Is It Time for a Tri-Process Theory?
Distinguishing the Reflective and the Algorithmic Mind

Keith E. Stanovich
University of Toronto
Missing Components of Current Dual-Process Theories and Their Implications for the Rationality Debate
Goal Structure

TASS (System 1)

- Genes’ Interests
- Genes’ & Vehicle’s Interests Coincide
- Vehicle’s Interests

Analytic System (System 2)

- Genes’ Interests
- Genes’ & Vehicle’s Interests Coincide
- Vehicle’s Interests

Goals reflecting genetic and vehicle interests in TASS and in the analytic system
Evolutionary Reinterpretations of Heuristics and Biases Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Normative Response</th>
<th>Adaptive Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wason Selection Task</td>
<td>$P & \sim Q$</td>
<td>$P & Q$</td>
</tr>
<tr>
<td>2. Linda Problem</td>
<td>$P(A&B) < P(A)$</td>
<td>$P(A&B) > P(A)$</td>
</tr>
<tr>
<td>3. Covariation Detection</td>
<td>$w(\text{cell A}) = w(\text{cell D})$</td>
<td>$w(\text{cell A}) > w(\text{cell D})$</td>
</tr>
<tr>
<td>4. Probability Learning</td>
<td>maximizing</td>
<td>prob matching</td>
</tr>
<tr>
<td>5. Argument Evaluation Tasks</td>
<td>belief bias = 0</td>
<td>belief bias > 0</td>
</tr>
</tbody>
</table>
Various Processes in TASS: The Autonomous Set of Systems

- processes of implicit learning
- overlearned associations practiced to automaticity
- processes of behavioral regulation by the emotions
- processes of classical and operant conditioning
- encapsulated modules
Control Structures

TASS

Intentional Level
[short-leashed goals]

Algorithmic Level
[few individual differences]

Analytic System

Intentional Level
[long-leashed goals; individual differences in thinking dispositions]

Algorithmic Level
[individual differences in fluid intelligence]

Processing Control in TASS Override by the Analytic System
Control states in an intelligent agent

- Global low-level controls, (e.g. speed, persistence)
- Semantic control states (dispositions)
 - Personality, Skills.
 - Attitudes, beliefs, Preferences.
 - Moods (global), Emotions.
 - Desires, Intentions & plans.

Long term
Relatively hard to change, very slow learning, causes and effects diffuse and indirect.

Short term
Changeable, more specific, causes effects & semantic content.

Neural and physical events
Control Structures

<table>
<thead>
<tr>
<th>Biological Level</th>
<th>Intentional Level</th>
<th>Algorithmic Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASS</td>
<td>[short-leashed goals]</td>
<td>[few individual differences]</td>
</tr>
<tr>
<td>Analytic System</td>
<td>[long-leashed goals; individual differences in thinking dispositions]</td>
<td>[individual differences in fluid intelligence]</td>
</tr>
</tbody>
</table>

Processing Control in TASS Override by the Analytic System
Your Mind (A. Sloman, 2003). The framework incorporates evolutionarily ancient mechanisms co-existing and co-operating or competing with new mechanisms capable of doing different tasks (e.g., reasoning about what might happen). The figure gives an “impressionistic” overview of some of the complexity (e.g., different sorts of emotions are generated at different levels).
Your Mind (A. Sloman, 2003). The framework incorporates evolutionarily ancient mechanisms co-existing and co-operating or competing with new mechanisms capable of doing different tasks (e.g., reasoning about what might happen). The figure gives an “impressionistic” overview of some of the complexity (e.g., different sorts of emotions are generated at different levels).
Figure 5. Individual Differences in the Tripartite Structure
Adapted from Leslie (1987)
Fig. 2.2. The mental mechanisms posited by Nichols and Stich (2003)
Reflective Mind

Algorithmic Mind

Autonomous Mind

Simulation

Response or Attention

Simulation Results

Serial Offline Cognition

Serial Associative Cognition

Initiate Simulation Via Decoupling

Initiate Control Change Via Decoupling

Initiate Override

Interrupt

Override

Response
Humans as Cognitive Misers
(Robyn Dawes)

“Following Dawes (1976), some favored the metaphor of the “cognitive miser” by emphasizing limited mental resources, reliance on irrelevant cues, and the difficulties of effortful correction” (Krueger & Funder, 2004, pp. 316-317)
The rule that human beings seem to follow is to engage the brain only when all else fails--and usually not even then

Humans as Cognitive Misers

Stage 1: Default to TASS

Stage 2: Display a focal bias and rely on serial associative cognition
Focal Bias

relates to:
singularity principle (Evans, Over, & Handley, 2003)
principle of truth (Johnson-Laird)
focussing effects (Legrenzi, Girotto, & Johnson-Laird, 1993)
effect and effort in determining relevance (Sperber, Cara, & Girotto, 1995)
automatic belief acceptance (Gilbert, 1991)
focalism in social psychological theory (Wilson et al., 2000)
When the information processor is strongly disposed to deal only with the most easily constructed cognitive model, then a focal bias is being demonstrated.

The most easily constructed model tends to represent:

- only one state of affairs (Evans, Over, & Handley, 2003)
- that is modelled as true (Johnson-Laird)
- and/or is accepted as given (Gilbert, 1991; matching bias)
- that is closest to what we already believe in (myside bias, belief bias)
- that minimizes effort (Sperber)
- that ignores moderating factors (which might necessitate the construction of alternative models; Wilson et al., 2000)
Reflective Mind

Algorithmic Mind

Autonomous Mind

Simulation

Response or Attention

Simulation Results

Serial Offline Cognition

Serial Associative Cognition

Initiate Simulation Via Decoupling

Initiate Control Change Via Decoupling

Initiate Override

Interrupt

Override

Response
Knowledge Structures

Beliefs, Goals, and General Knowledge

Strategies and Production Systems

Reflective Mind

Algorithmic Mind

Autonomous Mind

ENB = Encapsulated Knowledge Base
TCLI = Tightly Compiled Learned Information
Types of Cognitive Failure

1. TASS override failure
2. mindware gaps
3. contaminated mindware
4. miserliness in the algorithmic mind
Categories of Cognitive Failure

- TASS Override Failure
 - System 1/System 2 Struggle

- Algorithmic Miserliness

- Mindware Gap
 - Probability Knowledge
 - Importance of Alternative Hypotheses

- Contaminated Mindware
 - Evaluation-Disabling Memes
 - "Self" Encourages Egocentric Processing
 - Many Domain-Specific Memeplexes

Processing Styles or Knowledge Bases Involved

- Problem of Multiple Minds (Willpower Problems)
- System 2 Not Engaged
- Focal Bias
Categories of Cognitive Failure

TASS Override Failure
- System 1/System 2 Struggle

Algorithmic Miserliness

Mindware Gap
- Importance of Alternative Hypotheses

Contaminated Mindware
- Evaluation-Disabling Memes
- "Self" Encourages Egocentric Processing
- Many Domain-Specific Memeplexes

Processing Styles or Knowledge Bases Involved

Problem of Multiple Minds (Willpower Problems)
- System 2 Not Engaged

Focal Bias
- Probability Knowledge

Imagine John, who has the choice between smoking (S) and not smoking (~S).
John chooses to smoke.
So we have:

John prefers to smoke
S pref ~S
John prefers to prefer not to smoke:

\((\sim S \text{ pref } S) \text{ pref } (S \text{ pref } \sim S)\)
He prefers his preference to prefer not to smoke over his preference for smoking:

\[\left(\neg S \text{ pref } S \right) \text{ pref } \left(S \text{ pref } \neg S \right) \]

We might in this case say that John’s third-order judgment has ratified his second-order strong evaluation
On the other hand, a third-order judgment might undermine the second-order preference by failing to ratify it:

John might prefer to smoke more than he prefers his preference to prefer not to smoke

\[(S \text{ pref } \sim S) \text{ pref } ((\sim S \text{ pref } S) \text{ pref } (S \text{ pref } \sim S))\]
“your desire to act in accordance with reasons, a desire that produces behavior, in your name, by adding its motivational force to that of whichever motives appear to provide the strongest reasons for acting” (Velleman, 1992, p. 479).
The Master Rationality Motive

The desire to act in accordance with reasons.
I like to gather many different types of evidence before I decide what to do.

I like to have reasons for what I do.

I always consider the consequences before I take action.

I am only confident of decisions that are made after careful analysis of all available information.

I don't like to have to justify my actions. (R)

If a belief suits me then I am comfortable, it really doesn’t matter if the belief is true. (R)

After I make a decision, it is often difficult for me to give logical reasons for it. (R)

I don't feel I have to have reasons for what I do. (R)
“As soon as language acted as a vehicle for delivering information into the mind (whether one’s own or that of another person), carrying with it snippets of non-social information, a transformation in the nature of the mind began….language switched from a social to a general-purpose function, consciousness from a means to predict other individuals’ behavior to managing a mental database of information relating to all domains of behavior” (p. 209)

Fig. 3.4 The later mindreading system: The PWB and Desire system (Nichols & Stich, 2003)
Fig. 2.2. The mental mechanisms posited by Nichols and Stich (2003)
Goal Structure in Humans

Goals Serving Only the Genes' Interests

Goals Serving Both Vehicle and Gene's Interests

Goals Serving Only the Vehicle's Interests
Goal Structure in Humans

- Goals Serving Only the Genes' Interests
- Goals Serving Both Vehicle and Genes Interests
- Goals Serving Only the Vehicle's Interests
- Neither
Goal Structure in Humans

- Goals Serving Only the Genes' Interests
- Goals Serving Both Vehicle and Genes' Interests
- Goals Serving Only the Vehicle's Interests
- Neither
- Neither

Boyd & Richerson's "Big Mistake": Mismatch between current environment and EEA

Parasitic Meme
Sampling of Effects from the Heuristics and Biases Literature

Hindsight Bias
Overconfidence Effect
Baserate Neglect
The Conjunction Fallacy
Nonregressive Predictions
Myside Bias
Inaccurate Covariation Estimation
Pseudodiagnosticity
Belief Bias
Inappropriate Anchoring
Illusory Correlation
Belief Perseverance
Preference Reversals
Outcome Bias
Commission Bias
Failure of Inconsistency Detection
Violation of SEU Axioms
Ignoring Denominator of the Likelihood Ratio
Failure to Generate Alternative Explanations
Unrealistic Optimism
People are nearly-incorrigible “cognitive optimists”. They take for granted that their spontaneous cognitive processes are highly reliable, and that the output of these processes does not need re-checking” (p. 90)

People are nearly-incorrigible “cognitive optimists”. They take for granted that their spontaneous cognitive processes are highly reliable, and that the output of these processes does not need re-checking” (p. 90)
