#Barcode-Pooled LoFi vs. Barcode-Pooled HiFi
save_figs = False
seq_ver_df_not_nan = seq_ver_df#.loc[~(np.isnan(seq_ver_df['mean_proximal_logodds']) | np.isinf(seq_ver_df['mean_proximal_logodds']))]
seq_ver_df_lo = seq_ver_df_not_nan.query("array_version == 'lofi' and n_barcodes >= 2 and mean_total_count >= 50").copy()
seq_ver_df_hi = seq_ver_df_not_nan.query("array_version == 'hifi' and n_barcodes >= 2 and mean_total_count >= 50").copy()
seq_ver_df_joined = seq_ver_df_lo.set_index('master_seq').join(seq_ver_df_hi.set_index('master_seq'), lsuffix='_lo', rsuffix='_hi', how='inner')
#Isoform proportions
r_val, _ = pearsonr(seq_ver_df_joined['mean_proximal_usage_lo'], seq_ver_df_joined['mean_proximal_usage_hi'])
f = plt.figure(figsize=(4, 4))
plt.scatter(seq_ver_df_joined['mean_proximal_usage_lo'], seq_ver_df_joined['mean_proximal_usage_hi'], alpha=0.5, s=1, c='black')
annot_text = 'R^2 = ' + str(round(r_val * r_val, 2))
annot_text += '\nn = ' + str(len(seq_ver_df_joined))
ax = plt.gca()
ax.text(0.05, 0.95, annot_text, horizontalalignment='left', verticalalignment='top', transform=ax.transAxes, color='black', fontsize=14, weight="bold")
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.xlabel('Biological replicate 1', fontsize=16)
plt.ylabel('Biological replicate 2', fontsize=16)
plt.title('pPAS Usage', fontsize=16)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.tight_layout()
if save_figs :
plt.savefig('lofi_vs_hifi_pas_usage.png', transparent=True, dpi=150)
plt.savefig('lofi_vs_hifi_pas_usage.eps')
plt.show()
#Isoform log odds
r_val, _ = pearsonr(seq_ver_df_joined['mean_proximal_logodds_lo'], seq_ver_df_joined['mean_proximal_logodds_hi'])
f = plt.figure(figsize=(4, 4))
plt.scatter(seq_ver_df_joined['mean_proximal_logodds_lo'], seq_ver_df_joined['mean_proximal_logodds_hi'], alpha=0.5, s=1)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.xlabel('Biological replicate 1', fontsize=16)
plt.ylabel('Biological replicate 2', fontsize=16)
plt.title('pPAS Log Odds (r^2 = ' + str(round(r_val * r_val, 2)) + ')', fontsize=16)
plt.tight_layout()
if save_figs :
plt.savefig('lofi_vs_hifi_pas_logodds.png', transparent=True, dpi=150)
plt.savefig('lofi_vs_hifi_pas_logodds.eps')
plt.show()
#Avg cut
r_val, _ = pearsonr(seq_ver_df_joined['mean_proximal_avgcut_lo'], seq_ver_df_joined['mean_proximal_avgcut_hi'])
f = plt.figure(figsize=(4, 4))
plt.scatter(seq_ver_df_joined['mean_proximal_avgcut_lo'], seq_ver_df_joined['mean_proximal_avgcut_hi'], alpha=0.4, s=1)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.xlabel('Biological replicate 1', fontsize=16)
plt.ylabel('Biological replicate 2', fontsize=16)
plt.title('Cut position (r^2 = ' + str(round(r_val * r_val, 2)) + ')', fontsize=16)
plt.tight_layout()
if save_figs :
plt.savefig('lofi_vs_hifi_cutpos.png', transparent=True, dpi=150)
plt.savefig('lofi_vs_hifi_cutpos.eps')
plt.show()