This notebook serves as a "executable" reference guide to the functions available in reference, as summarized here in the Intrepydd Guide.
Run these first. If you are executing this reference, please run the following two code cells first. You can then run any subsection, as there are no additional dependencies among them.
from os import makedirs
makedirs('ref', exist_ok=True)
from numpy import array, float32, int32
The following Python builtins have counterparts in Intrepydd.
abs
: Absolute value of an iterable collectionall
: Check whether all elements of an iterable collection are True
any
: Check whether any element of an iterable collection is True
len
: Returns the length of an iterable collectionmax
: Returns the largest value in an iterable collectionpow
: Raises a given value or every element of an iterable object to some powerrange
: Generates an integer range (sequence).sum
: Returns the sum of the elements in an iterable object.int32
, int64
, float32
, float64
: Constructors and converters for basic primitive types.Intrepydd also provides counterparts to a subset of the functions available in Numpy/Scipy.
elemwise_not
, minus
: Elementwise arithmetic on a single input array.add
, sub
, mul
, div
: Elementwise arithmetic between pairs of arrays.eq
, ge
, gt
, le
, lt
: Elementwise signed comparison (e.g., equality, less than, greater than).acos
, asin
, atan
, cos
, sin
, sqrt
, tan
: Elementwise trigonometric functions.allclose
: Returns True
if all elements of a given array are close to a given value.argmin
: Returns the location of the minimum value in an array.argmax
: Returns the location of the maximum value in an array.empty
: Returns an "empty" (uninitialized) multidimensional array.innerprod
: Returns the inner product (dot-product) between two arrays of the same size.isinf
, isnan
: Tests for IEEE-754 floating-point infinity (inf
) and not-a-number (NaN
) values.prod
: Returns the product of all elements of a collection.transpose
: Returns the transpose of a matrix.zeros
: Returns an array of all zero elements.abs
¶Returns the absolute value of a given object or iterable; equivalent to its Python builtin.
Example.
%%writefile ref/abs.pydd
def demo_float32(x: float32) -> float32:
return abs(x)
def demo_Array(x: Array(float64, 2)) -> Array(float64, 2):
return abs(x)
Overwriting ref/abs.pydd
!pyddc ref/abs.pydd
import ref.abs
print(ref.abs.demo_float32(-3.14))
A = array([[-1., 2., -3.],
[4., -5., 6.]])
print(ref.abs.demo_Array(A))
3.140000104904175 [[1. 2. 3.] [4. 5. 6.]]
all
¶Returns True
if all elements of a given iterable object are True
; equivalent to its Python builtin.
Example.
%%writefile ref/all.pydd
def demo_bool(A: Array(bool, 2)) -> bool:
return all(A)
def demo_int(A: Array(int64)) -> bool:
return all(A)
def demo_double(A: Array(float64, 2)) -> bool:
return all(A)
Overwriting ref/all.pydd
!pyddc ref/all.pydd
import ref.all
A = array(2 * [3 * [True]])
print(ref.all.demo_bool(A))
A[0, 1] = False
print(ref.all.demo_bool(A))
L = array(range(10)) # Doesn't work with `list(range(10))`
print(L)
print(ref.all.demo_int(L)) # False
L[0] = -1
print(ref.all.demo_int(L)) # True
A = array([[1., -2., 3.],
[-4., 5., 6.]])
print(A)
print(ref.all.demo_double(A))
A[-1, -1] = 0.0
print(A)
print(ref.all.demo_double(A))
True False [0 1 2 3 4 5 6 7 8 9] False True [[ 1. -2. 3.] [-4. 5. 6.]] True [[ 1. -2. 3.] [-4. 5. 0.]] False
any
¶Returns True
if any element of a given iterable object is True
; equivalent to its Python builtin.
Example.
%%writefile ref/any.pydd
def demo_bool(A: Array(bool, 2)) -> bool:
return any(A)
def demo_int(A: Array(int64)) -> bool:
return any(A)
def demo_double(A: Array(float64, 2)) -> bool:
return any(A)
Overwriting ref/any.pydd
!pyddc ref/any.pydd
import ref.any
A = array(2 * [3 * [False]])
print(ref.any.demo_bool(A))
A[0, 1] = True
print(ref.any.demo_bool(A))
L = array([0] * 5) # Doesn't work with `list(range(10))`
print(L)
print(ref.any.demo_int(L)) # False
L[0] = -1
print(ref.any.demo_int(L)) # True
False True [0 0 0 0 0] False True
Example.
%%writefile ref/len.pydd
def demo_list(L: List(int)) -> int64:
return len(L)
def demo_dict(D: Dict(int64, float64)) -> int64:
return len(D)
Overwriting ref/len.pydd
!pyddc ref/len.pydd
import ref.len
print(ref.len.demo_list([-1, -2, -3]))
print(ref.len.demo_dict({1: 3.14, 2: 2.718, 3: 6.9824, 4: -1.2}))
3 4
Example.
%%writefile ref/max.pydd
def demo_int(A: Array(int64, 1)) -> int64:
return max(A)
def demo_float32_2d(A: Array(float32, 2)) -> float32:
return max(A)
Overwriting ref/max.pydd
!pyddc ref/max.pydd
import ref.max
print(ref.max.demo_int(array([3, 2, 100, 7])))
print(ref.max.demo_float32_2d(array([[3, 2, 100, 33], [-500, 1, 0, -40]], dtype=float32)))
100 100.0
Example.
%%writefile ref/min.pydd
def demo_int(A: Array(int64, 1)) -> int64:
return min(A)
def demo_float32_2d(A: Array(float32, 2)) -> float32:
return min(A)
Overwriting ref/min.pydd
!pyddc ref/min.pydd
import ref.min
print(ref.min.demo_int(array([3, 2, 100, 7])))
print(ref.min.demo_float32_2d(array([[3, 2, 100, 33], [-500, 1, 0, -40]], dtype=float32)))
2 -500.0
pow
¶Raises a given value or every element of an iterable object to some power; equivalent to its Python builtin.
%%writefile ref/pow.pydd
def demo_float32(x: float32, p: float32) -> float32:
return pow(x, p)
def demo_float32_1d(A: Array(float32, 1), p: float32) -> Array(float32, 1):
return pow(A, p)
Overwriting ref/pow.pydd
!pyddc ref/pow.pydd
import ref.pow
print(ref.pow.demo_float32(3.14, 2.0))
print(ref.pow.demo_float32_1d(array([3.14, -3.14], dtype=float32), 3.0))
9.859601020812988 [ 30.959146 -30.959146]
print
¶Prints a value to standard output.
This function is equivalent to its Python builtin. However, in the current version of Intrepydd, it is limited to accepting just one argument, i.e., print(x)
, where x
must be a primitive type.
%%writefile ref/print.pydd
def demo_float32(x: float32):
print(x)
def demo_float32_1d(A: Array(float32, 1)):
for i in range(shape(A, 0)):
print(A[i])
Overwriting ref/print.pydd
!pyddc ref/print.pydd
import ref.print
ref.print.demo_float32(3.14)
ref.print.demo_float32_1d(array([1, 2, 3], dtype=float32))
3.140000104904175 1.0 2.0 3.0
%%writefile ref/range.pydd
def demo_std(n: int64) -> int64:
s = 0
for i in range(n):
s += i
print(i)
return s
def demo_start_end(a: int64, b: int64) -> int64:
s = 0
for i in range(a, b):
print(i)
s += i
return s
def demo_start_end_step(a: int64, b: int64, c: int64) -> int64:
s = 0
for i in range(a, b, c):
print(i)
s += i
return s
Overwriting ref/range.pydd
!pyddc ref/range.pydd
import ref.range
ref.range.demo_std(5)
ref.range.demo_start_end(-3, 7)
ref.range.demo_start_end_step(-3, 7, 2)
0 1 2 3 4 -3 -2 -1 0 1 2 3 4 5 6 -3 -1 1 3 5
5
sum
¶Returns the sum of the elements in an iterable object.
This function is equivalent to its Python builtin, except it does not support the optional start argument, i.e., it does not support the calling signature, sum(x, start)
, where in standard Python start
is the position of the first index at which to begin the sum.
%%writefile ref/sum.pydd
def demo(x: Array(int64, 2)) -> int64:
return sum(x)
Overwriting ref/sum.pydd
!pyddc ref/sum.pydd
import ref.sum
ref.sum.demo(array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]]))
55
Construct or convert scalar variables among primitive types: int32
, int64
, float32
, float64
.
Example: float32
.
%%writefile ref/types.pydd
def do_float32() -> float32:
return float32()
def do_float32_2(val: int32) -> float32:
return float32(val)
Overwriting ref/types.pydd
!pyddc ref/types.pydd
import ref.types
print(ref.types.do_float32()) # 0, as a float
print(ref.types.do_float32_2(124))
print(ref.types.do_float32_2(True))
0.0 124.0 1.0
elemwise_not
, minus
¶Applies basic arithmetic options elementwise to an input. These are equivalent to their Numpy counterparts; e.g., see Numpy's logical_not
.
Example: minus
.
%%writefile ref/minus.pydd
def demo_float32(x: Array(float32, 2)) -> Array(float32, 2):
return minus(x)
def demo_int64(x: Array(int64, 2)) -> Array(int64, 2):
return minus(x)
Overwriting ref/minus.pydd
!pyddc ref/minus.pydd
import ref.minus
x = array([[1, 2, 3], [4, 5, 6]], dtype=float32)
ref.minus.demo_float32(x)
array([[-1., -2., -3.], [-4., -5., -6.]], dtype=float32)
y = array([[1, -2, 3], [-4, 5, -6]], dtype=int)
ref.minus.demo_int64(y)
array([[-1, 2, -3], [ 4, -5, 6]])
add
, sub
, mul
, div
¶Applies basic arithmetic options elementwise to a pair of inputs. These are equivalent to their Numpy counterparts; e.g., see Numpy's add
.
Example: add
.
%%writefile ref/add.pydd
def demo_float32(x: Array(float32, 2), y: Array(float32, 2)) -> Array(float32, 2):
return add(x, y)
def demo_int64(x: Array(int64, 2), y: Array(int64, 2)) -> Array(int64, 2):
return add(x, y)
Overwriting ref/add.pydd
!pyddc ref/add.pydd
import ref.add
x = array([[1, 2, 3], [4, 5, 6]], dtype=float32)
y = array([[1, -2, 3], [-4, 5, -6]], dtype=float32)
ref.add.demo_float32(x, y)
array([[ 2., 0., 6.], [ 0., 10., 0.]], dtype=float32)
x = array([[1, 2, 3], [4, 5, 6]], dtype=int)
y = array([[1, -2, 3], [-4, 5, -6]], dtype=int)
ref.add.demo_int64(x, y)
array([[ 2, 0, 6], [ 0, 10, 0]], dtype=int64)
eq
, ge
, gt
, le
, lt
¶Given a pair of inputs, performs elementwise binary comparisons: equality (eq
), greater than (gt
), greater than or equal to (ge
), less than (lt
), and less than or equal to (le
). These are equivalent to their Numpy counterparts; e.g., see Numpy's eq
for an example of equality comparison.
When the inputs are floating-point, it is usually better to apply
allclose
rather thaneq
to test for approximate equality due to round-off errors with floating-point arithmetic.
Example: greater than (gt
).
%%writefile ref/gt.pydd
def demo_float32(x: Array(float32, 2), y: Array(float32, 2)) -> Array(bool, 2):
return gt(x, y)
def demo_int64(x: Array(int64, 2), y: Array(int64, 2)) -> Array(bool, 2):
return gt(x, y)
Overwriting ref/gt.pydd
!pyddc ref/gt.pydd
import ref.gt
eps = 1e-6 # greater than float32 machine epsilon
x = array([[1, 2, 3], [4, 5, 6]], dtype=float32)
y = x + eps*array([[1, -1, 1], [-1, 0, -1]], dtype=float32)
ref.gt.demo_float32(x, y)
array([[False, True, False], [ True, False, True]])
x = array([[1, 2, 3], [4, 5, 6]], dtype=int)
y = x + array([[1, -1, 1], [-1, 0, -1]], dtype=int)
ref.gt.demo_int64(x, y)
array([[False, True, False], [ True, False, True]])
acos
, asin
, atan
, cos
, exp
, log
, sin
, sqrt
, tan
¶Applies trigonometric function elementwise and returns the result. These are equivalent to their Numpy equivalents, e.g., see Numpy's arccos
.
Example: acos
.
%%writefile ref/acos.pydd
def demo(x: Array(float32, 2)) -> Array(float32, 2):
return acos(x)
Overwriting ref/acos.pydd
!pyddc ref/acos.pydd
import math
import ref.acos
theta_over_pi = ref.acos.demo(array([[-1, -0.5, 0],
[0, 0.5, 1]], dtype=float32))/math.pi
print('{} * pi'.format(theta_over_pi))
[[0.99999994 0.6666667 0.5 ] [0.5 0.33333328 0. ]] * pi
allclose
¶Returns True
if all elements of a given array are close to a given value.
This function implements allclose(x, atol)
, where x
is an input array and atol
is an absolute threshold. Therefore, Intrepydd's allclose
is similar to, but not equivalent to, its Numpy counterpart.
Numpy's allclose
. In particular, Numpy's allclose
evaluates the logical operation ⋀i(|ai−bi|≤α+ρ|bi|), where ⋀ denotes logical-and, ai and bi are the elements of two arrays, and α and ρ are absolute and relative threshold parameters, respectively. (The values of α and ρ are the atol
and rtol
arguments to allclose()
.) For instance, suppose we have two Numpy arrays, a
and b
, and suppose the absolute difference between any pair of corresponding elements is 10−10.
# Numpy allclose
from numpy import allclose, array
tiny_diff = 1e-10
a = array([1., 2., 3.])
b = a + array([tiny_diff, -tiny_diff, tiny_diff])
Consider two calls to allclose
: one that checks whether the absolute difference is less than 10−11, which will be false, and the other that checks against 10−9, which will be true.
print(allclose(a, b, atol=1e-11, rtol=0)) # False!
print(allclose(a, b, atol=1e-9, rtol=0)) # True!
Intrepydd's allclose
. By contrast, Intrepydd's interface, allclose(x, atol)
, is "lighter." It accepts just a single array (x
) and an absolute tolerance (atol
). There is no direct relative tolerance support (but see below!). The previous two checks would be rewritten as follows:
# Intrepydd:
allclose(abs(a-b), 1e-11) # False!
allclose(abs(a-b), 1e-9) # True!
To implement something like Numpy's allclose()
, which accepts both atol
and rtol
parameters, see the demo
function in the code cells below.
from numpy import allclose, array
a = array([1., 2., 3.])
b = a + array([1e-10, -1e-10, 1e-10])
print(a-b)
print(allclose(a, b, atol=1e-11, rtol=0)) # False!
print(allclose(a, b, atol=1e-9, rtol=0)) # True!
[-1.00000008e-10 1.00000008e-10 -1.00000008e-10] False True
%%writefile ref/allclose.pydd
def scale_array(x: Array(float64, 2), s: float64) -> Array(float64, 2):
y = empty([shape(x, 0), shape(x, 1)])
for i in range(shape(y, 0)):
for j in range(shape(y, 1)):
y[i, j] = x[i, j] * s
return y
def demo(a: Array(float64, 2), b: Array(float64, 2), atol: float64, rtol: float64) -> bool:
diff = abs(sub(a, b))
relterm = abs(scale_array(b, rtol))
x = sub(diff, relterm)
return allclose(x, atol)
Overwriting ref/allclose.pydd
!pyddc ref/allclose.pydd
import ref.allclose
a = array([[1., 2., 3.],
[4., 5., 6.]])
b = a + 1e-10
print(ref.allclose.demo(a, b, 1e-11, 0.)) # False?
print(ref.allclose.demo(a, b, 1e-9, 0.)) # True?
False True
argmin
¶Returns the location of the minimum value of an array; equivalent to its Numpy counterpart.
The return value is a list, since the input array may be multidimensional. A best-practice in the current version of Intrepydd is to recast this return as an array before returning, as the following example shows.
If there are duplicates, one of them will be returned. The precise one is not specified.
%%writefile ref/argmin.pydd
def demo(A: Array(float64, 3)) -> Array(int32) :
r = argmin(A)
r_np = empty((3,), int32())
r_np[0] = r[0]
r_np[1] = r[1]
r_np[2] = r[2]
return r_np
Overwriting ref/argmin.pydd
!pyddc ref/argmin.pydd
import ref.argmin
plane = array([[1., 2., 3.],
[4., 5., 6.]])
x = array([plane, -plane, plane])
loc = ref.argmin.demo(x)
print(loc, ':', type(loc))
print("Min value is {}, which resides at location x{}".format(x[loc[0], loc[1], loc[2]], loc))
[1 1 2] : <class 'numpy.ndarray'> Min value is -6.0, which resides at location x[1 1 2]
argmax
¶Returns the location of the maximum value of an array; equivalent to its Numpy counterpart.
The return value is a list, since the input array may be multidimensional. A best-practice in the current version of Intrepydd is to recast this return as an array before returning, as the following example shows.
If there are duplicates, one of them will be returned. The precise one is not specified.
%%writefile ref/argmax.pydd
def demo(A: Array(float64, 3)) -> Array(int32) :
r = argmax(A)
r_np = empty((3,), int32())
r_np[0] = r[0]
r_np[1] = r[1]
r_np[2] = r[2]
return r_np
Overwriting ref/argmax.pydd
!pyddc ref/argmax.pydd
import ref.argmax
plane = array([[1., 2., 3.],
[4., 5., 6.]])
x = array([-plane, plane, -plane])
loc = ref.argmax.demo(x)
print(loc, ':', type(loc))
print("Max value is {}, which resides at location x{}".format(x[loc[0], loc[1], loc[2]], loc))
[1 1 2] : <class 'numpy.ndarray'> Max value is 6.0, which resides at location x[1 1 2]
empty
¶Returns an "empty" (uninitialized) multidimensional array; equivalent to its Numpy counterpart.
Intrepydd does not currently implement the
order
parameter, which would be used to specify row- vs. column-major layouts. Intrepydd's default is row-major.
%%writefile ref/empty.pydd
def demo_int32(shape: List(int32)) -> Array(int32):
return empty(shape, int32())
def demo_float64(shape: List(int32)) -> Array(float64):
return empty(shape, float64())
Overwriting ref/empty.pydd
!pyddc ref/empty.pydd
import ref.empty
A = ref.empty.demo_int32([2, 3, 2])
print(type(A), A.dtype)
print(A)
B = ref.empty.demo_float64([2, 3, 2])
print(type(B), B.dtype)
print(B)
<class 'numpy.ndarray'> int32 [[[ 0 -1074790400] [ 0 -1073741824] [ 0 -1073217536]] [[ 0 -1072693248] [ 0 -1072431104] [ 0 -1072168960]]] <class 'numpy.ndarray'> float64 [[[-8.39911598e-323 -0.00000000e+000] [ 1.49458072e-154 -0.00000000e+000] [ 7.41098469e-323 0.00000000e+000]] [[ 0.00000000e+000 0.00000000e+000] [ 0.00000000e+000 0.00000000e+000] [ 0.00000000e+000 0.00000000e+000]]]
innerprod
¶Returns the inner product (dot-product) between two arrays of the same size. Its closest counterpart in Numpy is numpy.ma.innerproduct
.
%%writefile ref/innerprod.pydd
def func(A: Array(int32, 1), B: Array(float64, 1)) -> float64:
return innerprod(A, B)
Overwriting ref/innerprod.pydd
!pyddc ref/innerprod.pydd
import ref.innerprod
x = array([1, 2, 3], dtype=int32)
y = array([1., 2., 3.])
ref.innerprod.func(x, y)
14.0
isinf
, isnan
¶Tests whether values of an array are IEEE floating-point infinity (inf
) or not-a-number (NaN
) values; equivalent to the Numpy functions numpy.isinf
and numpy.isnan
.
%%writefile ref/isfpXXX.pydd
def demo_isinf(x: Array(float64, 2)) -> Array(bool, 2):
return isinf(x)
def demo_isnan(x: Array(float32, 2)) -> Array(bool, 2):
return isnan(x)
Overwriting ref/isfpXXX.pydd
!pyddc ref/isfpXXX.pydd
import ref.isfpXXX
z = array([[1.0, float('inf'), 0.0],
[float('nan'), -2.0, float('inf')]])
print(ref.isfpXXX.demo_isinf(z))
print(ref.isfpXXX.demo_isnan(z.astype(float32)))
[[False True False] [False False True]] [[False False False] [ True False False]]
prod
¶Returns the product of all elements of a collection; equivalent to its Numpy counterpart
.
%%writefile ref/prod.pydd
def demo(arr: Array(int64)) -> int64:
return prod(arr)
Overwriting ref/prod.pydd
!pyddc ref/prod.pydd
import ref.prod
ref.prod.demo(array([1, -2, 3, 5], dtype=int))
-30
transpose
¶Returns the transpose of a matrix.
This function is roughly equivalent to its Numpy counterpart
, except that it works only for matrix (2-D) inputs.
%%writefile ref/transpose.pydd
def demo(arr: Array(int32, 2)) -> Array(int32, 2):
return transpose(arr)
Overwriting ref/transpose.pydd
!pyddc ref/transpose.pydd
import ref.transpose
ref.transpose.demo(array([[1, 2, 3], [4, 5, 6]], dtype=int32))
array([[1, 4], [2, 5], [3, 6]], dtype=int32)
%%writefile ref/zeros.pydd
def zeros_1d(n: int) -> Array(float64, 1):
return zeros(n, float64())
def ones_2d(m:int, n: int) -> Array(float64, 2):
C = zeros([m, n], float64())
return cos(C)
Overwriting ref/zeros.pydd
!pyddc ref/zeros.pydd
import ref.zeros
print(ref.zeros.zeros_1d(4))
print(ref.zeros.ones_2d(2, 3))
[0. 0. 0. 0.] [[1. 1. 1.] [1. 1. 1.]]