So far we explored Python and a few native libraries. Now we will play a little to simplify our life with tools to conduct some data analysis.
Pandas is the most popular library (so far) to import and handle data in Python.
When downloading my ipynb, remember to also get the commits_pr.csv
file
import pandas
cpr = pandas.read_csv("commits_pr.csv")
It became this easy to read a CSV file!!!
And more... Look at what my cpr
is:
type(cpr)
pandas.core.frame.DataFrame
Yes! A DataFrame. And it reads really nice, look:
cpr.tail()
### We can use head() and tail() functions to see a bit less
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
42087 | user36933 | node | javascript | 14285 | 1 |
42088 | user36934 | react | javascript | 8762 | 2 |
42089 | user36934 | rails | ruby | 27508 | 1 |
42090 | user36935 | cocos2d-x | C++ | 15047 | 1 |
42091 | user36936 | node | javascript | 9508 | 2 |
Before moving forward... Explaining a little about this dataset.
This dataset represents a series of Pull Requests made to a subset of projects hosted by GitHub. We worked on this data to capture a specific type of contributor, which we called casual contributor. These contributors are known by having a single pull request accepted in a project and not coming back (i.e., they have no long-term commitment to the project).
In this specific dataset, you will find the following columns:
user
: represent a user in GitHub (anonymized here)project_name
: the name of GitHub project in which the pull request was acceptedprog_lang
: programming language of the projectpull_req_num
: unique identifier of the pull requestnum_commits
: number of commits sent within that specific pull requestDimensions/shape of the dataset (lines vs. columns)
cpr.shape
(42092, 5)
What about the column names?
cpr.columns
Index(['user', 'project_name', 'prog_lang', 'pull_req_number', 'num_commits'], dtype='object')
And the datatype per column?
cpr.dtypes
user object project_name object prog_lang object pull_req_number int64 num_commits int64 dtype: object
Some more information: info()
method prints information including the index dtype and column dtypes, non-null values and memory usage.
cpr.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 42092 entries, 0 to 42091 Data columns (total 5 columns): user 42092 non-null object project_name 42092 non-null object prog_lang 42092 non-null object pull_req_number 42092 non-null int64 num_commits 42092 non-null int64 dtypes: int64(2), object(3) memory usage: 1.6+ MB
What is the type of a specific column???
type(cpr["num_commits"])
pandas.core.series.Series
A serie is a list, with one dimension, indexed. Each column of a dataframe is a series
Before moving ahead, we can use the types to filter some columns.
Let's say we want only the columns that store int
:
int_columns = cpr.dtypes[cpr.dtypes == "int64"].index
int_columns
Index(['pull_req_number', 'num_commits'], dtype='object')
Now... I just want to see these columns... BOOM
cpr[int_columns].head()
pull_req_number | num_commits | |
---|---|---|
0 | 122 | 1 |
1 | 3325 | 1 |
2 | 2128 | 2 |
3 | 2663 | 1 |
4 | 7901 | 1 |
describe()
method provides a summary of numeric values in your dataset: mean, standard deviation, minimum, maximum, 1st quartile, 2nd quartile (median), 3rd quartile of the columns with numeric values. It also counts the number of variables in the dataset (are there missing variables?)
cpr.describe()
pull_req_number | num_commits | |
---|---|---|
count | 42092.000000 | 42092.000000 |
mean | 4452.145681 | 3.824242 |
std | 6152.304478 | 20.760123 |
min | 1.000000 | 1.000000 |
25% | 628.000000 | 1.000000 |
50% | 2007.000000 | 1.000000 |
75% | 5534.250000 | 2.000000 |
max | 38174.000000 | 385.000000 |
We can do it for a Series...
#cpr["num_commits"].describe()
cpr.num_commits.describe()
count 42092.000000 mean 3.824242 std 20.760123 min 1.000000 25% 1.000000 50% 1.000000 75% 2.000000 max 385.000000 Name: num_commits, dtype: float64
#LOOK at this with a non-numeric column
cpr.prog_lang.describe() #either way work.
count 42092 unique 17 top ruby freq 8147 Name: prog_lang, dtype: object
And we can get specific information per column
cpr.num_commits.median()
1.0
cpr.num_commits.mean()
3.8242421362729258
cpr.num_commits.std()
20.76012335707578
cpr.sort_values("num_commits", ascending=False).head(10)
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
38987 | user34165 | three.js | javascript | 7832 | 385 |
705 | user640 | cocos2d-x | C++ | 6866 | 364 |
7335 | user6426 | redis | C | 3506 | 315 |
19587 | user17126 | jenkins | java | 2718 | 307 |
35826 | user31347 | redis | C | 3230 | 290 |
13300 | user11672 | cocos2d-x | C++ | 16576 | 281 |
3601 | user3214 | three.js | javascript | 7808 | 277 |
13873 | user12167 | spring-framework | java | 642 | 273 |
26360 | user23077 | Faker | php | 660 | 259 |
18632 | user16293 | libgdx | java | 814 | 258 |
We can sort using many columns, by using a list (sort will happen from the first item to the last)
cpr.sort_values(["prog_lang", "project_name", "num_commits"], ascending=False).head(10)
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
14351 | user12556 | winjs | typescript | 678 | 11 |
40943 | user35906 | winjs | typescript | 1609 | 10 |
35890 | user31404 | winjs | typescript | 565 | 6 |
1800 | user1614 | winjs | typescript | 1179 | 3 |
20245 | user17684 | winjs | typescript | 1559 | 3 |
29167 | user25562 | winjs | typescript | 30 | 3 |
4780 | user4214 | winjs | typescript | 44 | 2 |
5142 | user4533 | winjs | typescript | 185 | 2 |
7862 | user6897 | winjs | typescript | 1515 | 2 |
32077 | user28045 | winjs | typescript | 428 | 2 |
cpr.head(10)
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
0 | user1 | php-src | C | 122 | 1 |
1 | user2 | activeadmin | ruby | 3325 | 1 |
2 | user3 | YouCompleteMe | python | 2128 | 2 |
3 | user4 | requests | python | 2663 | 1 |
4 | user5 | ipython | python | 7901 | 1 |
5 | user6 | haste-compiler | haskell | 407 | 1 |
6 | user7 | select2 | javascript | 1987 | 1 |
7 | user8 | django | python | 8608 | 3 |
8 | user9 | folly | C++ | 206 | 1 |
9 | user10 | django | python | 4745 | 2 |
If you want to keep the sorted version, you can use the parameter inplace
:
cpr.sort_values(["prog_lang", "project_name", "num_commits"], ascending=False, inplace=True)
cpr.head(10)
#cpr = pandas.read_csv("commits_pr.csv") #--> to return to the original order
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
14351 | user12556 | winjs | typescript | 678 | 11 |
40943 | user35906 | winjs | typescript | 1609 | 10 |
35890 | user31404 | winjs | typescript | 565 | 6 |
1800 | user1614 | winjs | typescript | 1179 | 3 |
20245 | user17684 | winjs | typescript | 1559 | 3 |
29167 | user25562 | winjs | typescript | 30 | 3 |
4780 | user4214 | winjs | typescript | 44 | 2 |
5142 | user4533 | winjs | typescript | 185 | 2 |
7862 | user6897 | winjs | typescript | 1515 | 2 |
32077 | user28045 | winjs | typescript | 428 | 2 |
So, to count the occurrences in a column we have to select the column first, and use the method value_counts()
cpr.prog_lang.value_counts()
ruby 8147 javascript 7052 python 4092 php 4069 C++ 2785 java 2596 C 2196 go 2103 coffeescript 2066 scala 1823 objective-c 1801 haskell 950 clojure 882 perl 663 erlang 500 typescript 343 Perl 24 Name: prog_lang, dtype: int64
But... I just want to know what are the languages out there. Is there a way?
Always
cpr["prog_lang"].unique()
array(['typescript', 'scala', 'ruby', 'python', 'php', 'perl', 'objective-c', 'javascript', 'java', 'haskell', 'go', 'erlang', 'coffeescript', 'clojure', 'Perl', 'C++', 'C'], dtype=object)
Let's say that I just want to look at the columns programming language, project name and number of commits.
I can select them and create a new DF
selected_columns = ["prog_lang", "project_name", "num_commits"]
my_subset = cpr[selected_columns]
my_subset.head()
prog_lang | project_name | num_commits | |
---|---|---|---|
14351 | typescript | winjs | 11 |
40943 | typescript | winjs | 10 |
35890 | typescript | winjs | 6 |
1800 | typescript | winjs | 3 |
20245 | typescript | winjs | 3 |
What if now I want to filter those projects written in C
language?
only_C = cpr[(cpr["prog_lang"]=='C') & (cpr["num_commits"]==2)]
only_C.describe()
pull_req_number | num_commits | |
---|---|---|
count | 389.000000 | 389.0 |
mean | 3815.380463 | 2.0 |
std | 3264.957089 | 0.0 |
min | 3.000000 | 2.0 |
25% | 1061.000000 | 2.0 |
50% | 2860.000000 | 2.0 |
75% | 5831.000000 | 2.0 |
max | 12724.000000 | 2.0 |
We can filter whatever we want:
single_commit = cpr[cpr["num_commits"] == 1]
We can create filters in variables, and use whenever we want, as well
one_commit = cpr["num_commits"]==1
language_C = cpr["prog_lang"]=="C"
multi_commit = cpr["num_commits"]>1
cpr[one_commit & language_C].head(10)
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
1625 | user1464 | twemproxy | C | 284 | 1 |
1696 | user1526 | twemproxy | C | 224 | 1 |
2259 | user2025 | twemproxy | C | 398 | 1 |
2522 | user2268 | twemproxy | C | 387 | 1 |
3210 | user2872 | twemproxy | C | 311 | 1 |
3946 | user3515 | twemproxy | C | 366 | 1 |
4774 | user4209 | twemproxy | C | 291 | 1 |
5802 | user5103 | twemproxy | C | 3 | 1 |
7326 | user6419 | twemproxy | C | 58 | 1 |
7811 | user6850 | twemproxy | C | 217 | 1 |
And... we can use OR (|) and AND(&) to play!
cpr[one_commit & language_C].head(10)
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
1625 | user1464 | twemproxy | C | 284 | 1 |
1696 | user1526 | twemproxy | C | 224 | 1 |
2259 | user2025 | twemproxy | C | 398 | 1 |
2522 | user2268 | twemproxy | C | 387 | 1 |
3210 | user2872 | twemproxy | C | 311 | 1 |
3946 | user3515 | twemproxy | C | 366 | 1 |
4774 | user4209 | twemproxy | C | 291 | 1 |
5802 | user5103 | twemproxy | C | 3 | 1 |
7326 | user6419 | twemproxy | C | 58 | 1 |
7811 | user6850 | twemproxy | C | 217 | 1 |
Let's do it!
#####
two_commits = cpr["num_commits"]==2
language_typescript = cpr["prog_lang"]=="typescript"
cpr[(one_commit & language_C) | (two_commits & language_typescript)]
user | project_name | prog_lang | pull_req_number | num_commits | |
---|---|---|---|---|---|
4780 | user4214 | winjs | typescript | 44 | 2 |
5142 | user4533 | winjs | typescript | 185 | 2 |
7862 | user6897 | winjs | typescript | 1515 | 2 |
32077 | user28045 | winjs | typescript | 428 | 2 |
14874 | user13017 | typescript-node-definitions | typescript | 10 | 2 |
4628 | user4086 | tsd | typescript | 251 | 2 |
6163 | user5410 | tsd | typescript | 99 | 2 |
19480 | user17042 | tsd | typescript | 227 | 2 |
28014 | user24539 | tsd | typescript | 223 | 2 |
2938 | user2628 | shumway | typescript | 1660 | 2 |
29652 | user25959 | shumway | typescript | 7 | 2 |
35752 | user31281 | shumway | typescript | 2156 | 2 |
39930 | user35002 | shumway | typescript | 119 | 2 |
12063 | user10592 | reddcoin | typescript | 8 | 2 |
24217 | user21197 | reddcoin | typescript | 80 | 2 |
18678 | user16336 | primecoin | typescript | 15 | 2 |
37326 | user32674 | primecoin | typescript | 4 | 2 |
3309 | user2954 | litecoin | typescript | 373 | 2 |
8441 | user7412 | litecoin | typescript | 356 | 2 |
12193 | user10705 | litecoin | typescript | 3 | 2 |
14382 | user12584 | litecoin | typescript | 16 | 2 |
14478 | user12666 | litecoin | typescript | 2 | 2 |
34893 | user30521 | litecoin | typescript | 124 | 2 |
41348 | user36268 | litecoin | typescript | 242 | 2 |
18750 | user16399 | egret-core | typescript | 125 | 2 |
15621 | user13681 | doppio | typescript | 415 | 2 |
29010 | user25413 | doppio | typescript | 417 | 2 |
41824 | user36687 | doppio | typescript | 387 | 2 |
430 | user398 | TypeScript | typescript | 8394 | 2 |
2542 | user2286 | TypeScript | typescript | 13045 | 2 |
... | ... | ... | ... | ... | ... |
25269 | user22129 | cphalcon | C | 11147 | 1 |
26031 | user22791 | cphalcon | C | 11144 | 1 |
26174 | user22918 | cphalcon | C | 3192 | 1 |
26259 | user22997 | cphalcon | C | 12609 | 1 |
26272 | user23006 | cphalcon | C | 2455 | 1 |
26445 | user23156 | cphalcon | C | 11214 | 1 |
27626 | user24204 | cphalcon | C | 11951 | 1 |
27992 | user24520 | cphalcon | C | 2176 | 1 |
28734 | user25172 | cphalcon | C | 636 | 1 |
29569 | user25888 | cphalcon | C | 10007 | 1 |
29871 | user26145 | cphalcon | C | 10802 | 1 |
30035 | user26276 | cphalcon | C | 3051 | 1 |
30057 | user26297 | cphalcon | C | 12757 | 1 |
30508 | user26700 | cphalcon | C | 9927 | 1 |
30829 | user26967 | cphalcon | C | 9918 | 1 |
32633 | user28536 | cphalcon | C | 1033 | 1 |
32940 | user28804 | cphalcon | C | 11983 | 1 |
33441 | user29243 | cphalcon | C | 1490 | 1 |
33795 | user29560 | cphalcon | C | 2354 | 1 |
37159 | user32521 | cphalcon | C | 3340 | 1 |
39986 | user35049 | cphalcon | C | 2689 | 1 |
41069 | user36019 | cphalcon | C | 11071 | 1 |
41416 | user36327 | cphalcon | C | 11148 | 1 |
41484 | user36386 | cphalcon | C | 34 | 1 |
41679 | user36551 | cphalcon | C | 3082 | 1 |
2465 | user2213 | ccv | C | 83 | 1 |
14883 | user13025 | ccv | C | 4 | 1 |
21334 | user18630 | ccv | C | 19 | 1 |
21728 | user18978 | ccv | C | 132 | 1 |
39827 | user34908 | ccv | C | 150 | 1 |
1367 rows × 5 columns
What if I wanted to convert number of commits into a feature by creating bands of values that we define:
cpr.loc[cpr["num_commits"]==1, "group_commit"]=1
cpr.loc[(cpr["num_commits"]>1) & (cpr["num_commits"]<=5), "group_commit"]=2
cpr.loc[(cpr["num_commits"]>5) & (cpr["num_commits"]<=20), "group_commit"]=3
cpr.loc[cpr["num_commits"]>20, "group_commit"]=4
cpr.group_commit = cpr.group_commit.astype('int32')
cpr.head()
user | project_name | prog_lang | pull_req_number | num_commits | group_commit | |
---|---|---|---|---|---|---|
14351 | user12556 | winjs | typescript | 678 | 11 | 3 |
40943 | user35906 | winjs | typescript | 1609 | 10 | 3 |
35890 | user31404 | winjs | typescript | 565 | 6 | 3 |
1800 | user1614 | winjs | typescript | 1179 | 3 | 2 |
20245 | user17684 | winjs | typescript | 1559 | 3 | 2 |
What if: I wanted to know how the average of num_commits for those pull requests in group_commit 4???
Can you do that average per language?
cpr[cpr["prog_lang"] == "typescript"].quantile(0.75)
pull_req_number 8213.5 num_commits 2.0 group_commit 2.0 Name: 0.75, dtype: float64
Let's work with a new dataset...
This is not only related to casual contributors, but all contributors
commits_complete = pandas.read_csv('commit_complete.csv')
commits_complete.sort_values('num_commits', ascending=False).head(10)
user | project_name | prog_lang | num_commits | additions | deletions | files_changed | num_comments | |
---|---|---|---|---|---|---|---|---|
52041 | user_13168 | cocos2d-x | C++ | 10000.0 | 1320472.0 | 24870.0 | 5865.0 | 0.0 |
52036 | user_13168 | cocos2d-x | C++ | 10000.0 | 1321513.0 | 24870.0 | 5905.0 | 0.0 |
54883 | user_13227 | cocos2d-x | C++ | 10000.0 | 1549480.0 | 843841.0 | 9726.0 | 0.0 |
52033 | user_13168 | cocos2d-x | C++ | 10000.0 | 1320976.0 | 24870.0 | 5892.0 | 0.0 |
61760 | user_13751 | cocos2d-x | C++ | 10000.0 | 1163795.0 | 24870.0 | 5241.0 | 0.0 |
52034 | user_13168 | cocos2d-x | C++ | 10000.0 | 1321296.0 | 24870.0 | 5905.0 | 0.0 |
61813 | user_13757 | cocos2d-x | C++ | 10000.0 | 1324952.0 | 24870.0 | 5903.0 | 0.0 |
52035 | user_13168 | cocos2d-x | C++ | 10000.0 | 1321419.0 | 24870.0 | 5890.0 | 0.0 |
61841 | user_13764 | cocos2d-x | C++ | 10000.0 | 1539898.0 | 21568.0 | 6574.0 | 0.0 |
54495 | user_13188 | cocos2d-x | C++ | 10000.0 | 1249461.0 | 1129333.0 | 8848.0 | 0.0 |
commits_complete['num_commits'].corr(commits_complete['additions'])
0.6573205139433453
commits_complete.corr()
num_commits | additions | deletions | files_changed | num_comments | |
---|---|---|---|---|---|
num_commits | 1.000000 | 0.657321 | 0.151074 | 0.605152 | -0.007297 |
additions | 0.657321 | 1.000000 | 0.244859 | 0.749543 | -0.002682 |
deletions | 0.151074 | 0.244859 | 1.000000 | 0.566905 | 0.011876 |
files_changed | 0.605152 | 0.749543 | 0.566905 | 1.000000 | 0.003657 |
num_comments | -0.007297 | -0.002682 | 0.011876 | 0.003657 | 1.000000 |
commits_complete.corr(method='pearson').style.background_gradient(cmap='coolwarm')
num_commits | additions | deletions | files_changed | num_comments | |
---|---|---|---|---|---|
num_commits | 1 | 0.657321 | 0.151074 | 0.605152 | -0.00729652 |
additions | 0.657321 | 1 | 0.244859 | 0.749543 | -0.00268151 |
deletions | 0.151074 | 0.244859 | 1 | 0.566905 | 0.0118759 |
files_changed | 0.605152 | 0.749543 | 0.566905 | 1 | 0.00365692 |
num_comments | -0.00729652 | -0.00268151 | 0.0118759 | 0.00365692 | 1 |
Plot types:
Histogram
cpr.num_commits.plot.hist(bins=200)
<matplotlib.axes._subplots.AxesSubplot at 0x116703e48>
cpr[cpr["prog_lang"]=="C"].num_commits.plot.hist(bins=20, color="red", alpha=0.5)
cpr[cpr["prog_lang"]=="java"].num_commits.plot.hist(bins=20, alpha=0.5).legend(["C", "Java"])
<matplotlib.legend.Legend at 0x113399278>
cpr['prog_lang'].value_counts().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x1134acbe0>
cpr[cpr["prog_lang"]== "C"].project_name.value_counts().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x1135ca390>
commits_complete.plot.scatter(x = "files_changed", y = "num_commits")
<matplotlib.axes._subplots.AxesSubplot at 0x11347bcf8>
lang_c = cpr.prog_lang=="C"
lang_java = cpr.prog_lang=="java"
lang_php = cpr.prog_lang=="php"
cpr[(lang_c) | (lang_java) | (lang_php)].boxplot(by='prog_lang', column=['num_commits'])
<matplotlib.axes._subplots.AxesSubplot at 0x113489400>
plot = cpr[(lang_c) | (lang_java) | (lang_php)].boxplot(by='prog_lang', column=['num_commits'], showfliers=False, grid=False)
plot.set_xlabel("Language")
plot.set_ylabel("# of commits")
plot.set_title("")
Text(0.5, 1.0, '')
Just to show...
that it is possible to do statistical analysis
from scipy import stats
stats.mannwhitneyu(cpr[(lang_c)].num_commits, cpr[(lang_java)].num_commits)
MannwhitneyuResult(statistic=2481768.0, pvalue=2.1763470665307134e-20)
my_subset.to_dict()
{'prog_lang': {14351: 'typescript', 40943: 'typescript', 35890: 'typescript', 1800: 'typescript', 20245: 'typescript', 29167: 'typescript', 4780: 'typescript', 5142: 'typescript', 7862: 'typescript', 32077: 'typescript', 535: 'typescript', 2368: 'typescript', 3644: 'typescript', 6174: 'typescript', 9288: 'typescript', 9851: 'typescript', 14019: 'typescript', 17979: 'typescript', 20726: 'typescript', 25046: 'typescript', 28071: 'typescript', 28507: 'typescript', 29869: 'typescript', 34060: 'typescript', 34065: 'typescript', 39071: 'typescript', 854: 'typescript', 14874: 'typescript', 1860: 'typescript', 3667: 'typescript', 4370: 'typescript', 4815: 'typescript', 8702: 'typescript', 8937: 'typescript', 12216: 'typescript', 12674: 'typescript', 24329: 'typescript', 27932: 'typescript', 34233: 'typescript', 37983: 'typescript', 38922: 'typescript', 39249: 'typescript', 2131: 'typescript', 32309: 'typescript', 32557: 'typescript', 4249: 'typescript', 35078: 'typescript', 40918: 'typescript', 4628: 'typescript', 6163: 'typescript', 19480: 'typescript', 28014: 'typescript', 1465: 'typescript', 4491: 'typescript', 8228: 'typescript', 13271: 'typescript', 14337: 'typescript', 17756: 'typescript', 18359: 'typescript', 20548: 'typescript', 22726: 'typescript', 27413: 'typescript', 27831: 'typescript', 29199: 'typescript', 31193: 'typescript', 41245: 'typescript', 26242: 'typescript', 9564: 'typescript', 11313: 'typescript', 28612: 'typescript', 33920: 'typescript', 12142: 'typescript', 21945: 'typescript', 2681: 'typescript', 35930: 'typescript', 2938: 'typescript', 29652: 'typescript', 35752: 'typescript', 39930: 'typescript', 2672: 'typescript', 5431: 'typescript', 7477: 'typescript', 7620: 'typescript', 10958: 'typescript', 11155: 'typescript', 11660: 'typescript', 13310: 'typescript', 13811: 'typescript', 16395: 'typescript', 18022: 'typescript', 18472: 'typescript', 23164: 'typescript', 26882: 'typescript', 29553: 'typescript', 30362: 'typescript', 30478: 'typescript', 33480: 'typescript', 35636: 'typescript', 35904: 'typescript', 38979: 'typescript', 3994: 'typescript', 4812: 'typescript', 17696: 'typescript', 19075: 'typescript', 19789: 'typescript', 25409: 'typescript', 31586: 'typescript', 31940: 'typescript', 32836: 'typescript', 36545: 'typescript', 38333: 'typescript', 12063: 'typescript', 24217: 'typescript', 11670: 'typescript', 15277: 'typescript', 31244: 'typescript', 31667: 'typescript', 35068: 'typescript', 36274: 'typescript', 39993: 'typescript', 18678: 'typescript', 37326: 'typescript', 15342: 'typescript', 25235: 'typescript', 29153: 'typescript', 31694: 'typescript', 29780: 'typescript', 40003: 'typescript', 3309: 'typescript', 8441: 'typescript', 12193: 'typescript', 14382: 'typescript', 14478: 'typescript', 34893: 'typescript', 41348: 'typescript', 7332: 'typescript', 11531: 'typescript', 13342: 'typescript', 16156: 'typescript', 20393: 'typescript', 20614: 'typescript', 22498: 'typescript', 26239: 'typescript', 27240: 'typescript', 28979: 'typescript', 30062: 'typescript', 32301: 'typescript', 32479: 'typescript', 34161: 'typescript', 34546: 'typescript', 39005: 'typescript', 39750: 'typescript', 40282: 'typescript', 41814: 'typescript', 8041: 'typescript', 41987: 'typescript', 18750: 'typescript', 4447: 'typescript', 6903: 'typescript', 8578: 'typescript', 12070: 'typescript', 16325: 'typescript', 19790: 'typescript', 22746: 'typescript', 23155: 'typescript', 35582: 'typescript', 39168: 'typescript', 39989: 'typescript', 41222: 'typescript', 41923: 'typescript', 20572: 'typescript', 15621: 'typescript', 29010: 'typescript', 41824: 'typescript', 1069: 'typescript', 5317: 'typescript', 11557: 'typescript', 12890: 'typescript', 14017: 'typescript', 16537: 'typescript', 24836: 'typescript', 29412: 'typescript', 29507: 'typescript', 31063: 'typescript', 40026: 'typescript', 3227: 'typescript', 18237: 'typescript', 40005: 'typescript', 929: 'typescript', 21101: 'typescript', 354: 'typescript', 2116: 'typescript', 6570: 'typescript', 15272: 'typescript', 6145: 'typescript', 29531: 'typescript', 23981: 'typescript', 9147: 'typescript', 39165: 'typescript', 10443: 'typescript', 16254: 'typescript', 25429: 'typescript', 39046: 'typescript', 10768: 'typescript', 24609: 'typescript', 33636: 'typescript', 35945: 'typescript', 40284: 'typescript', 41317: 'typescript', 10062: 'typescript', 11627: 'typescript', 18716: 'typescript', 21366: 'typescript', 27898: 'typescript', 28578: 'typescript', 29516: 'typescript', 34032: 'typescript', 40557: 'typescript', 2353: 'typescript', 6494: 'typescript', 8087: 'typescript', 12086: 'typescript', 13975: 'typescript', 14152: 'typescript', 15529: 'typescript', 16107: 'typescript', 20922: 'typescript', 26166: 'typescript', 27277: 'typescript', 28227: 'typescript', 28312: 'typescript', 29200: 'typescript', 33078: 'typescript', 39451: 'typescript', 41280: 'typescript', 430: 'typescript', 2542: 'typescript', 2812: 'typescript', 4629: 'typescript', 4937: 'typescript', 8823: 'typescript', 11962: 'typescript', 12041: 'typescript', 12717: 'typescript', 13291: 'typescript', 13427: 'typescript', 14746: 'typescript', 16120: 'typescript', 20357: 'typescript', 20551: 'typescript', 27272: 'typescript', 28638: 'typescript', 29524: 'typescript', 31344: 'typescript', 31641: 'typescript', 31734: 'typescript', 32074: 'typescript', 32193: 'typescript', 33829: 'typescript', 36412: 'typescript', 36777: 'typescript', 37257: 'typescript', 37266: 'typescript', 38129: 'typescript', 38170: 'typescript', 38690: 'typescript', 39504: 'typescript', 40592: 'typescript', 41818: 'typescript', 197: 'typescript', 1782: 'typescript', 2075: 'typescript', 3165: 'typescript', 3788: 'typescript', 3798: 'typescript', 4131: 'typescript', 4146: 'typescript', 4756: 'typescript', 4987: 'typescript', 5364: 'typescript', 5550: 'typescript', 5925: 'typescript', 6301: 'typescript', 6547: 'typescript', 8040: 'typescript', 8660: 'typescript', 9254: 'typescript', 9619: 'typescript', 11802: 'typescript', 12203: 'typescript', 12563: 'typescript', 12775: 'typescript', 13008: 'typescript', 13343: 'typescript', 13617: 'typescript', 14018: 'typescript', 14160: 'typescript', 14648: 'typescript', 15128: 'typescript', 15474: 'typescript', 15699: 'typescript', 16312: 'typescript', 16538: 'typescript', 17031: 'typescript', 17659: 'typescript', 17991: 'typescript', 18685: 'typescript', 19279: 'typescript', 19326: 'typescript', 19940: 'typescript', 20883: 'typescript', 20992: 'typescript', 21342: 'typescript', 21458: 'typescript', 22877: 'typescript', 22912: 'typescript', 23448: 'typescript', 23476: 'typescript', 23611: 'typescript', 24365: 'typescript', 24398: 'typescript', 24521: 'typescript', 24678: 'typescript', 25298: 'typescript', 25808: 'typescript', 25996: 'typescript', 28841: 'typescript', 29590: 'typescript', 29852: 'typescript', 29937: 'typescript', 30107: 'typescript', 30553: 'typescript', 30675: 'typescript', 30819: 'typescript', 31909: 'typescript', 33564: 'typescript', 34245: 'typescript', 35500: 'typescript', 36419: 'typescript', 36968: 'typescript', 38014: 'typescript', 38694: 'typescript', 39667: 'typescript', 12366: 'scala', 30943: 'scala', 10321: 'scala', 18803: 'scala', 507: 'scala', 4802: 'scala', 30714: 'scala', 37109: 'scala', 31265: 'scala', 20512: 'scala', 122: 'scala', 462: 'scala', 1139: 'scala', 1468: 'scala', 1819: 'scala', 2149: 'scala', 2873: 'scala', 2876: 'scala', 3499: 'scala', 3850: 'scala', 4101: 'scala', 4281: 'scala', 4408: 'scala', 4414: 'scala', 4570: 'scala', 4692: 'scala', 4710: 'scala', 4809: 'scala', 4881: 'scala', 6011: 'scala', 6071: 'scala', 6263: 'scala', 6526: 'scala', 6928: 'scala', 6949: 'scala', 7378: 'scala', 7461: 'scala', 7695: 'scala', 7849: 'scala', 7868: 'scala', 8358: 'scala', 8704: 'scala', 9543: 'scala', 9621: 'scala', 10127: 'scala', 10274: 'scala', 10275: 'scala', 10548: 'scala', 10728: 'scala', 10826: 'scala', 10837: 'scala', 10882: 'scala', 11348: 'scala', 11838: 'scala', 11973: 'scala', 12959: 'scala', 13323: 'scala', 14120: 'scala', 14128: 'scala', 14182: 'scala', 14661: 'scala', 15515: 'scala', 15847: 'scala', 16063: 'scala', 16835: 'scala', 16981: 'scala', 17168: 'scala', 17231: 'scala', 17422: 'scala', 17489: 'scala', 18825: 'scala', 19072: 'scala', 19118: 'scala', 19156: 'scala', 19572: 'scala', 19748: 'scala', 20124: 'scala', 20237: 'scala', 20457: 'scala', 21179: 'scala', 21228: 'scala', 21252: 'scala', 21624: 'scala', 22099: 'scala', 22148: 'scala', 22556: 'scala', 22993: 'scala', 23425: 'scala', 23429: 'scala', 23687: 'scala', 24093: 'scala', 24265: 'scala', 24276: 'scala', 24549: 'scala', 25105: 'scala', 25490: 'scala', 25616: 'scala', 25649: 'scala', 25972: 'scala', 26045: 'scala', 26629: 'scala', 26636: 'scala', 27299: 'scala', 27592: 'scala', 28459: 'scala', 28585: 'scala', 28653: 'scala', 29086: 'scala', 29298: 'scala', 29435: 'scala', 29899: 'scala', 30053: 'scala', 30070: 'scala', 30144: 'scala', 30383: 'scala', 30802: 'scala', 30921: 'scala', 30997: 'scala', 31677: 'scala', 32097: 'scala', 32111: 'scala', 32113: 'scala', 32201: 'scala', 32243: 'scala', 32279: 'scala', 32666: 'scala', 33159: 'scala', 33253: 'scala', 33848: 'scala', 33856: 'scala', 34009: 'scala', 34028: 'scala', 34112: 'scala', 34394: 'scala', 34497: 'scala', 34662: 'scala', 34703: 'scala', 34809: 'scala', 35193: 'scala', 35354: 'scala', 35376: 'scala', 35725: 'scala', 36673: 'scala', 36774: 'scala', 37011: 'scala', 37140: 'scala', 38132: 'scala', 38234: 'scala', 38373: 'scala', 38513: 'scala', 38995: 'scala', 39642: 'scala', 39688: 'scala', 39692: 'scala', 40100: 'scala', 40837: 'scala', 41224: 'scala', 41974: 'scala', 31654: 'scala', 2351: 'scala', 23016: 'scala', 40369: 'scala', 36508: 'scala', 40948: 'scala', 12501: 'scala', 5573: 'scala', 10374: 'scala', 28911: 'scala', 29639: 'scala', 33122: 'scala', 40504: 'scala', 28648: 'scala', 7860: 'scala', 6549: 'scala', 23186: 'scala', 23904: 'scala', 12450: 'scala', 20731: 'scala', 39334: 'scala', 5193: 'scala', 25197: 'scala', 36784: 'scala', 840: 'scala', 6622: 'scala', 14405: 'scala', 37170: 'scala', 1198: 'scala', 1521: 'scala', 4264: 'scala', 8205: 'scala', 9884: 'scala', 13190: 'scala', 13284: 'scala', 18718: 'scala', 18761: 'scala', 25123: 'scala', 25454: 'scala', 31235: 'scala', 38798: 'scala', 38868: 'scala', 39077: 'scala', 39338: 'scala', 40476: 'scala', 123: 'scala', 524: 'scala', 1741: 'scala', 1869: 'scala', 3600: 'scala', 4142: 'scala', 5226: 'scala', 6331: 'scala', 7608: 'scala', 7830: 'scala', 9390: 'scala', 16721: 'scala', 17229: 'scala', 17679: 'scala', 19214: 'scala', 19643: 'scala', 21572: 'scala', 25124: 'scala', 27508: 'scala', 28075: 'scala', 30516: 'scala', 32084: 'scala', 33038: 'scala', 34692: 'scala', 35165: 'scala', 39652: 'scala', 39757: 'scala', 4861: 'scala', 14075: 'scala', 16237: 'scala', 16501: 'scala', 3099: 'scala', 10072: 'scala', 11486: 'scala', 15705: 'scala', 29790: 'scala', 34589: 'scala', 34939: 'scala', 4402: 'scala', 8430: 'scala', 9531: 'scala', 9549: 'scala', 13976: 'scala', 14403: 'scala', 15660: 'scala', 17385: 'scala', 20910: 'scala', 20929: 'scala', 21167: 'scala', 25492: 'scala', 26085: 'scala', 26575: 'scala', 27582: 'scala', 33415: 'scala', 35647: 'scala', 35974: 'scala', 12667: 'scala', 565: 'scala', 1692: 'scala', 21939: 'scala', 4325: 'scala', 35296: 'scala', 1046: 'scala', 14350: 'scala', 30952: 'scala', 826: 'scala', 10663: 'scala', 21571: 'scala', 22322: 'scala', 29528: 'scala', 35420: 'scala', 38722: 'scala', 1197: 'scala', 16573: 'scala', 23870: 'scala', 24260: 'scala', 24900: 'scala', 31035: 'scala', 31200: 'scala', 35059: 'scala', 35602: 'scala', 40091: 'scala', 2364: 'scala', 5998: 'scala', 11123: 'scala', 15465: 'scala', 17035: 'scala', 18943: 'scala', 20113: 'scala', 21964: 'scala', 22939: 'scala', 23562: 'scala', 25949: 'scala', 27285: 'scala', 29152: 'scala', 33066: 'scala', 33577: 'scala', 35639: 'scala', 38345: 'scala', 1565: 'scala', 2355: 'scala', 2531: 'scala', 7783: 'scala', 8633: 'scala', 9603: 'scala', 10667: 'scala', 11758: 'scala', 12705: 'scala', 13603: 'scala', 16218: 'scala', 19260: 'scala', 19327: 'scala', 19774: 'scala', 20713: 'scala', 22041: 'scala', 25332: 'scala', 27515: 'scala', 28837: 'scala', 30282: 'scala', 30583: 'scala', 31010: 'scala', 31327: 'scala', 31828: 'scala', 32047: 'scala', 32693: 'scala', 36064: 'scala', 36372: 'scala', 38088: 'scala', 39481: 'scala', 39538: 'scala', 40280: 'scala', 6310: 'scala', 3719: 'scala', 11933: 'scala', 2418: 'scala', 10488: 'scala', 10694: 'scala', 16709: 'scala', 17666: 'scala', 20541: 'scala', 10425: 'scala', 11811: 'scala', 20412: 'scala', 25681: 'scala', 26340: 'scala', 27991: 'scala', 32627: 'scala', 983: 'scala', 3944: 'scala', 7197: 'scala', 7408: 'scala', 9727: 'scala', 20692: 'scala', 22084: 'scala', 22648: 'scala', 23912: 'scala', 25462: 'scala', 25463: 'scala', 28007: 'scala', 30461: 'scala', 31605: 'scala', 32218: 'scala', 32718: 'scala', 36258: 'scala', 37067: 'scala', 1288: 'scala', 2548: 'scala', 2875: 'scala', 3821: 'scala', 4104: 'scala', 4701: 'scala', 5381: 'scala', 5424: 'scala', 6592: 'scala', 7918: 'scala', 9247: 'scala', 9281: 'scala', 11757: 'scala', 11783: 'scala', 14168: 'scala', 16137: 'scala', 16212: 'scala', 16258: 'scala', 17695: 'scala', 18401: 'scala', 19617: 'scala', 19757: 'scala', 20022: 'scala', 20568: 'scala', 21429: 'scala', 21841: 'scala', 23287: 'scala', 24024: 'scala', 25023: 'scala', 25431: 'scala', 25457: 'scala', 25683: 'scala', 25941: 'scala', 26452: 'scala', 26985: 'scala', 27181: 'scala', 27284: 'scala', 27700: 'scala', 28197: 'scala', 28886: 'scala', 29587: 'scala', 29778: 'scala', 30259: 'scala', 30515: 'scala', 31249: 'scala', 31402: 'scala', 31760: 'scala', 32091: 'scala', 32169: 'scala', 34049: 'scala', 34449: 'scala', 35009: 'scala', 36610: 'scala', 37777: 'scala', 38282: 'scala', 38535: 'scala', 39818: 'scala', 41124: 'scala', 17228: 'scala', 6010: 'scala', 22982: 'scala', 23269: 'scala', 32320: 'scala', 39238: 'scala', 11661: 'scala', 18328: 'scala', 34648: 'scala', 35164: 'scala', 41253: 'scala', 898: 'scala', 2178: 'scala', 6633: 'scala', 11828: 'scala', 15352: 'scala', 24104: 'scala', 24813: 'scala', 27736: 'scala', 29366: 'scala', 36257: 'scala', 37295: 'scala', 313: 'scala', 2049: 'scala', 2437: 'scala', 2547: 'scala', 2688: 'scala', 2874: 'scala', 3231: 'scala', 3487: 'scala', 8093: 'scala', 8785: 'scala', 10320: 'scala', 10591: 'scala', 11300: 'scala', 12020: 'scala', 12365: 'scala', 14016: 'scala', 15786: 'scala', 17874: 'scala', 19029: 'scala', 19436: 'scala', 22091: 'scala', 23478: 'scala', 25022: 'scala', 25637: 'scala', 25777: 'scala', 26082: 'scala', 26195: 'scala', 27890: 'scala', 28528: 'scala', 29853: 'scala', 30339: 'scala', 31713: 'scala', 32173: 'scala', 33121: 'scala', 33297: 'scala', 35336: 'scala', 36580: 'scala', 39320: 'scala', 41247: 'scala', 28671: 'scala', 26850: 'scala', 26616: 'scala', 14338: 'scala', 1421: 'scala', 10561: 'scala', 11000: 'scala', 12517: 'scala', 15469: 'scala', 20016: 'scala', 24130: 'scala', 25963: 'scala', 29033: 'scala', 35622: 'scala', 38051: 'scala', 38465: 'scala', 39740: 'scala', 3448: 'scala', 3489: 'scala', 6804: 'scala', 7634: 'scala', 9246: 'scala', 10720: 'scala', 13198: 'scala', 14873: 'scala', 16720: 'scala', 17233: 'scala', 18438: 'scala', 26984: 'scala', 28836: 'scala', 29373: 'scala', 29876: 'scala', 40768: 'scala', 12057: 'scala', 33654: 'scala', 40806: 'scala', 11944: 'scala', 39098: 'scala', 3364: 'scala', 29022: 'scala', 5225: 'scala', 29608: 'scala', 39654: 'scala', 10254: 'scala', 37042: 'scala', 15347: 'scala', 17043: 'scala', 22938: 'scala', 28597: 'scala', 782: 'scala', 3050: 'scala', 3421: 'scala', 9023: 'scala', 17382: 'scala', 18793: 'scala', 19278: 'scala', 21762: 'scala', 22647: 'scala', 25072: 'scala', 34229: 'scala', 38021: 'scala', 39741: 'scala', 39823: 'scala', 87: 'scala', 585: 'scala', 849: 'scala', 1464: 'scala', 1740: 'scala', 2009: 'scala', 3062: 'scala', 3651: 'scala', 4123: 'scala', 4208: 'scala', 4772: 'scala', 5584: 'scala', 5997: 'scala', 6009: 'scala', 6107: 'scala', 6147: 'scala', 6212: 'scala', 6464: 'scala', 7512: 'scala', 8012: 'scala', 9639: 'scala', 9859: 'scala', 9892: 'scala', 10314: 'scala', 10689: 'scala', 10793: 'scala', 10803: 'scala', 10838: 'scala', 11120: 'scala', 14279: 'scala', 14395: 'scala', 14564: 'scala', 14954: 'scala', 15015: 'scala', 15130: 'scala', 15244: 'scala', 15245: 'scala', 15729: 'scala', 16143: 'scala', 16176: 'scala', 17195: 'scala', 17513: 'scala', 17875: 'scala', 18215: 'scala', 18555: 'scala', 18963: 'scala', 19159: 'scala', 19182: 'scala', 19435: 'scala', 20171: 'scala', 21524: 'scala', 21895: 'scala', 21952: 'scala', 22346: 'scala', 22452: 'scala', 23455: 'scala', 24603: 'scala', 24722: 'scala', 24953: 'scala', 26836: 'scala', 27211: 'scala', 27491: 'scala', 28266: 'scala', 28642: 'scala', 28918: 'scala', 29136: 'scala', 30797: 'scala', 32554: 'scala', 33487: 'scala', 33554: 'scala', 33976: 'scala', 34321: 'scala', 34908: 'scala', 35163: 'scala', 35461: 'scala', 35869: 'scala', 36555: 'scala', 36732: 'scala', 37474: 'scala', 37587: 'scala', 38032: 'scala', 38534: 'scala', 39214: 'scala', 40086: 'scala', 40640: 'scala', 41620: 'scala', 41486: 'scala', 23610: 'scala', 19594: 'scala', 5564: 'scala', 37765: 'scala', 20194: 'scala', 4935: 'scala', 6758: 'scala', 21648: 'scala', 15014: 'scala', 31411: 'scala', 3049: 'scala', 24686: 'scala', 29783: 'scala', 30300: 'scala', 2272: 'scala', 18229: 'scala', 20270: 'scala', 26081: 'scala', 26919: 'scala', 27129: 'scala', ...}, 'project_name': {14351: 'winjs', 40943: 'winjs', 35890: 'winjs', 1800: 'winjs', 20245: 'winjs', 29167: 'winjs', 4780: 'winjs', 5142: 'winjs', 7862: 'winjs', 32077: 'winjs', 535: 'winjs', 2368: 'winjs', 3644: 'winjs', 6174: 'winjs', 9288: 'winjs', 9851: 'winjs', 14019: 'winjs', 17979: 'winjs', 20726: 'winjs', 25046: 'winjs', 28071: 'winjs', 28507: 'winjs', 29869: 'winjs', 34060: 'winjs', 34065: 'winjs', 39071: 'winjs', 854: 'typescript-node-definitions', 14874: 'typescript-node-definitions', 1860: 'typescript-node-definitions', 3667: 'typescript-node-definitions', 4370: 'typescript-node-definitions', 4815: 'typescript-node-definitions', 8702: 'typescript-node-definitions', 8937: 'typescript-node-definitions', 12216: 'typescript-node-definitions', 12674: 'typescript-node-definitions', 24329: 'typescript-node-definitions', 27932: 'typescript-node-definitions', 34233: 'typescript-node-definitions', 37983: 'typescript-node-definitions', 38922: 'typescript-node-definitions', 39249: 'typescript-node-definitions', 2131: 'turbulenz_engine', 32309: 'turbulenz_engine', 32557: 'turbulenz_engine', 4249: 'tsd', 35078: 'tsd', 40918: 'tsd', 4628: 'tsd', 6163: 'tsd', 19480: 'tsd', 28014: 'tsd', 1465: 'tsd', 4491: 'tsd', 8228: 'tsd', 13271: 'tsd', 14337: 'tsd', 17756: 'tsd', 18359: 'tsd', 20548: 'tsd', 22726: 'tsd', 27413: 'tsd', 27831: 'tsd', 29199: 'tsd', 31193: 'tsd', 41245: 'tsd', 26242: 'trNgGrid', 9564: 'trNgGrid', 11313: 'trNgGrid', 28612: 'trNgGrid', 33920: 'trNgGrid', 12142: 'shumway', 21945: 'shumway', 2681: 'shumway', 35930: 'shumway', 2938: 'shumway', 29652: 'shumway', 35752: 'shumway', 39930: 'shumway', 2672: 'shumway', 5431: 'shumway', 7477: 'shumway', 7620: 'shumway', 10958: 'shumway', 11155: 'shumway', 11660: 'shumway', 13310: 'shumway', 13811: 'shumway', 16395: 'shumway', 18022: 'shumway', 18472: 'shumway', 23164: 'shumway', 26882: 'shumway', 29553: 'shumway', 30362: 'shumway', 30478: 'shumway', 33480: 'shumway', 35636: 'shumway', 35904: 'shumway', 38979: 'shumway', 3994: 'shellshape', 4812: 'shellshape', 17696: 'shellshape', 19075: 'shellshape', 19789: 'shellshape', 25409: 'shellshape', 31586: 'shellshape', 31940: 'shellshape', 32836: 'shellshape', 36545: 'shellshape', 38333: 'shellshape', 12063: 'reddcoin', 24217: 'reddcoin', 11670: 'reddcoin', 15277: 'reddcoin', 31244: 'reddcoin', 31667: 'reddcoin', 35068: 'reddcoin', 36274: 'reddcoin', 39993: 'primecoin', 18678: 'primecoin', 37326: 'primecoin', 15342: 'primecoin', 25235: 'primecoin', 29153: 'primecoin', 31694: 'primecoin', 29780: 'litecoin', 40003: 'litecoin', 3309: 'litecoin', 8441: 'litecoin', 12193: 'litecoin', 14382: 'litecoin', 14478: 'litecoin', 34893: 'litecoin', 41348: 'litecoin', 7332: 'litecoin', 11531: 'litecoin', 13342: 'litecoin', 16156: 'litecoin', 20393: 'litecoin', 20614: 'litecoin', 22498: 'litecoin', 26239: 'litecoin', 27240: 'litecoin', 28979: 'litecoin', 30062: 'litecoin', 32301: 'litecoin', 32479: 'litecoin', 34161: 'litecoin', 34546: 'litecoin', 39005: 'litecoin', 39750: 'litecoin', 40282: 'litecoin', 41814: 'litecoin', 8041: 'egret-core', 41987: 'egret-core', 18750: 'egret-core', 4447: 'egret-core', 6903: 'egret-core', 8578: 'egret-core', 12070: 'egret-core', 16325: 'egret-core', 19790: 'egret-core', 22746: 'egret-core', 23155: 'egret-core', 35582: 'egret-core', 39168: 'egret-core', 39989: 'egret-core', 41222: 'egret-core', 41923: 'egret-core', 20572: 'doppio', 15621: 'doppio', 29010: 'doppio', 41824: 'doppio', 1069: 'doppio', 5317: 'doppio', 11557: 'doppio', 12890: 'doppio', 14017: 'doppio', 16537: 'doppio', 24836: 'doppio', 29412: 'doppio', 29507: 'doppio', 31063: 'doppio', 40026: 'doppio', 3227: 'TypeScript', 18237: 'TypeScript', 40005: 'TypeScript', 929: 'TypeScript', 21101: 'TypeScript', 354: 'TypeScript', 2116: 'TypeScript', 6570: 'TypeScript', 15272: 'TypeScript', 6145: 'TypeScript', 29531: 'TypeScript', 23981: 'TypeScript', 9147: 'TypeScript', 39165: 'TypeScript', 10443: 'TypeScript', 16254: 'TypeScript', 25429: 'TypeScript', 39046: 'TypeScript', 10768: 'TypeScript', 24609: 'TypeScript', 33636: 'TypeScript', 35945: 'TypeScript', 40284: 'TypeScript', 41317: 'TypeScript', 10062: 'TypeScript', 11627: 'TypeScript', 18716: 'TypeScript', 21366: 'TypeScript', 27898: 'TypeScript', 28578: 'TypeScript', 29516: 'TypeScript', 34032: 'TypeScript', 40557: 'TypeScript', 2353: 'TypeScript', 6494: 'TypeScript', 8087: 'TypeScript', 12086: 'TypeScript', 13975: 'TypeScript', 14152: 'TypeScript', 15529: 'TypeScript', 16107: 'TypeScript', 20922: 'TypeScript', 26166: 'TypeScript', 27277: 'TypeScript', 28227: 'TypeScript', 28312: 'TypeScript', 29200: 'TypeScript', 33078: 'TypeScript', 39451: 'TypeScript', 41280: 'TypeScript', 430: 'TypeScript', 2542: 'TypeScript', 2812: 'TypeScript', 4629: 'TypeScript', 4937: 'TypeScript', 8823: 'TypeScript', 11962: 'TypeScript', 12041: 'TypeScript', 12717: 'TypeScript', 13291: 'TypeScript', 13427: 'TypeScript', 14746: 'TypeScript', 16120: 'TypeScript', 20357: 'TypeScript', 20551: 'TypeScript', 27272: 'TypeScript', 28638: 'TypeScript', 29524: 'TypeScript', 31344: 'TypeScript', 31641: 'TypeScript', 31734: 'TypeScript', 32074: 'TypeScript', 32193: 'TypeScript', 33829: 'TypeScript', 36412: 'TypeScript', 36777: 'TypeScript', 37257: 'TypeScript', 37266: 'TypeScript', 38129: 'TypeScript', 38170: 'TypeScript', 38690: 'TypeScript', 39504: 'TypeScript', 40592: 'TypeScript', 41818: 'TypeScript', 197: 'TypeScript', 1782: 'TypeScript', 2075: 'TypeScript', 3165: 'TypeScript', 3788: 'TypeScript', 3798: 'TypeScript', 4131: 'TypeScript', 4146: 'TypeScript', 4756: 'TypeScript', 4987: 'TypeScript', 5364: 'TypeScript', 5550: 'TypeScript', 5925: 'TypeScript', 6301: 'TypeScript', 6547: 'TypeScript', 8040: 'TypeScript', 8660: 'TypeScript', 9254: 'TypeScript', 9619: 'TypeScript', 11802: 'TypeScript', 12203: 'TypeScript', 12563: 'TypeScript', 12775: 'TypeScript', 13008: 'TypeScript', 13343: 'TypeScript', 13617: 'TypeScript', 14018: 'TypeScript', 14160: 'TypeScript', 14648: 'TypeScript', 15128: 'TypeScript', 15474: 'TypeScript', 15699: 'TypeScript', 16312: 'TypeScript', 16538: 'TypeScript', 17031: 'TypeScript', 17659: 'TypeScript', 17991: 'TypeScript', 18685: 'TypeScript', 19279: 'TypeScript', 19326: 'TypeScript', 19940: 'TypeScript', 20883: 'TypeScript', 20992: 'TypeScript', 21342: 'TypeScript', 21458: 'TypeScript', 22877: 'TypeScript', 22912: 'TypeScript', 23448: 'TypeScript', 23476: 'TypeScript', 23611: 'TypeScript', 24365: 'TypeScript', 24398: 'TypeScript', 24521: 'TypeScript', 24678: 'TypeScript', 25298: 'TypeScript', 25808: 'TypeScript', 25996: 'TypeScript', 28841: 'TypeScript', 29590: 'TypeScript', 29852: 'TypeScript', 29937: 'TypeScript', 30107: 'TypeScript', 30553: 'TypeScript', 30675: 'TypeScript', 30819: 'TypeScript', 31909: 'TypeScript', 33564: 'TypeScript', 34245: 'TypeScript', 35500: 'TypeScript', 36419: 'TypeScript', 36968: 'TypeScript', 38014: 'TypeScript', 38694: 'TypeScript', 39667: 'TypeScript', 12366: 'textteaser', 30943: 'textteaser', 10321: 'textteaser', 18803: 'textteaser', 507: 'textteaser', 4802: 'textteaser', 30714: 'textteaser', 37109: 'textteaser', 31265: 'swagger-core', 20512: 'swagger-core', 122: 'swagger-core', 462: 'swagger-core', 1139: 'swagger-core', 1468: 'swagger-core', 1819: 'swagger-core', 2149: 'swagger-core', 2873: 'swagger-core', 2876: 'swagger-core', 3499: 'swagger-core', 3850: 'swagger-core', 4101: 'swagger-core', 4281: 'swagger-core', 4408: 'swagger-core', 4414: 'swagger-core', 4570: 'swagger-core', 4692: 'swagger-core', 4710: 'swagger-core', 4809: 'swagger-core', 4881: 'swagger-core', 6011: 'swagger-core', 6071: 'swagger-core', 6263: 'swagger-core', 6526: 'swagger-core', 6928: 'swagger-core', 6949: 'swagger-core', 7378: 'swagger-core', 7461: 'swagger-core', 7695: 'swagger-core', 7849: 'swagger-core', 7868: 'swagger-core', 8358: 'swagger-core', 8704: 'swagger-core', 9543: 'swagger-core', 9621: 'swagger-core', 10127: 'swagger-core', 10274: 'swagger-core', 10275: 'swagger-core', 10548: 'swagger-core', 10728: 'swagger-core', 10826: 'swagger-core', 10837: 'swagger-core', 10882: 'swagger-core', 11348: 'swagger-core', 11838: 'swagger-core', 11973: 'swagger-core', 12959: 'swagger-core', 13323: 'swagger-core', 14120: 'swagger-core', 14128: 'swagger-core', 14182: 'swagger-core', 14661: 'swagger-core', 15515: 'swagger-core', 15847: 'swagger-core', 16063: 'swagger-core', 16835: 'swagger-core', 16981: 'swagger-core', 17168: 'swagger-core', 17231: 'swagger-core', 17422: 'swagger-core', 17489: 'swagger-core', 18825: 'swagger-core', 19072: 'swagger-core', 19118: 'swagger-core', 19156: 'swagger-core', 19572: 'swagger-core', 19748: 'swagger-core', 20124: 'swagger-core', 20237: 'swagger-core', 20457: 'swagger-core', 21179: 'swagger-core', 21228: 'swagger-core', 21252: 'swagger-core', 21624: 'swagger-core', 22099: 'swagger-core', 22148: 'swagger-core', 22556: 'swagger-core', 22993: 'swagger-core', 23425: 'swagger-core', 23429: 'swagger-core', 23687: 'swagger-core', 24093: 'swagger-core', 24265: 'swagger-core', 24276: 'swagger-core', 24549: 'swagger-core', 25105: 'swagger-core', 25490: 'swagger-core', 25616: 'swagger-core', 25649: 'swagger-core', 25972: 'swagger-core', 26045: 'swagger-core', 26629: 'swagger-core', 26636: 'swagger-core', 27299: 'swagger-core', 27592: 'swagger-core', 28459: 'swagger-core', 28585: 'swagger-core', 28653: 'swagger-core', 29086: 'swagger-core', 29298: 'swagger-core', 29435: 'swagger-core', 29899: 'swagger-core', 30053: 'swagger-core', 30070: 'swagger-core', 30144: 'swagger-core', 30383: 'swagger-core', 30802: 'swagger-core', 30921: 'swagger-core', 30997: 'swagger-core', 31677: 'swagger-core', 32097: 'swagger-core', 32111: 'swagger-core', 32113: 'swagger-core', 32201: 'swagger-core', 32243: 'swagger-core', 32279: 'swagger-core', 32666: 'swagger-core', 33159: 'swagger-core', 33253: 'swagger-core', 33848: 'swagger-core', 33856: 'swagger-core', 34009: 'swagger-core', 34028: 'swagger-core', 34112: 'swagger-core', 34394: 'swagger-core', 34497: 'swagger-core', 34662: 'swagger-core', 34703: 'swagger-core', 34809: 'swagger-core', 35193: 'swagger-core', 35354: 'swagger-core', 35376: 'swagger-core', 35725: 'swagger-core', 36673: 'swagger-core', 36774: 'swagger-core', 37011: 'swagger-core', 37140: 'swagger-core', 38132: 'swagger-core', 38234: 'swagger-core', 38373: 'swagger-core', 38513: 'swagger-core', 38995: 'swagger-core', 39642: 'swagger-core', 39688: 'swagger-core', 39692: 'swagger-core', 40100: 'swagger-core', 40837: 'swagger-core', 41224: 'swagger-core', 41974: 'swagger-core', 31654: 'summingbird', 2351: 'summingbird', 23016: 'summingbird', 40369: 'summingbird', 36508: 'summingbird', 40948: 'summingbird', 12501: 'summingbird', 5573: 'summingbird', 10374: 'summingbird', 28911: 'summingbird', 29639: 'summingbird', 33122: 'summingbird', 40504: 'summingbird', 28648: 'spray', 7860: 'spray', 6549: 'spray', 23186: 'spray', 23904: 'spray', 12450: 'spray', 20731: 'spray', 39334: 'spray', 5193: 'spray', 25197: 'spray', 36784: 'spray', 840: 'spray', 6622: 'spray', 14405: 'spray', 37170: 'spray', 1198: 'spray', 1521: 'spray', 4264: 'spray', 8205: 'spray', 9884: 'spray', 13190: 'spray', 13284: 'spray', 18718: 'spray', 18761: 'spray', 25123: 'spray', 25454: 'spray', 31235: 'spray', 38798: 'spray', 38868: 'spray', 39077: 'spray', 39338: 'spray', 40476: 'spray', 123: 'spray', 524: 'spray', 1741: 'spray', 1869: 'spray', 3600: 'spray', 4142: 'spray', 5226: 'spray', 6331: 'spray', 7608: 'spray', 7830: 'spray', 9390: 'spray', 16721: 'spray', 17229: 'spray', 17679: 'spray', 19214: 'spray', 19643: 'spray', 21572: 'spray', 25124: 'spray', 27508: 'spray', 28075: 'spray', 30516: 'spray', 32084: 'spray', 33038: 'spray', 34692: 'spray', 35165: 'spray', 39652: 'spray', 39757: 'spray', 4861: 'snowplow', 14075: 'snowplow', 16237: 'snowplow', 16501: 'snowplow', 3099: 'snowplow', 10072: 'snowplow', 11486: 'snowplow', 15705: 'snowplow', 29790: 'snowplow', 34589: 'snowplow', 34939: 'snowplow', 4402: 'snowplow', 8430: 'snowplow', 9531: 'snowplow', 9549: 'snowplow', 13976: 'snowplow', 14403: 'snowplow', 15660: 'snowplow', 17385: 'snowplow', 20910: 'snowplow', 20929: 'snowplow', 21167: 'snowplow', 25492: 'snowplow', 26085: 'snowplow', 26575: 'snowplow', 27582: 'snowplow', 33415: 'snowplow', 35647: 'snowplow', 35974: 'snowplow', 12667: 'scalding', 565: 'scalding', 1692: 'scalding', 21939: 'scalding', 4325: 'scalding', 35296: 'scalding', 1046: 'scalding', 14350: 'scalding', 30952: 'scalding', 826: 'scalding', 10663: 'scalding', 21571: 'scalding', 22322: 'scalding', 29528: 'scalding', 35420: 'scalding', 38722: 'scalding', 1197: 'scalding', 16573: 'scalding', 23870: 'scalding', 24260: 'scalding', 24900: 'scalding', 31035: 'scalding', 31200: 'scalding', 35059: 'scalding', 35602: 'scalding', 40091: 'scalding', 2364: 'scalding', 5998: 'scalding', 11123: 'scalding', 15465: 'scalding', 17035: 'scalding', 18943: 'scalding', 20113: 'scalding', 21964: 'scalding', 22939: 'scalding', 23562: 'scalding', 25949: 'scalding', 27285: 'scalding', 29152: 'scalding', 33066: 'scalding', 33577: 'scalding', 35639: 'scalding', 38345: 'scalding', 1565: 'scalding', 2355: 'scalding', 2531: 'scalding', 7783: 'scalding', 8633: 'scalding', 9603: 'scalding', 10667: 'scalding', 11758: 'scalding', 12705: 'scalding', 13603: 'scalding', 16218: 'scalding', 19260: 'scalding', 19327: 'scalding', 19774: 'scalding', 20713: 'scalding', 22041: 'scalding', 25332: 'scalding', 27515: 'scalding', 28837: 'scalding', 30282: 'scalding', 30583: 'scalding', 31010: 'scalding', 31327: 'scalding', 31828: 'scalding', 32047: 'scalding', 32693: 'scalding', 36064: 'scalding', 36372: 'scalding', 38088: 'scalding', 39481: 'scalding', 39538: 'scalding', 40280: 'scalding', 6310: 'scalaz', 3719: 'scalaz', 11933: 'scalaz', 2418: 'scalaz', 10488: 'scalaz', 10694: 'scalaz', 16709: 'scalaz', 17666: 'scalaz', 20541: 'scalaz', 10425: 'scalaz', 11811: 'scalaz', 20412: 'scalaz', 25681: 'scalaz', 26340: 'scalaz', 27991: 'scalaz', 32627: 'scalaz', 983: 'scalaz', 3944: 'scalaz', 7197: 'scalaz', 7408: 'scalaz', 9727: 'scalaz', 20692: 'scalaz', 22084: 'scalaz', 22648: 'scalaz', 23912: 'scalaz', 25462: 'scalaz', 25463: 'scalaz', 28007: 'scalaz', 30461: 'scalaz', 31605: 'scalaz', 32218: 'scalaz', 32718: 'scalaz', 36258: 'scalaz', 37067: 'scalaz', 1288: 'scalaz', 2548: 'scalaz', 2875: 'scalaz', 3821: 'scalaz', 4104: 'scalaz', 4701: 'scalaz', 5381: 'scalaz', 5424: 'scalaz', 6592: 'scalaz', 7918: 'scalaz', 9247: 'scalaz', 9281: 'scalaz', 11757: 'scalaz', 11783: 'scalaz', 14168: 'scalaz', 16137: 'scalaz', 16212: 'scalaz', 16258: 'scalaz', 17695: 'scalaz', 18401: 'scalaz', 19617: 'scalaz', 19757: 'scalaz', 20022: 'scalaz', 20568: 'scalaz', 21429: 'scalaz', 21841: 'scalaz', 23287: 'scalaz', 24024: 'scalaz', 25023: 'scalaz', 25431: 'scalaz', 25457: 'scalaz', 25683: 'scalaz', 25941: 'scalaz', 26452: 'scalaz', 26985: 'scalaz', 27181: 'scalaz', 27284: 'scalaz', 27700: 'scalaz', 28197: 'scalaz', 28886: 'scalaz', 29587: 'scalaz', 29778: 'scalaz', 30259: 'scalaz', 30515: 'scalaz', 31249: 'scalaz', 31402: 'scalaz', 31760: 'scalaz', 32091: 'scalaz', 32169: 'scalaz', 34049: 'scalaz', 34449: 'scalaz', 35009: 'scalaz', 36610: 'scalaz', 37777: 'scalaz', 38282: 'scalaz', 38535: 'scalaz', 39818: 'scalaz', 41124: 'scalaz', 17228: 'scalatra', 6010: 'scalatra', 22982: 'scalatra', 23269: 'scalatra', 32320: 'scalatra', 39238: 'scalatra', 11661: 'scalatra', 18328: 'scalatra', 34648: 'scalatra', 35164: 'scalatra', 41253: 'scalatra', 898: 'scalatra', 2178: 'scalatra', 6633: 'scalatra', 11828: 'scalatra', 15352: 'scalatra', 24104: 'scalatra', 24813: 'scalatra', 27736: 'scalatra', 29366: 'scalatra', 36257: 'scalatra', 37295: 'scalatra', 313: 'scalatra', 2049: 'scalatra', 2437: 'scalatra', 2547: 'scalatra', 2688: 'scalatra', 2874: 'scalatra', 3231: 'scalatra', 3487: 'scalatra', 8093: 'scalatra', 8785: 'scalatra', 10320: 'scalatra', 10591: 'scalatra', 11300: 'scalatra', 12020: 'scalatra', 12365: 'scalatra', 14016: 'scalatra', 15786: 'scalatra', 17874: 'scalatra', 19029: 'scalatra', 19436: 'scalatra', 22091: 'scalatra', 23478: 'scalatra', 25022: 'scalatra', 25637: 'scalatra', 25777: 'scalatra', 26082: 'scalatra', 26195: 'scalatra', 27890: 'scalatra', 28528: 'scalatra', 29853: 'scalatra', 30339: 'scalatra', 31713: 'scalatra', 32173: 'scalatra', 33121: 'scalatra', 33297: 'scalatra', 35336: 'scalatra', 36580: 'scalatra', 39320: 'scalatra', 41247: 'scalatra', 28671: 'scala-js', 26850: 'scala-js', 26616: 'scala-js', 14338: 'scala-js', 1421: 'scala-js', 10561: 'scala-js', 11000: 'scala-js', 12517: 'scala-js', 15469: 'scala-js', 20016: 'scala-js', 24130: 'scala-js', 25963: 'scala-js', 29033: 'scala-js', 35622: 'scala-js', 38051: 'scala-js', 38465: 'scala-js', 39740: 'scala-js', 3448: 'scala-js', 3489: 'scala-js', 6804: 'scala-js', 7634: 'scala-js', 9246: 'scala-js', 10720: 'scala-js', 13198: 'scala-js', 14873: 'scala-js', 16720: 'scala-js', 17233: 'scala-js', 18438: 'scala-js', 26984: 'scala-js', 28836: 'scala-js', 29373: 'scala-js', 29876: 'scala-js', 40768: 'scala-js', 12057: 'sbt', 33654: 'sbt', 40806: 'sbt', 11944: 'sbt', 39098: 'sbt', 3364: 'sbt', 29022: 'sbt', 5225: 'sbt', 29608: 'sbt', 39654: 'sbt', 10254: 'sbt', 37042: 'sbt', 15347: 'sbt', 17043: 'sbt', 22938: 'sbt', 28597: 'sbt', 782: 'sbt', 3050: 'sbt', 3421: 'sbt', 9023: 'sbt', 17382: 'sbt', 18793: 'sbt', 19278: 'sbt', 21762: 'sbt', 22647: 'sbt', 25072: 'sbt', 34229: 'sbt', 38021: 'sbt', 39741: 'sbt', 39823: 'sbt', 87: 'sbt', 585: 'sbt', 849: 'sbt', 1464: 'sbt', 1740: 'sbt', 2009: 'sbt', 3062: 'sbt', 3651: 'sbt', 4123: 'sbt', 4208: 'sbt', 4772: 'sbt', 5584: 'sbt', 5997: 'sbt', 6009: 'sbt', 6107: 'sbt', 6147: 'sbt', 6212: 'sbt', 6464: 'sbt', 7512: 'sbt', 8012: 'sbt', 9639: 'sbt', 9859: 'sbt', 9892: 'sbt', 10314: 'sbt', 10689: 'sbt', 10793: 'sbt', 10803: 'sbt', 10838: 'sbt', 11120: 'sbt', 14279: 'sbt', 14395: 'sbt', 14564: 'sbt', 14954: 'sbt', 15015: 'sbt', 15130: 'sbt', 15244: 'sbt', 15245: 'sbt', 15729: 'sbt', 16143: 'sbt', 16176: 'sbt', 17195: 'sbt', 17513: 'sbt', 17875: 'sbt', 18215: 'sbt', 18555: 'sbt', 18963: 'sbt', 19159: 'sbt', 19182: 'sbt', 19435: 'sbt', 20171: 'sbt', 21524: 'sbt', 21895: 'sbt', 21952: 'sbt', 22346: 'sbt', 22452: 'sbt', 23455: 'sbt', 24603: 'sbt', 24722: 'sbt', 24953: 'sbt', 26836: 'sbt', 27211: 'sbt', 27491: 'sbt', 28266: 'sbt', 28642: 'sbt', 28918: 'sbt', 29136: 'sbt', 30797: 'sbt', 32554: 'sbt', 33487: 'sbt', 33554: 'sbt', 33976: 'sbt', 34321: 'sbt', 34908: 'sbt', 35163: 'sbt', 35461: 'sbt', 35869: 'sbt', 36555: 'sbt', 36732: 'sbt', 37474: 'sbt', 37587: 'sbt', 38032: 'sbt', 38534: 'sbt', 39214: 'sbt', 40086: 'sbt', 40640: 'sbt', 41620: 'sbt', 41486: 'playframework', 23610: 'playframework', 19594: 'playframework', 5564: 'playframework', 37765: 'playframework', 20194: 'playframework', 4935: 'playframework', 6758: 'playframework', 21648: 'playframework', 15014: 'playframework', 31411: 'playframework', 3049: 'playframework', 24686: 'playframework', 29783: 'playframework', 30300: 'playframework', 2272: 'playframework', 18229: 'playframework', 20270: 'playframework', 26081: 'playframework', 26919: 'playframework', 27129: 'playframework', ...}, 'num_commits': {14351: 11, 40943: 10, 35890: 6, 1800: 3, 20245: 3, 29167: 3, 4780: 2, 5142: 2, 7862: 2, 32077: 2, 535: 1, 2368: 1, 3644: 1, 6174: 1, 9288: 1, 9851: 1, 14019: 1, 17979: 1, 20726: 1, 25046: 1, 28071: 1, 28507: 1, 29869: 1, 34060: 1, 34065: 1, 39071: 1, 854: 6, 14874: 2, 1860: 1, 3667: 1, 4370: 1, 4815: 1, 8702: 1, 8937: 1, 12216: 1, 12674: 1, 24329: 1, 27932: 1, 34233: 1, 37983: 1, 38922: 1, 39249: 1, 2131: 1, 32309: 1, 32557: 1, 4249: 3, 35078: 3, 40918: 3, 4628: 2, 6163: 2, 19480: 2, 28014: 2, 1465: 1, 4491: 1, 8228: 1, 13271: 1, 14337: 1, 17756: 1, 18359: 1, 20548: 1, 22726: 1, 27413: 1, 27831: 1, 29199: 1, 31193: 1, 41245: 1, 26242: 6, 9564: 1, 11313: 1, 28612: 1, 33920: 1, 12142: 250, 21945: 7, 2681: 3, 35930: 3, 2938: 2, 29652: 2, 35752: 2, 39930: 2, 2672: 1, 5431: 1, 7477: 1, 7620: 1, 10958: 1, 11155: 1, 11660: 1, 13310: 1, 13811: 1, 16395: 1, 18022: 1, 18472: 1, 23164: 1, 26882: 1, 29553: 1, 30362: 1, 30478: 1, 33480: 1, 35636: 1, 35904: 1, 38979: 1, 3994: 1, 4812: 1, 17696: 1, 19075: 1, 19789: 1, 25409: 1, 31586: 1, 31940: 1, 32836: 1, 36545: 1, 38333: 1, 12063: 2, 24217: 2, 11670: 1, 15277: 1, 31244: 1, 31667: 1, 35068: 1, 36274: 1, 39993: 250, 18678: 2, 37326: 2, 15342: 1, 25235: 1, 29153: 1, 31694: 1, 29780: 5, 40003: 5, 3309: 2, 8441: 2, 12193: 2, 14382: 2, 14478: 2, 34893: 2, 41348: 2, 7332: 1, 11531: 1, 13342: 1, 16156: 1, 20393: 1, 20614: 1, 22498: 1, 26239: 1, 27240: 1, 28979: 1, 30062: 1, 32301: 1, 32479: 1, 34161: 1, 34546: 1, 39005: 1, 39750: 1, 40282: 1, 41814: 1, 8041: 9, 41987: 4, 18750: 2, 4447: 1, 6903: 1, 8578: 1, 12070: 1, 16325: 1, 19790: 1, 22746: 1, 23155: 1, 35582: 1, 39168: 1, 39989: 1, 41222: 1, 41923: 1, 20572: 11, 15621: 2, 29010: 2, 41824: 2, 1069: 1, 5317: 1, 11557: 1, 12890: 1, 14017: 1, 16537: 1, 24836: 1, 29412: 1, 29507: 1, 31063: 1, 40026: 1, 3227: 250, 18237: 120, 40005: 44, 929: 19, 21101: 18, 354: 17, 2116: 15, 6570: 12, 15272: 12, 6145: 11, 29531: 11, 23981: 9, 9147: 8, 39165: 8, 10443: 7, 16254: 7, 25429: 6, 39046: 6, 10768: 5, 24609: 5, 33636: 5, 35945: 5, 40284: 5, 41317: 5, 10062: 4, 11627: 4, 18716: 4, 21366: 4, 27898: 4, 28578: 4, 29516: 4, 34032: 4, 40557: 4, 2353: 3, 6494: 3, 8087: 3, 12086: 3, 13975: 3, 14152: 3, 15529: 3, 16107: 3, 20922: 3, 26166: 3, 27277: 3, 28227: 3, 28312: 3, 29200: 3, 33078: 3, 39451: 3, 41280: 3, 430: 2, 2542: 2, 2812: 2, 4629: 2, 4937: 2, 8823: 2, 11962: 2, 12041: 2, 12717: 2, 13291: 2, 13427: 2, 14746: 2, 16120: 2, 20357: 2, 20551: 2, 27272: 2, 28638: 2, 29524: 2, 31344: 2, 31641: 2, 31734: 2, 32074: 2, 32193: 2, 33829: 2, 36412: 2, 36777: 2, 37257: 2, 37266: 2, 38129: 2, 38170: 2, 38690: 2, 39504: 2, 40592: 2, 41818: 2, 197: 1, 1782: 1, 2075: 1, 3165: 1, 3788: 1, 3798: 1, 4131: 1, 4146: 1, 4756: 1, 4987: 1, 5364: 1, 5550: 1, 5925: 1, 6301: 1, 6547: 1, 8040: 1, 8660: 1, 9254: 1, 9619: 1, 11802: 1, 12203: 1, 12563: 1, 12775: 1, 13008: 1, 13343: 1, 13617: 1, 14018: 1, 14160: 1, 14648: 1, 15128: 1, 15474: 1, 15699: 1, 16312: 1, 16538: 1, 17031: 1, 17659: 1, 17991: 1, 18685: 1, 19279: 1, 19326: 1, 19940: 1, 20883: 1, 20992: 1, 21342: 1, 21458: 1, 22877: 1, 22912: 1, 23448: 1, 23476: 1, 23611: 1, 24365: 1, 24398: 1, 24521: 1, 24678: 1, 25298: 1, 25808: 1, 25996: 1, 28841: 1, 29590: 1, 29852: 1, 29937: 1, 30107: 1, 30553: 1, 30675: 1, 30819: 1, 31909: 1, 33564: 1, 34245: 1, 35500: 1, 36419: 1, 36968: 1, 38014: 1, 38694: 1, 39667: 1, 12366: 6, 30943: 4, 10321: 2, 18803: 2, 507: 1, 4802: 1, 30714: 1, 37109: 1, 31265: 3, 20512: 2, 122: 1, 462: 1, 1139: 1, 1468: 1, 1819: 1, 2149: 1, 2873: 1, 2876: 1, 3499: 1, 3850: 1, 4101: 1, 4281: 1, 4408: 1, 4414: 1, 4570: 1, 4692: 1, 4710: 1, 4809: 1, 4881: 1, 6011: 1, 6071: 1, 6263: 1, 6526: 1, 6928: 1, 6949: 1, 7378: 1, 7461: 1, 7695: 1, 7849: 1, 7868: 1, 8358: 1, 8704: 1, 9543: 1, 9621: 1, 10127: 1, 10274: 1, 10275: 1, 10548: 1, 10728: 1, 10826: 1, 10837: 1, 10882: 1, 11348: 1, 11838: 1, 11973: 1, 12959: 1, 13323: 1, 14120: 1, 14128: 1, 14182: 1, 14661: 1, 15515: 1, 15847: 1, 16063: 1, 16835: 1, 16981: 1, 17168: 1, 17231: 1, 17422: 1, 17489: 1, 18825: 1, 19072: 1, 19118: 1, 19156: 1, 19572: 1, 19748: 1, 20124: 1, 20237: 1, 20457: 1, 21179: 1, 21228: 1, 21252: 1, 21624: 1, 22099: 1, 22148: 1, 22556: 1, 22993: 1, 23425: 1, 23429: 1, 23687: 1, 24093: 1, 24265: 1, 24276: 1, 24549: 1, 25105: 1, 25490: 1, 25616: 1, 25649: 1, 25972: 1, 26045: 1, 26629: 1, 26636: 1, 27299: 1, 27592: 1, 28459: 1, 28585: 1, 28653: 1, 29086: 1, 29298: 1, 29435: 1, 29899: 1, 30053: 1, 30070: 1, 30144: 1, 30383: 1, 30802: 1, 30921: 1, 30997: 1, 31677: 1, 32097: 1, 32111: 1, 32113: 1, 32201: 1, 32243: 1, 32279: 1, 32666: 1, 33159: 1, 33253: 1, 33848: 1, 33856: 1, 34009: 1, 34028: 1, 34112: 1, 34394: 1, 34497: 1, 34662: 1, 34703: 1, 34809: 1, 35193: 1, 35354: 1, 35376: 1, 35725: 1, 36673: 1, 36774: 1, 37011: 1, 37140: 1, 38132: 1, 38234: 1, 38373: 1, 38513: 1, 38995: 1, 39642: 1, 39688: 1, 39692: 1, 40100: 1, 40837: 1, 41224: 1, 41974: 1, 31654: 8, 2351: 6, 23016: 6, 40369: 5, 36508: 3, 40948: 3, 12501: 2, 5573: 1, 10374: 1, 28911: 1, 29639: 1, 33122: 1, 40504: 1, 28648: 23, 7860: 20, 6549: 8, 23186: 8, 23904: 7, 12450: 6, 20731: 6, 39334: 5, 5193: 4, 25197: 4, 36784: 4, 840: 3, 6622: 3, 14405: 3, 37170: 3, 1198: 2, 1521: 2, 4264: 2, 8205: 2, 9884: 2, 13190: 2, 13284: 2, 18718: 2, 18761: 2, 25123: 2, 25454: 2, 31235: 2, 38798: 2, 38868: 2, 39077: 2, 39338: 2, 40476: 2, 123: 1, 524: 1, 1741: 1, 1869: 1, 3600: 1, 4142: 1, 5226: 1, 6331: 1, 7608: 1, 7830: 1, 9390: 1, 16721: 1, 17229: 1, 17679: 1, 19214: 1, 19643: 1, 21572: 1, 25124: 1, 27508: 1, 28075: 1, 30516: 1, 32084: 1, 33038: 1, 34692: 1, 35165: 1, 39652: 1, 39757: 1, 4861: 16, 14075: 15, 16237: 6, 16501: 4, 3099: 2, 10072: 2, 11486: 2, 15705: 2, 29790: 2, 34589: 2, 34939: 2, 4402: 1, 8430: 1, 9531: 1, 9549: 1, 13976: 1, 14403: 1, 15660: 1, 17385: 1, 20910: 1, 20929: 1, 21167: 1, 25492: 1, 26085: 1, 26575: 1, 27582: 1, 33415: 1, 35647: 1, 35974: 1, 12667: 79, 565: 27, 1692: 21, 21939: 12, 4325: 10, 35296: 9, 1046: 7, 14350: 7, 30952: 7, 826: 6, 10663: 6, 21571: 5, 22322: 5, 29528: 5, 35420: 5, 38722: 4, 1197: 3, 16573: 3, 23870: 3, 24260: 3, 24900: 3, 31035: 3, 31200: 3, 35059: 3, 35602: 3, 40091: 3, 2364: 2, 5998: 2, 11123: 2, 15465: 2, 17035: 2, 18943: 2, 20113: 2, 21964: 2, 22939: 2, 23562: 2, 25949: 2, 27285: 2, 29152: 2, 33066: 2, 33577: 2, 35639: 2, 38345: 2, 1565: 1, 2355: 1, 2531: 1, 7783: 1, 8633: 1, 9603: 1, 10667: 1, 11758: 1, 12705: 1, 13603: 1, 16218: 1, 19260: 1, 19327: 1, 19774: 1, 20713: 1, 22041: 1, 25332: 1, 27515: 1, 28837: 1, 30282: 1, 30583: 1, 31010: 1, 31327: 1, 31828: 1, 32047: 1, 32693: 1, 36064: 1, 36372: 1, 38088: 1, 39481: 1, 39538: 1, 40280: 1, 6310: 250, 3719: 8, 11933: 8, 2418: 4, 10488: 4, 10694: 4, 16709: 4, 17666: 4, 20541: 4, 10425: 3, 11811: 3, 20412: 3, 25681: 3, 26340: 3, 27991: 3, 32627: 3, 983: 2, 3944: 2, 7197: 2, 7408: 2, 9727: 2, 20692: 2, 22084: 2, 22648: 2, 23912: 2, 25462: 2, 25463: 2, 28007: 2, 30461: 2, 31605: 2, 32218: 2, 32718: 2, 36258: 2, 37067: 2, 1288: 1, 2548: 1, 2875: 1, 3821: 1, 4104: 1, 4701: 1, 5381: 1, 5424: 1, 6592: 1, 7918: 1, 9247: 1, 9281: 1, 11757: 1, 11783: 1, 14168: 1, 16137: 1, 16212: 1, 16258: 1, 17695: 1, 18401: 1, 19617: 1, 19757: 1, 20022: 1, 20568: 1, 21429: 1, 21841: 1, 23287: 1, 24024: 1, 25023: 1, 25431: 1, 25457: 1, 25683: 1, 25941: 1, 26452: 1, 26985: 1, 27181: 1, 27284: 1, 27700: 1, 28197: 1, 28886: 1, 29587: 1, 29778: 1, 30259: 1, 30515: 1, 31249: 1, 31402: 1, 31760: 1, 32091: 1, 32169: 1, 34049: 1, 34449: 1, 35009: 1, 36610: 1, 37777: 1, 38282: 1, 38535: 1, 39818: 1, 41124: 1, 17228: 5, 6010: 4, 22982: 4, 23269: 4, 32320: 4, 39238: 4, 11661: 3, 18328: 3, 34648: 3, 35164: 3, 41253: 3, 898: 2, 2178: 2, 6633: 2, 11828: 2, 15352: 2, 24104: 2, 24813: 2, 27736: 2, 29366: 2, 36257: 2, 37295: 2, 313: 1, 2049: 1, 2437: 1, 2547: 1, 2688: 1, 2874: 1, 3231: 1, 3487: 1, 8093: 1, 8785: 1, 10320: 1, 10591: 1, 11300: 1, 12020: 1, 12365: 1, 14016: 1, 15786: 1, 17874: 1, 19029: 1, 19436: 1, 22091: 1, 23478: 1, 25022: 1, 25637: 1, 25777: 1, 26082: 1, 26195: 1, 27890: 1, 28528: 1, 29853: 1, 30339: 1, 31713: 1, 32173: 1, 33121: 1, 33297: 1, 35336: 1, 36580: 1, 39320: 1, 41247: 1, 28671: 19, 26850: 8, 26616: 7, 14338: 3, 1421: 2, 10561: 2, 11000: 2, 12517: 2, 15469: 2, 20016: 2, 24130: 2, 25963: 2, 29033: 2, 35622: 2, 38051: 2, 38465: 2, 39740: 2, 3448: 1, 3489: 1, 6804: 1, 7634: 1, 9246: 1, 10720: 1, 13198: 1, 14873: 1, 16720: 1, 17233: 1, 18438: 1, 26984: 1, 28836: 1, 29373: 1, 29876: 1, 40768: 1, 12057: 219, 33654: 41, 40806: 17, 11944: 12, 39098: 12, 3364: 11, 29022: 7, 5225: 5, 29608: 5, 39654: 5, 10254: 4, 37042: 4, 15347: 3, 17043: 3, 22938: 3, 28597: 3, 782: 2, 3050: 2, 3421: 2, 9023: 2, 17382: 2, 18793: 2, 19278: 2, 21762: 2, 22647: 2, 25072: 2, 34229: 2, 38021: 2, 39741: 2, 39823: 2, 87: 1, 585: 1, 849: 1, 1464: 1, 1740: 1, 2009: 1, 3062: 1, 3651: 1, 4123: 1, 4208: 1, 4772: 1, 5584: 1, 5997: 1, 6009: 1, 6107: 1, 6147: 1, 6212: 1, 6464: 1, 7512: 1, 8012: 1, 9639: 1, 9859: 1, 9892: 1, 10314: 1, 10689: 1, 10793: 1, 10803: 1, 10838: 1, 11120: 1, 14279: 1, 14395: 1, 14564: 1, 14954: 1, 15015: 1, 15130: 1, 15244: 1, 15245: 1, 15729: 1, 16143: 1, 16176: 1, 17195: 1, 17513: 1, 17875: 1, 18215: 1, 18555: 1, 18963: 1, 19159: 1, 19182: 1, 19435: 1, 20171: 1, 21524: 1, 21895: 1, 21952: 1, 22346: 1, 22452: 1, 23455: 1, 24603: 1, 24722: 1, 24953: 1, 26836: 1, 27211: 1, 27491: 1, 28266: 1, 28642: 1, 28918: 1, 29136: 1, 30797: 1, 32554: 1, 33487: 1, 33554: 1, 33976: 1, 34321: 1, 34908: 1, 35163: 1, 35461: 1, 35869: 1, 36555: 1, 36732: 1, 37474: 1, 37587: 1, 38032: 1, 38534: 1, 39214: 1, 40086: 1, 40640: 1, 41620: 1, 41486: 149, 23610: 102, 19594: 49, 5564: 29, 37765: 11, 20194: 9, 4935: 8, 6758: 8, 21648: 8, 15014: 7, 31411: 7, 3049: 5, 24686: 5, 29783: 5, 30300: 5, 2272: 4, 18229: 4, 20270: 4, 26081: 4, 26919: 4, 27129: 4, ...}}
cpr.to_csv('test.csv', sep=',')