This is an example for explicit computations in the symmetric algebra $\mathrm{S}W$ internal to the positively graded closure $\mathrm{srep}_k(G)_+$ of the skeletal tensor category $\mathrm{srep}_k(G)$ of finite dimensional $k$-linear representations of $G$, where $G := S_4$ is the symmetric group on four points and $k = \mathbb{Q}$, its minimal splitting field. The natural permutation character on four points is the sum of the irreducible characters $𝟙+ν$, where $𝟙$ denotes the trivial character. Denote the irreducible degree $2$ character by $ρ$, the sign-character by $σ$, and set $χ := \sigma ν$. The character table of $S_4$ $$ \begin{array}{c|rrrrr} & (1) & (12) & (12)(34) & (123) & (1234) \\ \hline 𝟙 & 1 & 1 & 1 & 1 & 1 \\ σ & 1 & -1 & 1 & 1 & -1 \\ ρ & 2 & \cdot & 2 & -1 & \cdot \\ ν & 3 & 1 & -1 & \cdot & -1 \\ χ & 3 & -1 & -1 & \cdot & 1 \end{array} $$
with componentwise addition and multiplication determines the structure of $\mathrm{srep}_k(S_4)$ as a skeletal semisimple $\mathbb{Q}$-linear Abelian category with bifunctor $\otimes$.
using CapAndHomalg
Using the package $\mathtt{GroupRepresentationsForCAP}$ we now construct $\mathrm{srep}_k(S_4)$, even as a tensor category over $\mathbb{Q}$:
LoadPackage( "GroupRepresentationsForCAP" )
G = SymmetricGroup( 4 )
srepG = RepresentationCategory( G )
InfoOfInstalledOperationsOfCategory( srepG )
CommutativeRingOfLinearCategory( srepG )
irr = Irr( G );
𝟙 = RepresentationCategoryObject( irr[5], srepG, "𝟙" )
σ = RepresentationCategoryObject( irr[1], srepG, "σ" )
ρ = RepresentationCategoryObject( irr[3], srepG, "ρ" )
ν = RepresentationCategoryObject( irr[4], srepG, "ν" )
χ = RepresentationCategoryObject( irr[2], srepG, "χ" )
Regardless of which choices we make, the associator and braiding cannot be given by identities. For example:
We compute the tensor product $(ρ \otimes σ) \otimes ρ = σ \oplus ρ \oplus 𝟙$:
TensorProduct( ρ, σ, ρ )
The associator $α_{ρσρ}: ρ \otimes (σ \otimes ρ) = σ \oplus ρ \oplus 𝟙 \to σ \oplus ρ \oplus 𝟙 = (ρ \otimes σ) \otimes ρ$ is nontrivial:
α_ρσρ = AssociatorRightToLeft( ρ, σ, ρ )
We compute the tensor product $ρ \otimes ρ = σ \oplus ρ \oplus 𝟙$:
TensorProduct( ρ, ρ )
The braiding $γ_{ρρ}: ρ \otimes ρ = σ \oplus ρ \oplus 𝟙 \to σ \oplus ρ \oplus 𝟙 = ρ \otimes ρ$ is nontrivial:
γ_ρρ = Braiding( ρ, ρ )
Using the package $\mathtt{GradedCategories}$ we now construct the positively graded closure $\mathrm{srep}_k(S_4)_+$ of $\mathrm{srep}_k(S_4)$.
LoadPackage( "GradedCategories" )
ZsrepG = PositivelyZGradedCategory( srepG )
For $W = χ \equiv χ^{\{1\}} \in \operatorname{srep}_k(S_4)_+$ we use the package $\mathtt{InternalModules}$ to construct the symmetric algebra of $W$ internal to $\operatorname{srep}_k(S_4)_+$:
The objects in $\mathrm{S}^i W$ can be computed using the character table of $S_4$ augmented with the power maps:
\begin{align*} \mathrm{S}W &= \underbrace{𝟙^{\{0\}}}_{\mathrm{S}^0 W} \oplus \underbrace{χ^{\{1\}}}_{\mathrm{S}^1 W} \oplus \underbrace{\left( ρ^{\{2\}} \oplus ν^{\{2\}} \oplus 𝟙^{\{2\}} \right)}_{\mathrm{S}^2 W} \oplus \underbrace{\left( σ^{\{3\}} \oplus 2 \cdot χ^{\{3\}} \oplus ν^{\{3\}} \right)}_{\mathrm{S}^3 W} \\ & \oplus \underbrace{\left( χ^{\{4\}} \oplus 2 \cdot ρ^{\{4\}} \oplus 2 \cdot ν^{\{4\}} \oplus 2 \cdot 𝟙^{\{4\}} \right)}_{\mathrm{S}^4 W} \oplus \cdots \end{align*}LoadPackage( "InternalModules" )
W = χ
SWMod = CategoryOfLeftSModules( W )
SW = UnderlyingActingObject( SWMod )
SW[0]
SW[1]
SW[2]
SW[3]
SW[4]
However, computing the multiplications $\mu^{i,j}: \mathrm{S}^i W \otimes \mathrm{S}^j W \to \mathrm{S}^{i+j} W$ goes beyond the augmented character table and needs the associator and braiding of $\mathrm{srep}_k(S_4)_+$. For computing them we currently still need an explicit irreducible representation affording each irreducible character.
χ¹ = InternalElement( SW, χ, 1, 1 )
ρ² = InternalElement( SW, ρ, 2, 1 )
ν² = InternalElement( SW, ν, 2, 1 )
ν³ = InternalElement( SW, ν, 3, 1 )
Computing products of elements in $(\mathrm{S}W)^\in$ we get in primitive decomposition:
χ¹ * χ¹
χ¹ * (χ¹ * χ¹)
χ¹ * (χ¹ * χ¹) == (χ¹ * χ¹) * χ¹
χ¹ * ρ²
χ¹ * ρ² == ρ² * χ¹
χ¹ * ν²
χ¹ * ν² == ν² * χ¹
χ¹ * (χ¹ * (χ¹ * χ¹))
(χ¹ * χ¹) * (χ¹ * χ¹)
((χ¹ * χ¹) * χ¹) * χ¹
(χ¹ * χ¹) * ρ²
χ¹ * (χ¹ * ρ²)
(χ¹ * χ¹) * ν²
χ¹ * ν³
χ¹ * ν³ == ν³ * χ¹
We see from the above computations that
χ¹ * (χ¹ * (χ¹ * χ¹)) ≠ ((χ¹ * χ¹) * χ¹) * χ¹
so, as expected, the product is neither associative nor commutative as each of the two properties would imply equality.