𝑒−2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) (∏ 𝑒2𝜋𝑖 𝑛𝑖  𝜃𝑖

𝑖

) |𝜓(𝑟𝜇)⟩ 

�̂�𝑅  |𝑢(𝑟𝜇)⟩ = |𝑢(𝑟𝜇 + 𝑅𝜇)⟩ = 𝑒−𝑖𝑘𝜇  𝑟𝜇
 |𝜓(𝑟𝜇)⟩ =   |𝑢(𝑟𝜇)⟩ (11) 

Thus, |𝑢(𝑟𝜇)⟩ has the same periodicity as the potential (i.e. |𝑢(𝑟𝜇 + 𝑅𝜇)⟩ =   |𝑢(𝑟𝜇)⟩), and the eigenstates 

|𝜓(𝑟𝜇)⟩ of the Hamiltonian with this periodic potential can be expressed as |𝜓(𝑟𝜇)⟩ = 𝑒𝑖𝑘𝜇  𝑟𝜇
 |𝑢(𝑟𝜇)⟩.// 

1.4: Crystal Momentum 

The 𝑘𝜇 covectors that we used to derive Bloch’s theorem have some extremely interesting properties, which 

are worth looking at to understand things we’ll see later in Floquet theory as well as to understand some 

properties of electron dynamics in lattices.  

First, we note that the 𝑘𝜇s are a conserved quantity and are observable (e.g. in ARPES experiments), and 

are Fourier dual to the 𝑟𝜇. This makes them very momentum-like, which is the motivation for us to define 

the crystal momentum 𝑝𝑐𝜇
≔ ℏ𝑘𝜇 . Notably, the crystal momentum is generally not equal to (or even 

proportional to) the momentum. 

From a group theoretic perspective, we note that �̂� is not invariant under the entire translation group, but is 

instead invariant under the (discrete) lattice subgroup. Since �̂�𝜇 is the generator of the entire translation 

group, [�̂�,   �̂�𝜇] ≠ 0, and thus they’re not generally simultaneously diagonalizable. Instead, we can recognize 

the operator corresponding to the crystal momentum, �̂�𝑐𝜇
, as the generator of the discrete lattice translations 
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{�̂�𝑅}. We can verify this through direct calculation, too, applying �̂�𝜇 to the Bloch decomposition |𝜓𝑘, 𝑛⟩ =

𝑒𝑖𝑘𝜇  𝑟𝜇
 |𝑢𝑘, 𝑛(𝑟𝜇)⟩: 

�̂�𝜇  |𝜓𝑘, 𝑛⟩ = −𝑖ℏ�̂�𝜇  |𝜓𝑘, 𝑛⟩ = −𝑖ℏ�̂�𝜇  {𝑒𝑖𝑘𝜇  𝑟𝜇
 |𝑢𝑘, 𝑛(𝑟𝜇)⟩} = ℏ𝑘𝜇  𝑒𝑖𝑘𝜇  𝑟𝜇

 |𝑢𝑘, 𝑛(𝑟𝜇)⟩ − 𝑖ℏ 𝑒𝑖𝑘𝜇  𝑟𝜇
 �̂�𝜇  |𝑢𝑘, 𝑛(𝑟𝜇)⟩ 

�̂�𝜇  |𝜓𝑘, 𝑛⟩ = ℏ𝑘𝜇  |𝑢𝑘, 𝑛(𝑟𝜇)⟩ − 𝑖ℏ 𝑒𝑖𝑘𝜇  𝑟𝜇
 �̂�𝜇  |𝑢𝑘, 𝑛(𝑟𝜇)⟩ (12) 

In general, the second term doesn’t vanish, so |𝜓𝑘, 𝑛⟩ isn’t generally an eigenstate of �̂�𝜇. 

Applying the Bloch decomposition to the periodic boundary condition 𝑓(𝑟𝜇 + 𝑅𝜇) = 𝑓(𝑟𝜇) gives two crucial 

additional pieces of information. First, this periodic boundary condition yields a periodic boundary condition 

on functions of the reciprocal lattice: 𝑔(𝑘𝜇 + 𝐾𝜇) = 𝑔(𝑘𝜇). This means, importantly, that crystal momentum 

is only conserved to within a reciprocal lattice cell: we can’t distinguish between any given value of the crystal 

momentum and values of the crystal momentum that we get by adding any reciprocal lattice vector.  

This is a really important feature for understanding Floquet theory, since this property shows up for the so-

called Floquet exponents. Additionally, it gives some interesting physical effects. In umklapp scattering, if two 

particles scatter in such a way that the resulting momentum is outside the lattice, the momentum appears to 

be pointing in the opposite direction. Diagrammatically, this appears as:  

 

(Diagram courtesy of Daniel Schwen[2].) Here, the N-process is a “normal” process, whereas the U-process is 

the umklapp process. 

1.5: Lessons from Bloch’s Theorem 

What was the point of all of this, aside from being a cute derivation in its own right? The key aspect of 

Bloch’s theorem is the decomposition of |𝜓(𝑟𝜇)⟩ into 𝑒𝑖𝑘𝜇  𝑟𝜇
 and |𝑢(𝑟𝜇)⟩. The eigenstates of the total system 

Hamiltonian end up being decomposed into plane waves over the entire space we’re considering (here, the 

first Brillouin zone), and a function that has the same periodicity as the potential. This decomposition is the 

key to Bloch’s theorem, and Floquet theory generally: for any periodic differential equation (whether in space 

or time), the solutions will have the form 𝑒𝜆𝜇  𝑥𝜇
 𝑓(𝑥𝜇) for some 𝜆𝜇 ∈ ℂ𝑚. The exponential prefactor 𝑒𝜆𝜇  𝑥𝜇

 

could in principle be a decay, a plane wave, a spiraling decay, or even a spiraling growth; determining which 

one it is is the subject of Floquet-Lyapunov theory. Since everything we’ll encounter physically will be plane 

waves, I won’t touch that. 

Another notable point is that we weren’t free in our choice of 𝑘𝜇; rather, the form of 𝑘𝜇 was dictated by the 

eigenvalues 𝑒2𝜋𝑖 𝜃𝑖. Additionally, we saw that the 𝑘𝜇 were only uniquely specified up to the reciprocal unit cell; 
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i.e. we had 𝑘𝜇 + 𝐾𝜇 = 𝑘𝜇. These properties will be relevant later on when we talk about Floquet modes, since 

these will be reflected in the properties of the so-called Floquet exponents. For now, we’ll keep in mind the 

fact that although |𝜓(𝑟𝜇)⟩ can be decomposed into the periodic piece |𝑢(𝑟𝜇)⟩ and the plane wave piece 𝑒𝑖𝑘𝜇  𝑟𝜇
, 

the eigenvalues of the primitive lattice vectors (which in turn depend on the shape of the lattice) dictate the 

kinds of plane waves we encounter. 

2: Floquet’s Theorem 

2.1: Fundamental Matrices and the Abel-Jacobi-Liouville Identity 

Mathematicians often call Bloch’s theorem a generalized version of Floquet’s theorem, since it deals with 

functions in 𝐿2(ℝ3;  ℂ6) rather than simply 𝐿2(ℝ). Still, it’s worth seeing the expression of Floquet’s theorem 

and its proof, since there’s some additional information that a standard presentation of Bloch’s theorem 

doesn’t include. A fully rigorous proof from the point of view of function spaces is in [3]. 

Before getting to Floquet’s theorem, we’ll briefly define the fundamental matrix, which has some useful 

properties that don’t show up in the proof of Bloch’s theorem. We start with the system of 𝑚 differential 

equations, expressed in vector form by: 

d𝑥𝜇(𝑡)

d𝑡
= 𝐴𝜈

𝜇(𝑡)   𝑥𝜈(𝑡) (13) 

(Here, 𝑥𝜇(𝑡) ∈ ℂ𝑚, and 𝐴𝜈
𝜇(𝑡) is the coefficient matrix.) If we have {𝑥𝑎

𝜇}𝑎 = 1
𝑚  as the solutions to this equation, 

we can define a matrix 𝑋𝜈
𝜇
 in terms of these solutions: 

𝑋𝜈
𝜇(𝑡) ≔ [

| ⋯ |

𝑥1
𝜇(𝑡) ⋯ 𝑥𝑚

𝜇(𝑡)

| ⋯ |
] (14) 

If 𝑋𝜈
𝜇(𝑡) is invertible (i.e. det 𝑋𝜈

𝜇
≠ 0), 𝑋𝜈

𝜇(𝑡) is the fundamental matrix. By construction, this 𝑋𝜈
𝜇(𝑡) is the 

matrix solution to the same type of differential equation: 

d𝑋𝜈
𝜇(𝑡)

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜈
𝜎(𝑡) (15) 

The fundamental matrix 𝑋𝜈
𝜇(𝑡) characterizes the set of all possible time evolutions that the system can take 

under the dynamics dictated by 𝐴𝜎
𝜇(𝑡); the differential equation for 𝑥𝜈(𝑡) then corresponds to a specific case. 

(An important point to note that 𝑋𝜈
𝜇(𝑡) isn’t unique: we can interchange the columns, scale the matrix, or do 

both by multiplying 𝑋𝜈
𝜇(𝑡) by a time-independent invertible matrix. The properties we’ll use, however, are true 

for all possible fundamental matrices.) 

The formal solution to this is familiar to us from quantum many-body theory[4]:  

𝑋𝜈
𝜇(𝑡) = 𝑈𝜎

𝜇(𝑡,  𝑡0) 𝑋𝜈
𝜎(𝑡0); 𝑈𝜈

𝜇(𝑡,  𝑡0) = 𝒯 {exp { ∫ dત  Tr 𝐴(ત)

𝑡

𝑡0

}} (16) 

Usually, we can solve this perturbatively. However, because of the periodicity of 𝐴𝜈
𝜇

, we have 

[𝐴𝜈
𝜇(𝑡 + 𝓃𝑇),  𝐴𝜈

𝜇(𝑡 + 𝓂𝑇)] = 0  for 𝓃,  𝓂 ∈ ℤ , so the Floquet property can help us avoid all of the 
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complications of time ordering and perturbation. This holds just as true for classical Floquet theory as it does 

for quantum Floquet theory, as we’ll see right now. 

Starting with general properties, an extremely important property of general 𝑋𝜈
𝜇
s (including the ones solved 

in equation (15)) is the Abel-Jacobi-Liouville identity, which gives the time evolution of the determinant: 

det 𝑋(𝑡) = det 𝑋(𝑡0)  exp { ∫ dત  Tr 𝐴(ત)

𝑡

𝑡0

} (17) 

(Although for the most part I’m using Einstein convention, I find Tr 𝐴(ત) clearer than 𝐴𝜌
𝜌(ત) and det 𝑋 way 

clearer than 휀𝑖𝑗⋯𝑘𝑋1𝑖𝑋2𝑗 ⋯ 𝑋𝑁𝑘, so I’ll just use these. For completeness, in Einstein convention, this would 

appear as: 

휀𝑖𝑗⋯𝑘𝑋1𝑖𝑋2𝑗 ⋯ 𝑋𝑁𝑘(𝑡) = 휀𝑖𝑗⋯𝑘𝑋1𝑖𝑋2𝑗 ⋯ 𝑋𝑁𝑘(𝑡0)  exp { ∫ dત 𝐴𝜌
𝜌(ત)

𝑡

𝑡0

} (18) 

This can be derived to first order using the Taylor expansion, and to all orders using the Leibniz formula for 

determinants. I find the Taylor expansion technique a lot clearer than the Leibniz formula; the fact that the 

Leibniz formula version exists implies that an all-orders Taylor expansion derivation should exist as well. I’ll 

rederive it when time permits.  

Considering the Taylor expansion of 𝑋𝜈
𝜇(𝑡), we have: 

𝑋𝜈
𝜇(𝑡) = ∑

d𝑛𝑋𝜈
𝜇(𝑡)

d𝑡𝑛
|

𝑡 = 𝑡0

(𝑡 − 𝑡0)𝑛

∞

𝑛 = 0

= 𝑋𝜈
𝜇(𝑡0) +

d𝑋𝜈
𝜇(𝑡)

d𝑡
|

𝑡 = 𝑡0

(𝑡 − 𝑡0) + 𝒪(𝑡2) (19) 

Applying d𝑋𝜈
𝜇

d𝑡⁄ = 𝐴𝜎
𝜇

  𝑋𝜈
𝜎, this gives: 

𝑋𝜈
𝜇(𝑡) ≈ 𝑋𝜈

𝜇(𝑡0) + (𝑡 − 𝑡0) 𝐴𝜎
𝜇

 (𝑡0)  𝑋𝜈
𝜎(𝑡0) + 𝒪(𝑡2) = 𝑋𝜈

𝜎(𝑡0) (𝟙𝜎
𝜇

+ (𝑡 − 𝑡0) 𝐴𝜎
𝜇

 (𝑡0)) + 𝒪(𝑡2) 

Taking the determinant of both sides: 

det 𝑋(𝑡) ≈ det{𝑋(𝑡0)(𝟙 + (𝑡 − 𝑡0) 𝐴 (𝑡0))} + 𝒪(𝑡2) = det 𝑋(𝑡0) det{𝟙 + (𝑡 − 𝑡0) 𝐴 (𝑡0)} 

At lowest order, we have an expansion of the determinant given by: 

det {𝟙 + 휀  𝑇} ≈ 1 + 휀 Tr 𝑇 + 𝒪(휀2) (20) 

Since we’re taking the Taylor expansion around (𝑡 − 𝑡0) to lowest order in 𝑡, this expansion can apply. This 

gives:  

det 𝑋(𝑡) = det 𝑋(𝑡0) det{𝟙 + (𝑡 − 𝑡0) 𝐴 (𝑡0)} = det 𝑋(𝑡0) (1 + (𝑡 − 𝑡0) Tr 𝐴 (𝑡0)) + 𝒪(𝑡2) 

det 𝑋(𝑡) = det 𝑋(𝑡0) + (𝑡 − 𝑡0) det 𝑋(𝑡0) Tr 𝐴 (𝑡0) + 𝒪(𝑡2) 

Comparing this term-by-term with the Taylor expansion of det 𝑋(𝑡) around (𝑡 − 𝑡0): 

det 𝑋(𝑡) = ∑
d𝑛[det 𝑋(𝑡)]

d𝑡𝑛
|

𝑡 = 𝑡0

(𝑡 − 𝑡0)𝑛

∞

𝑛 = 0

= det 𝑋𝜈
𝜎(𝑡0) + (𝑡 − 𝑡0)

d[det 𝑋(𝑡)]

d𝑡
|

𝑡 = 𝑡0

+ 𝒪(𝑡2) (21) 
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Matching terms between the Taylor expansion and the earlier expansion, the first-order terms give: 

d[det 𝑋(𝑡)]

d𝑡
|

𝑡 = 𝑡0

= det 𝑋(𝑡0) Tr 𝐴 (𝑡0) (22) 

Since this holds for arbitrary 𝑡0, this gives the differential equation: 

d

d𝑡
[det 𝑋(𝑡)] = Tr 𝐴 (𝑡0) det 𝑋(𝑡) (23) 

These are all scalars, so this can be directly solved by integrating: 

d[det 𝑋(𝑡)]

det 𝑋(𝑡)
= Tr 𝐴 (𝑡0) d𝑡 

∫ d[det 𝑋(𝜏)]   
1

det 𝑋(𝜏)

det 𝑋(𝑡)

det 𝑋(𝑡0)

= ∫ d𝜏  Tr 𝐴 (𝜏)

𝑡

𝑡0

 

ln det 𝑋(𝑡) − ln det 𝑋(𝑡0) = ln
det 𝑋(𝑡)

det 𝑋(𝑡0)
= ∫ d𝜏  Tr 𝐴 (𝜏)

𝑡

𝑡0

 

det 𝑋(𝑡)

det 𝑋(𝑡0)
= exp { ∫ dત  Tr 𝐴(ત)

𝑡

𝑡0

} 

Thus, we have equation (14): 

det 𝑋(𝑡) = det 𝑋(𝑡0) exp { ∫ dત  Tr 𝐴(ત)

𝑡

𝑡0

} 

(Since these are scalars, this is guaranteed to converge[4]; furthermore, we have [Tr 𝐴(𝑡1) ,  Tr 𝐴(𝑡2)] = 0, so 

we don’t need to worry about time ordering[5].) 

2.2: Fundamental Matrices in a Periodic System 

We still need to show a couple of stepping-stone properties before we can get to Floquet’s theorem itself; 

these will help us derive Floquet’s theorem and some of the properties we’re after. Now that we have 𝑋𝜈
𝜇(𝑡), 

we can examine its properties when subject to a periodic driving or implemented in a periodic system. We 

start again with the differential equation given by equation (13), but now imposing periodicity: 

d𝑋𝜈
𝜇(𝑡)

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜈
𝜎(𝑡); 𝐴𝜈

𝜇(𝑡 + 𝑇) = 𝐴𝜈
𝜇(𝑡) (24) 

The periodicity of the system is represented in the coefficient matrix, by the condition 𝐴𝜈
𝜇(𝑡 + 𝑇) = 𝐴𝜈

𝜇(𝑡). [3] 

and [6] rigorously prove some key properties that we’ll just take for granted, since they’re decent assumptions 

for a physical system: existence and uniqueness of solutions, and the property that 𝑋𝜈
𝜇(𝑡) is a fundamental 

matrix (i.e. det 𝑋(𝑡) ≠ 0) at all times, including 𝑡 + 𝑇.  

Existence and uniqueness have the same interpretations physically that they do mathematically; uniqueness is 

the assumption that we don’t have any multi-valued differential equations. The assumption that 𝑋𝜈
𝜇(𝑡) is a 
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fundamental matrix at all times corresponds physically to the idea that the time evolution of every specific 

case 𝑥𝜈(𝑡) will be well-defined at all times. 

From this, we define the matrix 𝐵𝜈
𝜎(𝑡), which will be critically important for Floquet’s theorem: 

𝐵𝜈
𝜎(𝑡) ≔ (𝑋𝜎

𝜇(𝑡))
−1

𝑋𝜈
𝜇(𝑡 + 𝑇) (25) 

𝐵𝜈
𝜎(𝑡) is the propagator from 𝑡 to 𝑡 + 𝑇, which will help us understand the time evolution of the system. First, 

we can derive the Wronskian, det 𝐵(𝑡). Since 𝑋𝜈
𝜇(𝑡 + 𝑇) = 𝑋𝜎

𝜇(𝑡)   𝐵𝜈
𝜎(𝑡) by definition, and 𝑋𝜈

𝜇(𝑡 + 𝑇) is a 

fundamental matrix, 𝑋𝜈
𝜇(𝑡 + 𝑇) must have evolved from 𝑋𝜎

𝜇(𝑡) via the Abel-Jacobi-Liouville identity: 

det 𝑋(𝑡 + 𝑇) = det 𝑋(𝑡)  exp {∫ dત  Tr 𝐵(ત)

𝑡+𝑇

𝑡

} 

However, from the periodicity 𝐴𝜎
𝜇(ત + 𝑇) = 𝐴𝜎

𝜇(ત), the integral over [𝑡,  𝑡 + 𝑇] is the same as the integral over 

[0,  𝑇], so we have: 

det 𝑋(𝑡 + 𝑇) = det 𝑋(𝑡)  exp {∫ dત  Tr 𝐴(ત)

𝑇

0

} 

The second term is completely independent of 𝑡, so det 𝐵𝜈
𝜎(𝑡) must be time-independent: 

det 𝐵(𝑡) = exp {∫ dત  Tr 𝐴(ત)

𝑇

0

} (26) 

It turns out that 𝐵𝜈
𝜎 itself is time-independent, which we’ll derive now. First, we define the matrix ℬ𝜈

𝜎 as the 

matrix of numbers that we get by evaluating 𝐵𝜈
𝜎 at 𝑡 = 𝑡0: 

ℬ𝜈
𝜎 ≔ 𝐵𝜈

𝜎(𝑡0) = (𝑋𝜎
𝜇(𝑡0))

−1
𝑋𝜈

𝜇(𝑡0 + 𝑇) (27) 

Since ℬ𝜈
𝜎 is a matrix of numbers, by construction it’s time independent. Additionally, since we’re assuming 

that 𝑋𝜈
𝜇(𝑡)  is a fundamental matrix at all times, by construction it’s invertible at all times, so 

(𝑋𝜇
𝜎(𝑡0))

−1
𝑋𝜈

𝜎(𝑡0 + 𝑇) must be invertible as well. Thus, ℬ𝜈
𝜎 is a time-independent invertible matrix. Since any 

rescaling of a fundamental matrix by a time-independent invertible matrix is also a fundamental matrix, 

𝑋𝜈
𝜇(𝑡)   ℬ𝜈

𝜎 must be a fundamental matrix as well. 

We can then compare the time evolved expressions for 𝑋𝜎
𝜇(𝑡)   𝐵𝜈

𝜎(𝑡) and 𝑋𝜈
𝜇(𝑡)   ℬ𝜈

𝜎:  

𝑋𝜎
𝜇(𝑡)   𝐵𝜈

𝜎(𝑡) = 𝑋𝜈
𝜇(𝑡)    (𝑋𝜇

𝜎(𝑡))
−1

𝑋𝜈
𝜎(𝑡 + 𝑇)

vs.

𝑋𝜈
𝜇(𝑡)   ℬ𝜈

𝜎 = 𝑋𝜈
𝜇(𝑡)    (𝑋𝜇

𝜎(𝑡0))
−1

𝑋𝜈
𝜎(𝑡0 + 𝑇)

 

Both 𝑋𝜎
𝜇(𝑡)   𝐵𝜈

𝜎(𝑡) and 𝑋𝜈
𝜇(𝑡)   ℬ𝜈

𝜎 solve the differential equation we’re interested in (i.e. d𝑋𝜈
𝜇

d𝑡⁄ = 𝐴𝜎
𝜇

  𝑋𝜈
𝜎 with 

𝐴𝜎
𝜇
 being 𝑇-periodic). Additionally, 𝑋𝜎

𝜇(𝑡)   𝐵𝜈
𝜎(𝑡) and 𝑋𝜈

𝜇(𝑡)   ℬ𝜈
𝜎 coincide at the initial condition 𝑡0. From the 

uniqueness of solutions, then, ℬ𝜈
𝜎 = 𝐵𝜈

𝜎(𝑡) at all times 𝑡: 𝐵𝜈
𝜎 itself is a time-independent invertible matrix. 
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2.3: Floquet Exponents and Floquet’s Theorem 

We set up 𝐵𝜈
𝜎 the way we did because its properties are actually incredibly important for Floquet’s theorem. 

Since it’s invertible, it has 𝑘 eigenvalues (although multiplicity is allowed), which we’ll label {𝜌𝑎}𝑎 = 1
𝑚 . These 

eigenvalues are called the characteristic multipliers.  

From these, we get the Floquet exponents {𝜔𝑎}𝑎 = 1
𝑚  with 𝜔𝑎 ∈ ℂ by the relation: 

𝜌𝑎 = 𝑒𝜔𝑎𝑇 (28) 

Notably, the Floquet exponents are not unique, since they’re 2𝜋𝑖 𝑇⁄ -periodic: 

𝜌𝑎 = 𝑒𝜔𝑎𝑇 = 𝑒(𝜔𝑎 + 2𝜋𝑖 𝑇⁄ ) 𝑇 (29) 

Particularly notable is the relationship between the Floquet exponents and the Wronskian (and thus the 

coefficient matrix 𝐴𝜎
𝜇(ત)). Combining equation (16) and the fact that the determinant is just the product of 

the eigenvalues, we have: 

det 𝐵 = det {(𝑋(𝑡0))
−1

𝑋(𝑡0 + 𝑇)} = ∏ 𝜌𝑎

𝑚

𝑎 = 1

= ∏ 𝑒𝜔𝑎𝑇

𝑚

𝑎 = 1

= exp {∫ dત  Tr 𝐴(ત)

𝑇

0

} (30) 

The trace of 𝐵𝜈
𝜎 is, as always, the sum of the eigenvalues: 

Tr 𝐵 = Tr {(𝑋(𝑡0))
−1

𝑋(𝑡0 + 𝑇)} = ∑ 𝜌𝑎

𝑚

𝑎 = 1

= ∑ 𝑒𝜔𝑎  𝑇

𝑚

𝑎 = 1

(31) 

Finally, we note that the Floquet exponents don’t depend on the specific fundamental matrix we’re considering, 

but rather depend entirely on the periodic system (encoded in 𝐴𝜎
𝜇
). This is proven in [6]; I might prove this 

later. Instead, we can now directly go to Floquet’s theorem: 

Floquet’s Theorem Claim 

Suppose we have a periodic differential equation, given by: 

d𝑥𝜇(𝑡)

d𝑡
= 𝐴𝜈

𝜇(𝑡)  𝑥𝜈(𝑡); 𝐴𝜈
𝜇(𝑡 + 𝑇) = 𝐴𝜈

𝜇(𝑡) (32) 

Solutions to this differential equation have the form: 

𝑥𝑎
𝜇(𝑡) = 𝑒𝜔𝑎𝑡   𝑝𝑎

𝜇(𝑡) (33) 

Here, 𝑝𝑎
𝜇(𝑡 + 𝑇) = 𝑝𝑎

𝜇(𝑡) has the same periodicity as 𝐴𝜈
𝜇(𝑡): 𝑝𝑎

𝜇(𝑡 + 𝑇) = 𝑝𝑎
𝜇(𝑡). 

Floquet’s Theorem Proof 

We’ll start again with the fundamental matrix 𝑋𝜈
𝜇
, which is a solution to the matrix version of the differential 

equation we’re interested in: 

d𝑋𝜈
𝜇(𝑡)

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜈
𝜎(𝑡); 𝐴𝜈

𝜇(𝑡 + 𝑇) = 𝐴𝜈
𝜇(𝑡) 
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(This is just equation (15) again.) Since 𝑋𝜈
𝜇(𝑡) solves this equation for all times, this equation holds for 

𝑋𝜈
𝜇(𝑡 + 𝑇) = 𝑋𝜎

𝜇(𝑡)   𝐵𝜈
𝜎(𝑡) as well: 

d𝑋𝜈
𝜇(𝑡 + 𝑇)

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜈
𝜇(𝑡 + 𝑇); 𝐴𝜈

𝜇(𝑡 + 𝑇) = 𝐴𝜈
𝜇(𝑡) (34) 

d[𝑋𝜎
𝜇(𝑡)   𝐵𝜈

𝜎]

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜆
𝜎(𝑡)   𝐵𝜈

𝜆; 𝐴𝜈
𝜇(𝑡 + 𝑇) = 𝐴𝜈

𝜇(𝑡) (35) 

Additionally, since 𝐵𝜈
𝜎 is time-independent, its eigenvalues and eigenvectors are as well. Thus, if we take the 

eigenvalue 𝜌𝑖 and corresponding eigenvector 𝑏𝜎, the vector 𝑥𝜈 ≔ 𝑋𝜎
𝜈(𝑡)  𝑏𝜎 will be a solution to the differential 

equation (equation (22)) we’re interested in: 

d𝑥𝜇(𝑡)

d𝑡
= 𝐴𝜈

𝜇(𝑡)  𝑥𝜈(𝑡); 𝐴𝜈
𝜇(𝑡 + 𝑇) = 𝐴𝜈

𝜇(𝑡) 

(We can see this most directly again from the fact that 𝑋𝜈
𝜇(𝑡 + 𝑇) solves equation (15).) Then, examining 

𝑥𝜇(𝑡 + 𝑇), we get: 

𝑥𝑎
𝜇(𝑡 + 𝑇) = 𝑋𝜈

𝜇(𝑡 + 𝑇)   𝑏𝑎
𝜈 = (𝑋𝜎

𝜇(𝑡)   𝐵𝜈
𝜎)  𝑏𝑎

𝜈 = 𝑋𝜎
𝜇(𝑡)  𝐵𝜈

𝜎   𝑏𝑎
𝜈 = 𝜌𝑎    𝑋𝜎

𝜇(𝑡)   𝑏𝑎
𝜎 = 𝑒𝜔𝑎𝑇   𝑥𝑎

𝜇(𝑡) (36) 

From here, we do the same thing as with Bloch’s theorem: defining 𝑝𝑎
𝜇(𝑡) ≔ 𝑒−𝜔𝑎  𝑡   𝑥𝑎

𝜇(𝑡) and examining 

𝑝𝑎
𝜇(𝑡 + 𝑇), we get: 

𝑝𝑎
𝜇(𝑡 + 𝑇) = 𝑒−𝜔𝑎(𝑡 + 𝑇)   𝑥𝑎

𝜇(𝑡 + 𝑇) = 𝑒−𝜔𝑎(𝑡 + 𝑇)    𝑒𝜔𝑎𝑇    𝑥𝑎
𝜇(𝑡) = 𝑒−𝜔𝑎𝑡    𝑥𝑎

𝜇(𝑡) = 𝑝𝑎
𝜇(𝑡) (37) 

Thus, we have 𝑝𝑎
𝜇(𝑡 + 𝑇) = 𝑝𝑎

𝜇(𝑡), and 𝑥𝑎
𝜇(𝑡) = 𝑒𝜔𝑎𝑡   𝑝𝑎

𝜇(𝑡). // 

Matrix Formulation of Floquet’s Theorem 

Before going on, we note that some textbooks and papers refer to the matrix form of Floquet’s theorem, 

relying on the fundamental matrix version of the equation (i.e. equation (15) once again): 

d𝑋𝜈
𝜇(𝑡)

d𝑡
= 𝐴𝜎

𝜇(𝑡)   𝑋𝜈
𝜎(𝑡); 𝐴𝜈

𝜇(𝑡 + 𝑇) = 𝐴𝜈
𝜇(𝑡) 

In this form, Floquet’s theorem states that solutions have the form: 

𝑋𝜈
𝜇

= 𝑃𝜈
𝜇(𝑡)   (𝐵𝜈

𝜇
)

𝑡
𝑇⁄

(38) 

Here, 𝑃𝜈
𝜇(𝑡 + 𝑇) = 𝑃𝜈

𝜇(𝑡) has the same periodicity as 𝐴𝜈
𝜇(𝑡). The links between the vector formulation and the 

matrix formulation are given by the fact that {𝑒𝜔𝑎  𝑡} are the eigenvalues of 𝐵𝜈
𝜇
, and that 𝑋𝜈

𝜇
 and 𝑃𝜈

𝜇
 are 

expressed in terms of {𝑥𝑎
𝜇(𝑡)} and {𝑝𝑎

𝜇(𝑡)} = {𝑒𝜔𝑎  𝑡    𝑥𝑎
𝜇(𝑡)} by: 

𝑋𝜈
𝜇(𝑡) ≔ [

| ⋯ |

𝑥1
𝜇(𝑡) ⋯ 𝑥𝑚

𝜇(𝑡)

| ⋯ |
] 𝑃𝜈

𝜇(𝑡) ≔ [

| ⋯ |

𝑝1
𝜇(𝑡) ⋯ 𝑝𝑚

𝜇(𝑡)

| ⋯ |
] (39) 

2.4: Lyapunov Exponents and Mathieu’s Equation 

The Floquet solutions 𝑥𝑎
𝜇(𝑡) = 𝑒𝜔𝑎𝑡   𝑝𝑎

𝜇(𝑡) have some important properties that are worth knowing about. 

First, as with Bloch’s theorem, we note that the essential aspect of Floquet’s theorem is that the solutions 

are broken up into a periodic piece (the Floquet modes) 𝑝𝑎
𝜇(𝑡) and an exponential piece 𝑒𝜔𝑎𝑡. Since the 𝜔𝑎 
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in the Floquet exponents were only unique up to 2𝜋𝑖 𝑇⁄ , the mapping 𝜔𝑎 ↦ 𝜔𝑎 + 2𝜋𝑖 𝑇⁄  changes 𝑥𝑎
𝜇(𝑡) =

𝑒𝜔𝑎𝑡   𝑝𝑎
𝜇(𝑡) as well: 

𝑒𝜔𝑎𝑡   𝑝𝑎
𝜇(𝑡) ↦ 𝑒(𝜔𝑎 + 2𝜋𝑖 𝑇⁄ )  𝑡    𝑝𝑎

𝜇(𝑡) (40) 

However, the overall function 𝑒(𝜔𝑎 + 2𝜋𝑖 𝑇⁄ )  𝑡   𝑝𝑎
𝜇(𝑡) is still 𝑇-periodic, so the essential idea of breaking up 

𝑥𝑎
𝜇(𝑡) into an exponential piece and a 𝑇-periodic piece is still maintained. 

In Bloch’s theorem, the exponential piece was plane waves. Conversely, here, they could be either plane waves, 

exponential decay, or inspiralling decays. This is the subject of Floquet-Lyapunov theory[7], which we’ll just 

briefly touch on here. Since we have 𝑥𝑎
𝜇(𝑡 + 𝑇) = 𝑒𝜔𝑎𝑇   𝑥𝑎

𝜇(𝑡), we have 𝑥𝑎
𝜇(𝑡 + 𝑛 𝑇) = 𝑒𝜔𝑎𝑛 𝑇   𝑥𝑎

𝜇(𝑡). For the 

𝑡 → ∞ limit, we get three distinct cases: 

▪ For |𝑒𝜔𝑎𝑇| < 1 (which corresponds to ℜ{𝜔𝑎} < 0), we get lim
𝑡 → ∞

𝑥𝑎
𝜇(𝑡) = 0. 

▪ For |𝑒𝜔𝑎𝑇| = 1 (which corresponds to ℜ{𝜔𝑎} = 0), we get plane waves, and 𝑥𝑎
𝜇(𝑡) is pseudo-periodic. 

– When 𝑒𝜔𝑎𝑇 = ±1, 𝑥𝑎
𝜇(𝑡) is properly periodic.  

▪ For |𝑒𝜔𝑎𝑇| > 1 (which corresponds to ℜ{𝜔𝑎} > 0), we get lim
𝑡 → ∞

𝑥𝑎
𝜇(𝑡) → ∞. 

The 𝑡 → ∞ properties of 𝑥𝑎
𝜇(𝑡) depend on ℜ{𝜔𝑎}; this is called the Lyapunov exponent[7], which shows up in 

analysis of nonlinear and chaotic systems. If all of the 𝜔𝑎 satisfy |𝑒𝜔𝑎𝑇| ≤ 1, 𝑥𝑎
𝜇(𝑡) is called Lyapunov stable.  

As a specific example of using Floquet’s theorem to help find the solutions to a differential equation, we’ll 

examine Mathieu’s equation[8], which come up for 3D Laplace problems and 2D or 3D Helmholtz problems in 

elliptic coordinates. (One such example would be the scattering of electromagnetic waves off elliptic cylinders, 

or wave propagation in elliptic waveguides.) Mathieu’s equation is given by: 

d2𝑥

d𝑡2
+ (𝑎 − 2𝑞 cos 2𝑡) 𝑥 = 0 (41) 

Here, 𝑎,  𝑞 ∈ ℝ. Since 𝖫[𝑥] = 𝐷𝑥
2 + (𝑎 − 2𝑞 cos 2𝑡) is a linear differential operator, it has full rank. This means 

that there exist two solutions to this equation (which I’ll label 𝓈1 and 𝓈2), and the remaining solutions are 

linear combinations of these (via the superposition principle). Using symmetry principles and Floquet’s theorem, 

we can try to find the functional form of 𝓈1 and 𝓈2. 

As usual, we can convert a second order ODE into a first-order matrix ODE by defining the column vector: 

[
𝑥1

𝑥2

] = [

𝑥

d𝑥

d𝑡

] (42) 

Then, solutions to Mathieu’s equation satisfy: 

d

d𝑡
[
𝑥1

𝑥2

] =
d

d𝑡
[ 

𝑥

d𝑥
d𝑡⁄

 ] = [
0 1

−𝑎 + 2𝑞 cos 2𝑡 0
] (43) 

Then, we want to construct a fundamental solution matrix out of the vectors 𝑠1
𝜇 and 𝑠2

𝜇, defined by: 

𝑠1
𝜇(𝑡) ≔ [

𝓈1(𝑡)

d𝓈1(𝑡)
d𝑡

⁄
] 𝑠2

𝜇(𝑡) ≔ [

𝓈2(𝑡)

d𝓈2(𝑡)
d𝑡

⁄
] (44)  
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Additionally, we can impose the initial conditions: 

𝑋𝜎
𝜇(0) = [

𝓈1(0) 𝓈2(0)

d𝓈1(0)
d𝑡

⁄ d𝓈2(0)
d𝑡

⁄
] = [

1 0

0 1
] (45) 

Now, we can use some of the results that we derived earlier from Floquet’s theorem. From the initial conditions, 

𝐵𝜈
𝜇
 is given by: 

𝐵𝜈
𝜇

= (𝑋𝜎
𝜇(0))

−1
𝑋𝜈

𝜇(0 + 𝑇) = ([
1 0

0 1
])

−1

[

𝓈1(𝑇) 𝓈2(𝑇)

d𝓈1(𝑇)
d𝑡

⁄ d𝓈2(𝑇)
d𝑡

⁄
] = [

𝓈1(𝑇) 𝓈2(𝑇)

d𝓈1(𝑇)
d𝑡

⁄ d𝓈2(𝑇)
d𝑡

⁄
] 

As before, 𝐵𝜈
𝜇
 is time-invariant. Thus, the Wronskian det 𝐵𝜈

𝜇
 is also time-invariant. In terms of 𝓈1 and 𝓈2, the 

Wronskian is given by: 

det 𝐵 = |

𝓈1(𝑇) 𝓈2(𝑇)

d𝓈1(𝑇)
d𝑡

⁄ d𝓈2(𝑇)
d𝑡

⁄
| = 𝓈1(𝑇)

d𝓈2(𝑇)

d𝑡
− 𝓈2(𝑇)

d𝓈1(𝑇)

d𝑡
 

However, since the Wronskian is time-invariant, this is going to be the same as the Wronskian at 𝑡 = 0: 

det 𝐵 = |

𝓈1(0) 𝓈2(0)

d𝓈1(0)
d𝑡

⁄ d𝓈2(0)
d𝑡

⁄
| = |

1 0

0 1
| = 1 

(As a sanity check, this is the same thing we’d get if we explicitly used equation (24): since Tr 𝐴(𝜏) = 0 in 

equation (41), we get det 𝐵 = exp{∫ d𝜏 0} = 𝑒0 = 1.) So, the two solutions we can get will be linearly 

independent. 

The equation has two notable symmetries: invariance under time reversal (𝑡 ↦ −𝑡) and the periodicity we’re 

interested in (𝑡 ↦ 𝑡 ± 𝜋). From invariance under time reversal and the form of the differential operator, we 

get one even and one odd solution. Then, from the periodicity, we can guess that the solutions will have cos-

like and sin-like addition formulae at 𝑡 ± 𝜋. WLOG we can set 𝓈1 as the even function and 𝓈2 as the odd 

function. This then gives the addition formulae at 𝑡 ± 𝜋 as: 

𝓈1(𝑡 ± 𝜋) = 𝓈1(𝜋) 𝓈1(𝑡) ±
d𝓈1(𝜋)

d𝑡
𝓈2(𝑡) 𝓈2(𝑡 ± 𝜋) = ±𝓈2(𝜋) 𝓈1(𝑡) ±

d𝓈2(𝜋)

d𝑡
𝓈2(𝑡) (46) 

Additionally, from the linear independence of the solutions and the cos-like and sin-like property at 𝑡 = 𝜋 (and 

the periodicity around 𝜋), we get: 

𝓈1(𝜋) =
d𝓈2(𝜋)

d𝑡
(47) 

Finally, from Floquet’s theorem, we have the familiar shape of 𝓈1(𝑡) and 𝓈2(𝑡): 

𝓈1(𝑡) = 𝑒𝜔1𝑡  𝑝1(𝑡) 𝓈2(𝑡) = 𝑒𝜔2𝑡  𝑝2(𝑡) (48) 

So, finding solutions to Mathieu’s equation reduces to finding expressions for 𝜔1,  𝜔2,  𝑝1(𝑡), and 𝑝2(𝑡). 

Unfortunately, this is all we can do: Floquet’s theorem can’t give us any more insights into the values of 𝜔1 

and 𝜔2, nor the functional forms of 𝑝1(𝑡) or 𝑝2(𝑡). (The NIST Handbook of Mathematical Functions lists[9] 

an extra symmetry of the differential operator, {𝑡 ↦ 𝑡 ± 𝜋
2⁄ ,  𝑞 ↦ −𝑞}, but I wasn’t considering the possibility 

of changing one of the parameters. Similarly, it lists four extra relations, likely derived from this symmetry in 
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conjunction with the 𝑡 ↦ 𝑡 ± 𝜋 symmetry, but I wasn’t quite sure how to derive them.) From here on out, 

we’ll have to use a standard technique like trying to convert it to Sturm-Liouville form. 

What was the point of Floquet’s theorem, then, if it can’t get us to an actual answer? It turns out that while 

Floquet couldn’t help us finding the exact form of 𝓈1(𝑡) or 𝓈2(𝑡), it gives us something even better: a new 

basis for 𝐿2(ℝ) from which to expand the solutions we’re interested in. Just as with any other basis of 𝐿2(ℝ) 

we deal with, we can treat this basis (appropriately called the Floquet basis) as the eigenbasis from which to 

expand solutions to Floquet problems. In this sense, we can think of Floquet’s theorem as the theorem that 

tells us that the Floquet basis is the appropriate one whenever we have a periodic system. 

(Incidentally, we shouldn’t be particularly dismayed that we couldn’t get a closed-form solution; a general 

closed form solution doesn’t really exist. People seem content to write down special function solutions which 

are then simply expressed in terms of the Floquet basis, or use Floquet’s theorem and Floquet-Lyapunov 

theory to examine the infinite-time properties of solutions, or examine special cases by picking specific values 

of 𝑎 and 𝑞 that make the equation solvable. A closed-form analytic solution to a linearized version of the 

Mathieu equation was found[10], but it doesn’t seem to have been accepted at any journals or cited anywhere.) 

3: Floquet Basis 

3.1: Floquet Basis from Fourier Basis 

Floquet’s theorem offers us a new basis from which to examine problems (the Floquet basis), which is very 

much the natural basis from which to expand Floquet problems. It turns out that we can get these directly 

from our familiar Fourier basis. I’ll provide the results but not the derivations, since I assume we’re already 

familiar with these derivations. 

As a reminder, we can construct the Fourier basis from the generalized Stone-Weierstrass theorem, which 

just says that we can expand a function over ℝ𝑚 or ℂ𝑚 in polynomials[11], where each dimension gets its own 

polynomial basis. Fourier series specifically can be constructed by examining a function over ℝ2 in polar, and 

setting 𝑟 = 1 at the end: 

𝑓(𝑥,  𝑦)|𝑟 = 1 = 𝑓(𝑟 cos 𝜃 ,  𝑟 sin 𝜃)|𝑟 = 1 = ∑ 𝑎ℓ𝑛 𝑟𝑗 + ℓ  cos𝑗 𝜃  sinℓ 𝜃

∞

𝑗, ℓ = −∞

|

𝑟 = 1

= ∑ 𝑓𝑛  𝑒𝑖𝑛𝜃

∞

𝑛 = −∞

(49) 

Already by construction, we’re putting the problem on a circle, so 𝑓(𝜃) has a 2𝜋 periodicity, and {𝑒𝑖𝑛𝜃}
𝑛 = −∞

∞
 

is a basis for 𝐿2(−𝜋,  𝜋). It’s already orthogonal; the orthonormalized version is {𝑒𝑖𝑛𝜃 √2𝜋⁄ }
𝑛 = −∞

∞
. This basis 

is Cauchy-complete for continuous and piecewise 𝐿2 continuous functions on (−𝜋,  𝜋). The Fourier coefficients 

𝑓𝑛 are given by the Fourier transform: 

𝑓𝑛 = ∫
d𝜃

√2𝜋
 𝑒−𝑖𝑛𝜃  𝑓(𝜃)

𝜋

−𝜋

(50) 

 

 



Page 16 of 20 
 

The transformation 𝜃 ↦ 𝑥 = 𝐿𝜃 2𝜋⁄ + 𝑎 + 𝐿 2⁄  gives a periodic function 𝑓(𝑥) defined over (𝑎,  𝑎 + 𝐿) and 

with period 𝐿: 

𝑓(𝑥) =
1

√𝐿
∑ 𝐹𝑛  𝑒2𝜋𝑖𝑛𝑥 𝐿⁄

∞

𝑛 = −∞

; 𝐹𝑛 = ∫
d𝑥

√𝐿
 𝑒−2𝜋𝑖𝑛𝑥 𝐿⁄  𝑓(𝑥)

𝑎 + 𝐿

𝑎

(51) 

Now, our orthonormal basis for continuous and piecewise continuous 𝐿2 functions over (𝑎,  𝑎 + 𝐿) is given by 

{𝑒2𝜋𝑖𝑛𝑥 𝐿⁄ }
𝑛 = −∞

∞
.  

We want to apply Fourier analysis to Floquet’s theorem, and the presence of the 𝑒𝜔𝑎𝑡 term in the Floquet 

solutions gives us a hint on how to do this. As before, we start with the differential equation given by equation 

(31): 

d𝑥𝜇(𝑡)

d𝑡
= 𝐴𝜈

𝜇(𝑡)  𝑥𝜈(𝑡); 𝐴𝜈
𝜇(𝑡 + 𝑇) = 𝐴𝜈

𝜇(𝑡) 

From here, Floquet’s theorem gives us the solutions 𝑥𝑎
𝜇(𝑡) = 𝑒𝜔𝑎𝑡   𝑝𝑎

𝜇(𝑡) = 𝜌𝑎   𝑝𝑎
𝜇(𝑡) with 𝑝𝑎

𝜇(𝑡 + 𝑇) =

𝑝𝑎
𝜇(𝑡) and 𝜔𝑎 ,  𝜌𝑎 ∈ ℂ. For convenience, we’ll define 𝜑𝑎 = −𝑖𝜔𝑎, so that the solutions are now: 𝑥𝑎

𝜇(𝑡) =

𝑒𝑖𝜑𝑎𝑡   𝑝𝑎
𝜇(𝑡) with 𝜑𝑎 ∈ ℂ. Expanding 𝑝𝑎

𝜇(𝑡) in a Fourier series, we get: 

𝑝𝑎
𝜇(𝑡) = ∑

𝑏𝑛, 𝑎

√𝑇
 𝑒2𝜋𝑖𝑛𝑡 𝑇⁄

∞

𝑛 = −∞

(52) 

However, since 𝑥𝑎
𝜇(𝑡) = 𝑒𝑖𝜑𝑎𝑡   𝑝𝑎

𝜇(𝑡), the corresponding Fourier expansion of 𝑥𝑎
𝜇(𝑡) is given by: 

𝑥𝑎
𝜇(𝑡) = ∑ 𝑒𝑖𝜑𝑎𝑡   

𝑏𝑛, 𝑎

√𝑇
 𝑒2𝜋𝑖𝑛𝑡 𝑇⁄

∞

𝑛 = −∞

= ∑
𝑏𝑛, 𝑎

√𝑇
 𝑒𝑖 (𝜑𝑎+2𝜋𝑛 𝑇⁄ ) 𝑡

∞

𝑛 = −∞

(53) 

For the nth Fourier mode, the corresponding Floquet mode is 𝑏𝑛, 𝑎  𝑒𝑖𝜑𝑎𝑡, and the corresponding Floquet phase 

is 𝑒2𝜋𝑖𝑛𝑡 𝑇⁄ .  

The elementary basis functions for 𝐿2(𝑎,  𝑏) are now given by {𝑒𝑖 (𝜑𝑎+2𝜋𝑛 𝑇⁄ ) 𝑡}
𝑛 = −∞

∞
= {𝑒𝑖𝜑𝑎𝑡   𝑒2𝜋𝑖𝑛𝑡 𝑇⁄ }

𝑛 = −∞

∞
. 

This changes the Fourier coefficients slightly, since the Fourier transform is taken with respect to a new set 

of Fourier basis functions (but not with respect to a different d𝑡[12]): 

𝑏𝑛, 𝑎 = ∫
d𝑡

√𝑇
 𝑒−𝑖 (𝜑𝑎+2𝜋𝑛 𝑇⁄ ) 𝑡  𝑥𝑎

𝜇(𝑡)

𝜋

−𝜋

(54) 

When expanding something in a Fourier series, we assume that the magnitude and phase have the same 

periodicity. One of the biggest advantages of the Floquet basis, conversely, is that it allows us to deal with 

problems where the magnitude and phase have different periodicity[12]: if we tried expanding this in a Fourier 

basis, we’d have to use the periodicity given by the least common multiple of their individual periodicities, 

which might be unduly large (or even inapplicable entirely, if they’re irrational multiples of each other). 
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3.2: Example of the Floquet Basis: Infinite Array of Parallel Wires 

To illustrate how the Floquet basis can be used, we’ll look at an example drawn from electromagnetism, of 

the electric and magnetic fields induced by a synchronized set of oscillating currents on a grid of infinite 

parallel wires: 

                     

Since we have a synchronized set of oscillating currents, the overall effect is that of a uniform wave along the 

𝑥-direction, propagating in the 𝑦-direction. Here, 𝑑 is the distance between wires. We’ll examine the 𝑥-

component specifically of the electric field at a point (𝑦,  𝑧) above the 𝑥𝑦-plane. If the current in the 0th wire 

(the wire located at the 𝑦-axis) is given by 𝐼0, then the current in the 𝑛th wire is given by Floquet’s theorem[13]: 

𝐼𝑛 = 𝐼0 𝑒−𝑖𝑛𝜑𝑑 (55) 

(The currents and fields are completely independent of 𝑥 in this setup, so we can safely ignore the 𝑥 direction.) 

The electric field in the 𝑥-direction due to the 𝑛th wire is given by[14]: 

𝐸𝑥, 𝑛(𝑦,  𝑧) = −
𝜇0𝜔

4
𝐼𝑛  𝐻0

(2)
(𝜔  √𝜖0  𝜇0  √𝑧2 + (𝑛𝑑 − 𝑦)2) = −

𝑘

 4 
√  

𝜇0

 𝜖0  
    𝐼0 𝑒−𝑖𝑛𝜑𝑑   𝐻0

(2)
(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2) (56) 

(The derivation of this is straightforward but very lengthy; I’ll reproduce it when I have the time.) 𝑘 = 𝜔 √𝜖0  𝜇0 

is the wave number and 𝐻0
(2)

 is the 0th-order second-kind Hankel function, defined as a linear combination of 

the first-kind and second-kind Bessel functions: 

𝐻𝛼
(2)(𝑥) ≔ 𝐽𝛼(𝑥) − 𝑖 𝑌𝛼(𝑥) (57) 

From the Floquet series expression in (52), the total 𝑥-component of the electric field is just given by the 

sum of these: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘

 4 
√  

𝜇0

 𝜖0  
    𝐼0   ∑ 𝑒−𝑖𝑛𝜑𝑑   𝐻0

(2)
(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)

∞

𝑛 = −∞

(58) 

We can convert this sum into something more familiar by using the Poisson summation formula[15]: 

∑ 𝑓(𝑥 + 𝑛𝐿)

∞

𝑛 = −∞

=
1

𝐿
∑ 𝑒2𝜋𝑖𝜈𝑥 𝐿⁄  𝑓 (

𝜈

𝐿
)

∞

𝜈 = −∞

(59) 

In this formula, the Fourier conjugate pair variables are 𝑛𝑑 and 𝓃 𝑑⁄ , with 𝐿 ↦ 𝑑. Applying this to the sum 

we’re interested in, the left-hand side is 𝑓(𝑥 + 𝑛𝐿) ↦ 𝑒−𝑖𝑛𝜑𝑑   𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2), with 𝑥 ↦ −𝑦. For the 

right-hand side, we have 𝑓(𝜈 𝐿⁄ ) ↦ ℱ {𝑒−𝑖𝑛𝜑𝑑   𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)}.  

𝑑 
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We can calculate this transform via the convolution theorem: 

ℱ{𝑓(𝑥) ⋅ 𝑔(𝑦)} = ℱ{𝑓(𝑥)} ∗ ℱ{𝑔(𝑦)} = ∫ d𝜉 𝑓(𝜉) �̃�(𝜉 − 𝜈)

∞

−∞

(60) 

So, for the right-hand side of the Poisson sum, we need to evaluate ℱ {𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)}. The Fourier 

transform of 𝐻0
(2)

 is given by[16]: 

∫ d𝑝  𝑒−𝑖𝑝𝑥   𝐻0
(2)

(𝛼√𝑝2 + 𝑚2)

∞

−∞

=
2 𝑒−𝑖|𝑚|√𝛼2−𝑥2

√𝛼2 − 𝑥2
(61) 

(As before, this derivation is straightforward (via the integral representation of the Hankel function) but 

extremely lengthy; I’ll deal with this later.) Applying this to 𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2), we have 𝑥 ↦ 𝜈 𝑑⁄ , 𝛼 ↦

𝑘, 𝑚 ↦ 𝑧, and 𝑝 ↦ (𝑛𝑑 − 𝑦) with d𝑝 ↦ d(𝑛𝑑). This then gives ℱ {𝑒−𝑖𝑛𝜑𝑑   𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)} as: 

ℱ {𝑒−𝑖𝑛𝜑𝑑   𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)} = ℱ{𝑒−𝑖𝑛𝜑𝑑  } ∗ ℱ {𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)} (62) 

ℱ {𝑒−𝑖𝑛𝜑𝑑   𝐻0
(2)

(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)} = 𝛿(𝜑 − 𝜉) ∗
2 exp{−𝑖|𝑧|√𝑘2   −   (𝜉 + 2𝜋𝜈 𝑑⁄ )2}

√𝑘2  −   (𝜉 + 2𝜋𝜈 𝑑⁄ )2
  

(Here, 𝜉 is the convolution variable in equation (59).) The convolution just gives the second function evaluated 

at 𝜉 = 𝜑: 

∫ d𝜉 𝛿(𝜑 − 𝜉) 
2 exp{−𝑖|𝑧|√𝑘2   −   (𝜉 + 2𝜋𝜈 𝑑⁄ )2}

√𝑘2   −   (𝜉 + 2𝜋𝜈 𝑑⁄ )2

∞

−∞

=

2 exp {−𝑖|𝑧|√𝑘2   −  (𝜑 +
2𝜋𝜈

𝑑
)

2

}

√𝑘2  −  (𝜑 +
2𝜋𝜈

𝑑
)

2
 

This then gives the full series as: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 4 
√  

𝜇0

 𝜖0  
      ∑ 𝑒−𝑖𝑛𝜑𝑑   𝐻0

(2)
(𝑘 √𝑧2 + (𝑛𝑑 − 𝑦)2)

∞

𝑛 = −∞

= −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
   ∑ 𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄  

exp {−𝑖|𝑧|√𝑘2  −  (𝜑 +
2𝜋𝜈

𝑑
)

2

}

√𝑘2  −   (𝜑 +
2𝜋𝜈

𝑑
)

2

∞

𝜈 = −∞

 

Separating the 𝜈 = 0 term condenses this into a much more familiar form: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
  
𝑒−𝑖|𝑧|√𝑘2 − 𝜑2

√𝑘2   −   𝜑2
−

𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
   ∑ 𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄  

exp {−𝑖|𝑧|√𝑘2  −  (𝜑 +
2𝜋𝜈

𝑑
)

2

}

√𝑘2  −   (𝜑 +
2𝜋𝜈

𝑑
)

2
𝜈 ∈ ℤ ∖ 0

 

Expressing exp{      } √      ⁄  as 𝑓(𝑧,  𝜑) for a second, we get: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
  
𝑒−𝑖|𝑧|√𝑘2 − 𝜑2

√𝑘2   −   𝜑2
−

𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
   ∑ 𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄  𝑓(𝑧,  𝜑)

𝜈 ∈ ℤ ∖ 0
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𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
  
𝑒−𝑖|𝑧|√𝑘2 − 𝜑2

√𝑘2  −  𝜑2
−

𝑘 𝐼0

  𝑑
√  

𝜇0

 𝜖0  
   ( ∑ 𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄  𝑓(𝑧,  𝜑)

∞

𝜈 = 1

+ ∑ 𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄  𝑓(𝑧,  𝜑)

−1

𝜈 = −∞

) 

Taking 𝜈 ↦ −𝜈 in the second sum and bringing the factor of 2 inside: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
  
𝑒−𝑖|𝑧|√𝑘2 − 𝜑2

√𝑘2  −   𝜑2
−

𝑘 𝐼0

  𝑑
√  

𝜇0

 𝜖0  
   ∑

(𝑒−2𝜋𝑖𝜈𝑦 𝑑⁄ + 𝑒2𝜋𝑖𝜈𝑦 𝑑⁄ )

2
 𝑓(𝑧,  𝜑)

∞

𝜈 = 1

 

Thus, this gives: 

𝐸𝑥(𝑦,  𝑧) = −
𝑘 𝐼0

 2 𝑑
√  

𝜇0

 𝜖0  
  
𝑒−𝑖|𝑧|√𝑘2 − 𝜑2

√𝑘2  −  𝜑2
−

𝑘 𝐼0

  𝑑
√  

𝜇0

 𝜖0  
   ∑ cos (

2𝜋𝜈𝑦

𝑑
) 

exp {−𝑖|𝑧|√𝑘2   −  (𝜑 +
2𝜋𝜈

𝑑
)

2

}

√𝑘2  −  (𝜑 +
2𝜋𝜈

𝑑
)

2

∞

𝜈 = 1

(62) 

This expression gives us a concrete understanding of the series expansion given by equation (57) (and is why 

we spent all of this time dealing with these transformations): the electric field is a bunch of different waves 

along the 𝑧-direction, each propagating as 𝜑 + 2𝜋𝜈 𝑑⁄ . Each member of the series (including the 𝜈 = 0 term) 

is an individual Floquet mode (a.k.a. Floquet harmonic); the 𝜈 > 0 terms are the higher-order Floquet modes. 

This expansion also gives us some interesting properties, which we probably wouldn’t have seen without the 

Floquet decomposition. The Floquet modes are waves along the 𝑧-direction, with a group velocity given by: 

𝑣𝑔 =
𝜕𝜔

𝜕 (𝜑 +
2𝜋𝜈

𝑑
)

(63) 

Since the only difference between the modes is the 2𝜋𝜈 𝑑⁄  term, which is independent of 𝜔, the Floquet 

modes have the same group velocity! Conversely, the modes have different phase velocities: 

𝑣𝑝 =
𝜔

𝜑 +
2𝜋𝜈

𝑑

(64)
 

3.3: Conclusion 

The series expansion given by equation (57) is the strength of the Floquet technique. Here, we see that a lot 

of the complications of having multiple wires are taken care of entirely by the 𝑒−𝑖𝑛𝜑𝑑 term. Despite how 

complicated this series of steps was, it would have been even more complicated if we tried to expand this in 

a normal Fourier series. Even more importantly, the physical understanding that we got from a lot of the 

transformations we did would have been lost on us. Thus, the strength of the Floquet technique lies in 

providing us with a natural basis for problems characterized by the periodicity we’ve been dealing with.  
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