# initial package installation
Pkg.add("Convex")
Pkg.add("SCS")
Pkg.add("Gadfly")
Pkg.add("Interact")
# Make the Convex.jl module available
using Convex
using SCS # first order splitting conic solver [O'Donoghue et al., 2014]
set_default_solver(SCSSolver(verbose=0)) # could also use Gurobi, Mosek, CPLEX, ...
# Generate random problem data
m = 50; n = 100
A = randn(m, n)
x♮ = sprand(n, 1, .5) # true (sparse nonnegative) parameter vector
noise = .1*randn(m) # gaussian noise
b = A*x♮ + noise # noisy linear observations
# Create a (column vector) variable of size n.
x = Variable(n)
# nonnegative elastic net with regularization
λ = 1
μ = 1
problem = minimize(norm(A * x - b)^2 + λ*norm(x)^2 + μ*norm(x, 1),
x >= 0)
# Solve the problem by calling solve!
solve!(problem)
println("problem status is ", problem.status) # :Optimal, :Infeasible, :Unbounded etc.
println("optimal value is ", problem.optval)
using Gadfly, Interact
@manipulate for λ=0:.1:5, mu=0:.1:5
problem = minimize(norm(A * x - b)^2 + λ*norm(x)^2 + μ*norm(x, 1),
x >= 0)
solve!(problem)
plot(x=x.value, Geom.histogram(minbincount = 20),
Scale.x_continuous(minvalue=0, maxvalue=3.5))#, Scale.y_continuous(minvalue=0, maxvalue=6))
end
# Scalar variable
x = Variable()
# (Column) vector variable
y = Variable(4)
# Matrix variable
Z = Variable(4, 4)
Convex.jl allows you to use a wide variety of functions on variables and on expressions to form new expressions.
x + 2x
e = y[1] + logdet(Z) + sqrt(x) + minimum(y)
e.children[2]
A constraint is convex if convex combinations of feasible points are also feasible. Equivalently, feasible sets are convex sets.
In other words, convex constraints are of the form
convexExpr <= 0
concaveExpr >= 0
affineExpr == 0
x <= 0
x^2 <= sum(y)
M = Z
for i = 1:length(y)
M += rand(size(Z))*y[i]
end
M ⪰ 0
x = Variable()
y = Variable(4)
objective = 2*x + 1 - sqrt(sum(y))
constraint = x >= maximum(y)
p = minimize(objective, constraint)
# solve the problem
solve!(p)
p.status
x.value
# can evaluate expressions directly
evaluate(objective)
call a MathProgBase
solver suited for your problem class
to solve problem using a different solver, just import the solver package and pass the solver to the solve!
method: eg
using Mosek
solve!(p, MosekSolver())
# Generate random problem data
m = 50; n = 100
A = randn(m, n)
x♮ = sprand(n, 1, .5) # true (sparse nonnegative) parameter vector
noise = .1*randn(m) # gaussian noise
b = A*x♮ + noise # noisy linear observations
# Create a (column vector) variable of size n.
x = Variable(n)
# nonnegative elastic net with regularization
λ = 1
μ = 1
problem = minimize(norm(A * x - b)^2 + λ*norm(x)^2 + μ*norm(x, 1),
x >= 0)
@time solve!(problem)
λ = 1.5
@time solve!(problem, warmstart = true)
# affine
x = Variable(4)
y = Variable (2)
sum(x) + y[2]
2*maximum(x) + 4*sum(y) - sqrt(y[1] + x[1]) - 7 * minimum(x[2:4])
# not dcp compliant
log(x) + x^2
# $f$ is convex increasing and $g$ is convex
square(pos(x))
# $f$ is convex decreasing and $g$ is concave
invpos(sqrt(x))
# $f$ is concave increasing and $g$ is concave
sqrt(sqrt(x))