
The GRIN Project:A Highly Optimising Back End for LazyFunctional LanguagesUrban Boquist and Thomas JohnssonDepartment of Computing ScienceChalmers University of TechnologyGöteborg, SwedenE-mail: {boquist,johnsson}@cs.chalmers.seAbstract. Low level optimisations from conventional compiler technol-ogy often give very poor results when applied to code from lazy func-tional languages, mainly because of the completely di�erent structureof the code, unknown control �ow, etc. A novel approach to compilinglaziness is needed.We describe a complete back end for lazy functional languages, whichuses various interprocedural optimisations to produce highly optimisedcode. The main features of our new back end are the following. It usesa monadic intermediate code, called GRIN (Graph Reduction Interme-diate Notation). This code has a very �functional �avour�, making itwell suited for analysis and program transformations, but at the sametime provides the �low level� machinery needed to express many con-crete implementation concerns. Using a heap points-to analysis, we areable to eliminate most unknown control �ow due to evals (i.e., forcing ofclosures) and applications of higher order functions, in the program. Atransformation machinery uses many, each very simple, GRIN programtransformations to optimise the intermediate code. Eventually, the GRINcode is translated into RISC machine code, and we apply an interpro-cedural register allocation algorithm, followed by many other low leveloptimisations. The elimination of unknown control �ow, made earlier,will help a lot in making the low level optimisations work well.Preliminary measurements look very promising: we are currently twice asfast as the Glasgow Haskell Compiler for some small programs. Our ap-proach still gives us many opportunities for further optimisations (thoughyet unexplored).1 IntroductionAlthough the execution speed of programs written in a lazy functional language,like Haskell, have increased substantially since these languages �rst appeared, itis still the case that they are slower and consume more memory than imperativeprograms, in almost all cases.The reason for functional programs being so slow, is, of course, that functionallanguages in general, and lazy languages in particular, are so abstract and �far

from the machine�. Thus, it is very hard for the compiler to optimise the programwith good results. Put in another way, we can say that the laziness has a, notnegligible, runtime cost.One of the purposes of this paper is to show how this cost can be reduced bydoing more aggressive optimisations than current compilers do. As part of thatwe will attack the well known problem that conventional (imperative) compileroptimisations do not apply very well to code produced from a lazy functionallanguage, or, if they apply, produce far from satisfactory results. As we will latershow, one important reason for this is the laziness, or rather those properties ofthe generated code that encode the lazy evaluation strategy (e.g. building andforcing delayed computations).Our �rst, and most important, principle for solving this problem is to do in-terprocedural optimisation, i.e., we let the compiler optimise several procedurestogether (currently the whole program at once). This should be seen in contrastto the standard method of global optimisation, where only one procedure is opti-mised at a time,1 a method that is often quite su�cient for imperative programs.This will be explained in more detail in section 2.In this paper we will describe a novel back end for a compiler for a lazyfunctional language. The most interesting features of this back end are:� It is interprocedural, aiming at much more aggressive optimisations thancurrent compilers do.� The intermediate code, called GRIN (Graph Reduction Intermediate Nota-tion), has a very �functional �avour�, which makes it well suited for analysisand program transformations. But, at the same time, it has the �low levelcontrol� that is needed.� Using a two step process: a heap points-to analysis + a single GRIN pro-gram transformation, we are able to eliminate most unknown control �ow(or actually give a good approximation to the real control �ow), by inliningcalls of eval and apply, in the program.� The GRIN code is compiled (and optimised) using a series of, each very sim-ple, GRIN source-to-source program transformations, which taken togetherwill produce greatly simpli�ed code.� With the GRIN transformations as a basis, the resulting (machine) codewill be of a form that is suitable for conventional optimisation techniques. Inparticular we use an interprocedural register allocation algorithm, developedespecially with call intensive languages in mind.The organisation of the rest of this paper is as follows. In section 2 we elab-orate on the problem of implementing lazy evaluation, and try to motivate whyinterprocedural compilation is so important. Then, in section 3, we describe theoverall structure of our compiler, and back end. In sections 4 to 7 we introducethe intermediate code, GRIN, and describe how it is compiled and optimisedusing program transformations. The particular heap analysis used is discussed1 We use these terms as found in most compiler literature, i.e. global does not reallymean global. . .

main = sum (upto 1 10)upto m n = if m > n then []else m : upto (m+1) nsum l = case l of [] -> 0(x:xs) -> x + sum xsFig. 1. A small program, summing the numbers from 1 to 10.in section 8. After all GRIN transformations, the code is translated into real ma-chine code, described in section 9, and a number of low level optimisations areapplied; the register allocation is described in section 10 and an overview of theother optimisations is given in section 11. We present some preliminary resultsin section 12. Finally, we conclude with related work and further developmentof our back end.2 Lazy evaluationTo explain why lazy evaluation hinders optimisation and to show how interpro-cedural compilation can be a �rst step in solving this we will discuss a smallexample, the program in �gure 1. This program will also be used as the runningexample throughout this paper.The program is written using a syntax similar to Haskell. If we had writtenthis program in an imperative language (and using an imperative style) we wouldmost certainly have used real loops to sum the numbers, because we know thatimperative compilers are good at optimising loops, and often rather poor atoptimising procedure calls.If we imagine the program as written in a strict functional language, itsexecution would result in a call graph as the one in �gure 2. mainsum uptoFig. 2. The �strict� call graph
We de�ne a node in the call graph as the unionof all invocations of the corresponding function.An arc in the call graph means that a functioncall may occur in the direction of the arrow. Notethat call graphs are approximations to what willhappen in an execution of the program (but alwayssafe approximations).Returning to our example program, the strictcall graph illustrates what will happen in a strictexecution of the program. The main function will call the upto function whichwill produce a list of numbers. The upto function will create this list usingrecursion (i.e. a kind of loop). It will eventually return to main, which will directlycall sum. The sum function will consume the list, also using recursion, and sumup the numbers (i.e a second loop). In this strict version of the program, the two

loops are still quite �visible�. We could imagine a compiler noticing that bothsum and upto make recursive calls, and try to optimise this �as a loop�.However, if we turn to the call graph for the same program when executedin a lazy language it will look quite di�erent, and much less attractive from acompilers point of view (�gure 3). mainevalsum uptoFig. 3. Original �lazy� call graph
Here, we imagine a standard implementationof lazy evaluation using graph-reduction. Oneadditional procedure is added to the call graph,the special eval procedure. This is the proce-dure used to force (or evaluate) a suspendedcomputation. Even though this is normally hid-den in the runtime system of an implementa-tion, we can think of eval as an ordinary pro-cedure, which will turn its argument into weakhead normal form. If, in the call graph, a partic-ular procedure calls eval it will mean that theprocedure needs the value of a closure (which might be a suspended computa-tion). On the other hand, if eval calls a procedure, it means that a suspendedcomputation of that procedure was forced (by someone else).There are a number of di�erent ways to implement and optimise this �forcing�(see for example [Joh84,PJ92]), but they all have one thing in common: the codewill have to do an �unknown call� when it is faced with a suspended computation.By this we mean that it is unknown at compile time to which procedure such acall will jump. In our call graphs this will be seen as �rst a �call� to eval, andthen a new call from eval to the suspended procedure. mainsumuptoFig. 4. Improved�lazy� call graph
Unfortunately, these unknown calls are one of the mainreasons why conventional compiler optimisations will give sopoor results for lazy functional languages. When the compileris faced with an unknown call (i.e. unknown control �ow), itwill normally have to make the most pessimistic assumptionspossible, like for example not allowing any values to be heldin registers. And, since the functional programming style en-courages �small� functions, it is not surprising that a globaloptimiser, that can only optimise the code between two callsat a time, will give so poor results in most cases.The consequence of this is that if we want to use con-ventional optimisations e�ectively, we will have to eliminatemost (or all) of the �unknown control �ow�. The way we do this is described insection 5. Seen in the call graph, it will have the e�ect of completely eliminatingthe eval procedure, and replacing each arc to eval with a safe superset of �real�calls, i.e., arcs to ordinary procedures. After this, we will get the call graph in�gure 4.This illustrates the �looping� behaviour that will actually happen in a lazyevaluation of this program. The loop will be in the sum function (using recursion)and, once each iteration, it will call the upto function to produce the next number

(i.e. a new cons cell). The call graph also makes clear the producer/consumerrelationship, that is so typical of lazy evaluation, between the upto and sumfunctions. An aggressive optimiser that is allowed to optimise the sum and uptofunctions together could take advantage of this knowledge and produce muchbetter code compared to the original program (with eval).3 Our compilerTo be able to compile real Haskell programs, we use our back end in conjunctionwith an already existing front end, hbcc, by Lennart Augustsson [unpublished].Hbcc is a state of the art Haskell front end. Using hbcc we get well optimisedcode in a �low level functional� style, comparable to for example the Core lan-guage [PJ96] used by the Glasgow Haskell compiler. The code is lambda lifted,i.e., has only super combinators, and most �high level� Haskell constructions,like overloading, have been transformed away.The structure of the back end (extended with hbcc) can be seen in �gure 5.The front end, i.e., hbcc, uses standard separate compilation. Our back end(which is a stand alone program) will collect the code produced from all hbcc-compiled �les (for a program spread over several �les) and optimise the wholeprogram at once. Thus, the entire system uses separate compilation in the frontend, whereas the GRIN back end (currently) need the whole program at once.The �rst part of the back end uses the intermediate code, GRIN, and gradu-ally transforms and optimises the code into a very simple form. After that, thecode is translated into machine code for a hypothetical RISC machine, and thesecond part of the back end uses this RISC code. After the low level optimisa-tions, the RISC code is �nally �pretty printed� as assembler code for the Sparcprocessor. However, the RISC code is not very Sparc-speci�c, so it would not bea large project to generate code for a di�erent processor. Also, the optimisationsdone are mostly �generic� in nature, and would apply to any RISC processor.4 GRIN - the intermediate codeThe purpose of the GRIN intermediate code is the same as for the G-machine[Joh84] code: to provide a framework and vehicle for compilation of lazy func-tional languages. Thus, GRIN provides similar primitives as the G-machine does,but does it on a slightly higher level. GRIN can be thought of as a procedurallanguage, where statements inside procedure bodies are essentially three-addresscode. GRIN is quite �exible: it is possible to compile lazy functional languagesin a variety of ways, with di�erent forms of tagging, unboxing, etc. The GRINcode is actually quite a general form of intermediate language, which could bea suitable intermediate form for compilers of many `heap based' languages (e.g.Lisp, SML, possibly even languages like Smalltalk), although GRIN has somespecial provisions to accommodate for lazy evaluation.We will continue to use the program in �gure 1 as our running example.Figure 7 shows how it can be translated into GRIN code.

hbccmoduleHaskell
simple �
Haskellmodule

Haskellmodule

...

...

separate compilationFront end

Heap analysis
GRINcode generation
GRINtransformations

simple �
GRINGRIN

simple GRIN

interprocedural optimisationGRIN part
Registerallocation
RISCcode generation
RISCoptimisationPrettyprinting

simple GRIN
RISCRISCRISCSparc

interprocedural optimisationRISC part

Fig. 5. Overview of the compilerSooner or later in the translation process, one has to be confronted with theissue of updating due to call-by-need. We have chosen to make updating explicitin the GRIN language. We currently fancy writing the GRIN programs as statemonadic [Wad92], �rst order, strict, functional programs2. A simpli�ed GRINsyntax is given in �gure 6.The unit operation corresponds to the unit in the monad, and ; is the bindoperator. store, fetch and update are operations particular to this monad.Compilers often represent the code with �three address statements�, and so dowe: assume the existence of primitive operators for basic values, like int_add,int_gr, etc. By convention, the names of basic valued variables end with ' .First a note on terminology: A node value (or just node) is a tag (e.g., CInt,CNil, Fupto) possibly followed by some arguments (pointers or basic values).2 Although monads normally are higher order constructs, we consider the GRINmonadas �built-in�. All other operations in GRIN are �rst order.

prog ! f binding g+binding ! var f var g = exp de�nitionexp ! sexp ; �val -> exp sequencingj case var of alt1 || . . . || altn casej if var then exp else exp conditionalj sexp operationalt ! val -> expsexp ! var f val g+ application, function callj unit val return valuej store val allocate new heap nodej fetch var load heap nodej update var val overwrite heap nodej (exp)val ! (tag f val g) complete nodej literal constantj var variablej () emptyFig. 6. GRIN syntax (simpli�ed)As the name suggests, node values quite often reside in the heap � however,node values may also be the value of local variables, and returned as valuesby procedures, and so on (and may eventually be allocated to one or severalregisters).The GRIN language itself does not make any a priori interpretation of thedi�erent node values, it is the GRIN program which interpret them as repre-senting either ordinary constructor values of the source language (the tags CInt,CNil, CCons) or unevaluated expressions (Fupto, Fsum). As a naming conven-tion, we use node tag names beginning with C and F to denote ordinary dataconstructors and unevaluated function applications, respectively.Although the hbcc front end does a fair amount of strictness analysis, unbox-ing, etc, for the sake of the exposition here, we assume a rather unsophisticatedtranslation, essentially in the same style as in the G-machine (ie, no fancy taggingor unboxing, nor is any strictness analysis assumed).In our basic translation scheme, each supercombinator becomes a GRIN pro-cedure. Arguments of functions, evaluated or unevaluated, are put in `boxes'in the heap, and pointers to these boxes are passed as the actual arguments.Procedures return node values as a result (not a pointer to one in the heap!).An essential feature of our approach is that eval, which is normally hidden inthe runtime system (or e.g. done as a `tagless' pointer dispatch) can be written asan ordinary GRIN procedure � and thus also is susceptible to transformation!Figure 8 shows the accompanying eval procedure for our example.

main = store (CInt 1) ; \t1 !store (CInt 10) ; \t2 !store (Fupto t1 t2) ; \t3 !store (Fsum t3) ; \t4 !eval t4 ; \(CInt r') !int_print r'upto m n = eval m ; \(CInt m') !eval n ; \(CInt n') !int_gr m' n' ; \b'!if b' thenunit CNilelseint_add m' 1 ; \m1'!store (CInt m1') ; \m1 !store (Fupto m1 n) ; \p !unit (CCons m p)sum l = eval l ; \l2 !case l2 ofCNil -> unit (CInt 0)CCons x xs -> eval x ; \(CInt x') !sum xs ; \(CInt s') !int_add x' s' ; \ax'!unit (CInt ax')Fig. 7. GRIN code for the program in �gure 1.eval l = fetch l ; \l2 !case l2 ofCInt x' -> unit l2CNil -> unit l2CCons x xs -> unit l2Fupto m n -> upto m n ; \v !update l v ; \() !unit vFsum l -> sum l ; \v !update l v ; \() !unit vFig. 8. GRIN code for the accompanying eval procedure.The standard eval takes a pointer to a node, and in the case of an unevalu-ated function application, makes sure the node gets evaluated and updated; eval�nally returns the value thus pointed at. This means that eval must fetch thenode pointed at, and perform case scrutinisation. This case must enumerateall possible nodes that eval might ever encounter (which without �ow analy-sis is easiest done by enumerating all nodes ever named). eval either returns

the C-node so encountered, or calls the appropriate procedure to evaluate anapplication, and updates the F-node with the value returned.5 The heap points-to analysis resultThe transformation of the GRIN code, especially inlining of eval, is greatlyaided by a program analysis, which gives a safe approximation to what possiblenodes pointers might point to, at all points in the GRIN program. In this sectionwe describe more precisely what this analysis returns, for our running example.Later we we describe how this analysis is implemented (section 8).The main aim of our analysis is to determine, for each call of eval, a safeapproximation to what di�erent nodes, eval might get when it fetches a nodevia its argument pointer. But in e�ect, the heap analysis determines the abstractvalues of all variables in the GRIN program, as well as an abstract descriptionof the heap.In the concrete semantics, the value of a variable is either a basic value, apointer into the heap, or an entire node value (as returned by a procedure ort1 ! f 1 gt2 ! f 2 gt3 ! f 3 gt4 ! f 4 gr' ! f BAS gm ! f 1; 5 gn ! f 2 g
m' ! f BAS gn' ! f BAS gb' ! f BAS gm1' ! f BAS gm1 ! f 5 gp ! f 6 gl ! f 3; 6 g

l2 ! f CNil[]; CCons[f1; 5g; f6g] gx ! f 1; 5 gxs ! f 6 gx' ! f BAS gs' ! f BAS gax' ! f BAS gFig. 9. Abstract environment of the analysis result.1 ! f CInt[fBASg] g2 ! f CInt[fBASg] g3 ! f Fupto[f1g; f2g]; CNil[]; CCons[f1; 5g; f6g] g4 ! f Fsum[f3g]; CInt[fBASg] g5 ! f CInt[fBASg] g6 ! f Fupto[f5g; f2g]; CNil[]; CCons[f1; 5g; f6g] gFig. 10. Abstract heap of the analysis result (without sharing analysis).1 ! f CInt[fBASg] g shared2 ! f CInt[fBASg] g shared3 ! f Fupto[f1g; f2g] g unique4 ! f Fsum[f3g] g unique5 ! f CInt[fBASg] g shared6 ! f Fupto[f5g; f2g] g uniqueFig. 11. Abstract heap of the analysis result (with sharing analysis).

eval). In the abstract semantics, all basic values are abstracted to a single one,BAS.For abstract locations we use a bounded domain of locations f1; 2; : : :maxlocgwhere maxloc is the total number of store statements in the GRIN program.Each occurrence of a store statement generates the same abstract location everytime it is executed. It is as if each store statement had its own little heap (afeasible implementation), and the abstract pointer is simply the identity of theheap, thus abstracting away from the relative position in this `little' heap. Theabstract values of pointer valued variables, and arguments of nodes, are sets ofabstract locations. See also section 8 and �gure 16.Figure 9 shows the abstract environment derived for our running example(the GRIN program in �gure 7). The store statements of the program havebeen numbered 1 : : : 6, thus the abstract values of variables t1, t2, t3, t4, m1,and p are f 1 g, f 2 g, ..., f 6 g.The analysis also returns an abstract heap, which maps abstract locations toabstract node values. Figure 10 show a possible abstract heap derived for ourrunning example (this will be re�ned shortly).Consider the eval of m in the upto procedure. The abstract value derived form is f 1; 5 g. Both 1 and 5 in the abstract heap are CInt nodes; thus this eval istrivial, the value is already evaluated.Now consider the eval of l in the sum procedure. The abstract value derivedfor l is f 3; 6 g, and according to �gure 10 both these locations might be eitherFupto, CNil, or CCons nodes.It has turned out to be quite easy to incorporate a sharing analysis intothe points-to analysis. Not only does this provide useful information for updateavoidance, it also serves to improve the precision of the points-to analysis assuch!Thus, in actual practice our analysis also returns a third component, a sharingtable, which maps abstract locations to its sharing properties: True if the abstractlocation is shared, i.e., if a concrete instance of the abstract location may besubject to a fetch more than once, False otherwise. In our example, and ingeneral at the stage of compilation where points-to analysis is currently applied,it is only eval that performs fetch operations; however, we might also wantto analyse the program later in the process where fetch operations can occurexplicitly.Figure 11 shows the abstract heap the analysis derived for our running ex-ample, together with its sharing information. Thus we can see that abstractlocations 3 and 6 now only contain Fupto nodes, and that these locations areunique (non-shared). The explanation for this is that both these nodes are bornas Fupto nodes, and even though eval might update such a concrete locationwith either a CNil or a CCons, this will never be visible. A location may onlybecome shared if it is a possible value of a nonlinear variable (i.e., used morethan once). The nonlinear variables in our example are: m, n, and m'.The abstract environment of our running example does not become modi�edby the use of a sharing analysis part; but in general it might well be.

6 GRIN transformations6.1 EVAL inliningAfter the heap points-to analysis, the next step in the compilation process is toinline all calls of eval. In general, one might replace a call of eval by its entirebody (see �gure 8). This would, however, in most cases be blatantly wasteful,since at each eval point only a (small) subset of the nodes can be present � theresult of the points-to analysis gives a safe subset. Further, one may also omitthe accompanying update operations if according to the sharing information thecorresponding abstract locations are unshared.Let us discuss the most general cases �rst, from the point of view of ourrunning example. Consider the eval l in the sum procedure, and let us assumefor a moment that we do not have any sharing information, and that accordingto the analysis the possible nodes encountered here are Fupto, CNil and CCons.The code:eval l ; \l2 ! restcould then be expanded into (by replacing the call by the body of eval, substi-tuting actual arguments for formal ones, and deleting impossible cases):(fetch l ; \l2 !case l2 ofCNil -> unit l2CCons x xs -> unit l2Fupto m n -> upto m n ; \v !update l v ; \() !unit v) ; \l2 ! restHowever, as can be seen from �gures 9 and 11, the information actually derivedby the analysis for this case is that l points to a Fupto node, and it is unique(unshared). This information can be used for two things:� since there is only one node, Fupto, no case analysis needs to be done,� since the pointer in known to be unshared, no updating needs to be done.So, the �eval ; \l2 ! rest� can actually be inlined into the much better:(fetch l ; \(Fupto m n) !upto m n) ; \l2 ! restThe second eval appearing in sum, the eval x, is much simpler in character.Since all the nodes that x might point to (in fact there is only one, CInt) areordinary value nodes, eval does not have to call any evaluation procedure to getthe actual value, instead a simple fetch will do. Figure 12 shows the completesum procedure with both evals inlined accordingly.The inlining of eval does not actually happen in one ad-hoc step as indicatedhere. Rather, the resulting inlining of eval shown above is the result of a largenumber of small transformations � see next section.

sum l = (fetch l ; \(Fupto m n) !upto m n) ; \l2 !case l2 ofCNil -> unit (CInt 0)CCons x xs -> fetch x ; \(CInt x') !sum xs ; \(CInt s') !int_add x' s' ; \ax'!unit (CInt ax')Fig. 12. The procedure sum with its evals inlined.6.2 The GRIN transformation machineryAlthough the eval inlining above is a very important transformation, it is, infact, only a small part of a large number of GRIN program transformations. Themain idea behind the GRIN transformation machinery is to use many, each verysimple, GRIN source-to-source transformations. Each transformation is of coursecorrectness-preserving and hopefully performance-improving. Even though eachsingle transformation will make only a very small change, they will, taken to-gether, produce greatly simpli�ed and optimised GRIN code.Many of the transformations are very �local� in the sense that they will try to�nd a small sub-expression, of a larger GRIN expression, that matches a certainpattern, and if found, transform it to a slightly di�erent sub-expression. Othertransformations are a bit more involved. Remember also that we assume thatthe front end has already transformed the program �as much as possible' on thefunctional level, and hbcc does indeed implement most �standard� functionaltransformations.6.3 Example transformationsRather than going through all transformations, we will concentrate on a fewexamples. Some transformations are rather general in nature, some are morespecialised. We will show a few of each kind.Monad unit laws � copy propagation. Since we use a monad to structureGRIN we can directly use the monad laws [Wad92], that all monads must satisfy,as transformation rules. The left unit monad law is usually written as (we use ;as the bind operator, as in GRIN):(unit x) ; m � m xWe can get a more useful transformation (denoted)) by instantiating m as abinding:

(unit x) ; m) { instantiate m }(unit x) ; (\v -> k)) { use unit law }(\v -> k) x) { � reduction }k[x/v]I.e., we can always delete a unit to the left of a binding and simply do asubstitution instead, i.e., we have eliminated a �copy�. Note that x and v abovemust not necessarily be variables, they could equally well be complete nodes:unit (CInt a') ; \(CInt b') -> k) k[a'/b']There is also a corresponding right unit monad law, which will give rise tothe following transformation:m ; \v -> unit v) m ;g h+;;m k h+;m ;k hFig. 13. Normalisation

Bind associativity. In any monad the bind opera-tor must be associative [Wad92], and this turns out tobe very useful for transformation purposes. During thetransformation process it is a good idea to keep theGRIN code normalised, i.e., keep the GRIN syntax tree�right skewed� with only bind operations as its spine. Un-fortunately this property can be destroyed by any trans-formation that introduces new code, for example inlininga call to eval. Say, for example, that we have the code�g ; h� and we want to replace g by the sequence, �m ;k�. Then, we would like to restructure the code as shownin �gure 13, to keep the right skewed property.But this is exactly what the associativity monad lawtells us! Shown in GRIN terms, the general transforma-tion is:(m ; \a -> k a) ; \b -> h b) m ; (\a -> k a ; \b -> h b)Unboxed values. Our current front end, hbcc, uses the unboxing methodsdescribed in [PJL91]. It is often very good at transforming strict function ar-guments and function results to unboxed representations. However, it has someshortcomings. The method in [PJL91] cannot unbox a function that returns avalue of a datatype whose (single) constructor takes more than one argument,like for example a pair. There is simply no way to express that in functionalcode, a function must always return exactly one value. Unboxing function argu-ments of such types (single constructor, more than one argument) is mentionedin [PJL91], but unfortunately not implemented in hbcc. As an example, a strictpair argument that is unboxed can be replaced by two arguments, one for eachcomponent of the pair, a transformation sometimes called arity raising. A �nalshortcoming of the unboxing done by hbcc is that it is only attempted in ratherrestricted contexts (su�ciently strict etc).

In GRIN there is no problem handling any of the cases above. As an example,we can express that a function returns an unboxed pair, i.e. simply returnsthe two components of the pair (in the �nal code, this will be done using tworegisters). To show our transformation, we will give an example of how a functionthat returns a boxed integer can be changed to return an unboxed integer. InGRIN, a function that returns an integer will do it using the unit operation.This means that the actual tag is visible, so we can simply remove it:unit (CInt x')) unit x'Of course, we will now also have to change all calls to the function. Assumingthe function we have just unboxed was called f, we will transform all calls to f(in any context):f as) f as ; \y' -> unit (CInt y')Many of the "extra" units and lambdas that might get inserted are triviallyeliminated using the monad law transformations described above. As an example,assume that the above call to f appeared right before a lambda pattern:f as ; \(CInt a') -> m) { unbox f }(f as ; \y' -> unit (CInt y')) ; \(CInt a') -> m) { associativity + left unit laws }f as ; \y' -> m[y'/a']The e�ect of this will be to eliminate all �tagging costs� associated with callsto f. Some special care has to be taken with tail calls, but they can be handledas well. Unboxing procedure arguments, and types where the node have severalarguments can be done in a completely analogous way.Simplifying nodes. Some of the GRIN transformations have more the na-ture of simpli�cations rather than optimisations. An example of the former is atransformation we call vectorisation. The aim of vectorisation is to make GRINvariables that contain node values (i.e. a tag possibly with arguments), moreconcrete by transforming to multiple variables, each containing a simple value(basic value or pointer). Consider the following:foo l = fetch l ; \l2 ->case l2 ofCNil -> nil_bodyCCons x xs -> cons_bodyThis could be a function with a single list argument, where the points-to analysishas shown that the argument will always be evaluated (so all that remains of theeval is a fetch). If we look at the l2 variable above, it will contain a completenode, either a CNil tag or a CCons tag and two arguments. We will now replacel2 with three simple variables (this is what we call a vector):foo l = fetch l ; \(t' a as) ->case (t' a as) ofCNil -> nil_body

CCons x xs -> cons_bodyIn fact, we consider the actual tags to be basic values. Hence the variable t',it will bind the tag itself. Note that if t' is CNil, then a and as are unde�ned.This will hopefully be a bit more clear after the right hoisting transformationbelow. Before that, though, we will simplify the vectors (variable nodes) that wejust introduced. The case expression in our example depends only on the tag, solet us make that explicit:foo l = fetch l ; \(t' a as) ->case t' ofCNil -> nil_bodyCCons -> cons_body[a/x,as/xs]After this transformation, all case expressions will be only a �case test�, they willnot bind any variables.Right motion hoisting. The fetch operation above will load a complete nodefrom memory, and bind its various components to the three variables.3 To furthersimplify the GRIN code, we now split the fetch into its three components:foo l = fetch l[0] ; \t' ->fetch l[1] ; \a ->fetch l[2] ; \as ->case t' ofCNil -> nil_bodyCCons -> cons_body4By the notation �l[n]� we mean the n:th component of the node pointed toby l. We now see that since a and as are not used in the CNil branch of thecase expression, their corresponding fetch operations can be moved (or hoisted)into the CCons branch:foo l = fetch l[0] ; \t' ->case t' ofCNil -> nil_bodyCCons -> fetch l[1] ; \a ->fetch l[2] ; \as ->cons_bodyWe call this transformation right motion hoisting. It is interesting to compare thisto the let-�oating described in [PJPS96]. One of the let-�oating variants, where alet-binding is �oated into a case branch, does look quite like our transformation(one di�erence is of course that a let will allocate storage in the heap, whereasour fetch will only read from the heap). However, the code above is an example3 Note that this does not imply anything about the way a node actually gets storedin the heap! It only says that there should be some way to extract the tag, etc.4 We omit the substitution henceforth.

of a situation where we bene�t from the extra �low level control� of the GRINcode. The transformation example above is not possible on the �functional level�,because there is no way to distinguish between the di�erent components of thevalue (the node variable l above).A good thing about this transformation is that it can decrease memory band-width, by not fetching unnecessary values. However, the transformation mightalso have a negative impact on execution time. If the CCons branch is the mostcommon one, and if the values a and as are needed early in cons_body, it might,in fact, be better to prefetch them before the case test (for reasons of mem-ory latency). On the other hand; if the tag is already loaded, the rest of thenode is probably already in the cache, so subsequent loads will be cheap. Moreexperiments are needed to determine if this optimisation really is bene�cial.More transformations. The e�ect of all GRIN transformations, of which wehave only shown a few, is to gradually turn the GRIN code into a very simpleform, with all operations made explicit. This will make the actual code generation(to real machine code) quite simple (see section 9).7 Higher order functionsTrue to the GRIN philosophy, also function objects are represented by nodevalues. Just like the G-machine and most other combinator-based abstract ma-chines, function objects in GRIN programs exist in the form of curried applica-tions of functions with too few arguments. Consider again the function upto ofour running example, which takes two arguments. We represent the function ob-ject of upto by a node Pupto_2, and an application of upto to one argument bya node Pupto_1 e. The naming convention we use is that the pre�x P indicatesa partial application, and _2 etc. is the number of missing arguments.In analogy with the generic eval procedure, programs which use higher or-der functions must also have a generic apply procedure, which must cover pos-sible function nodes that might appear in the program. An example is shownin �gure 14. apply returns the value of a function value (node) applied to oneadditional argument. Generally, apply just returns the next version of the func-tion node with one more argument present, except when the �nal argument issupplied: then the call of the procedure takes place.GRIN does not provide a way to do a function application of a variable ina lazy context directly, e.g., build a representation of f x where f is a variable,instead a closure must be wrapped around it; this is the purpose of the ap2procedure.In the further compiling of programs which uses higher order functions, alsoapply calls are inlined, in much the same way as eval calls.If the application in the original program has more than one argument, sev-eral apply statements in sequence must be used. This arrangement is concep-tually simple (a great advantage when it comes to the points-to analysis). Al-though it implies the unnecessary construction of intermediate function values,

apply f x = case f ofPupto_2 -> unit (Pupto_1 x)Pupto_1 y -> upto y x...Fig. 14. The apply procedure.twice f x = store (Fap2 f x) ; \t1 !eval f ; \f2 !apply f2 t1ap2 f x = eval f ; \t2 !apply t2 xFig. 15. The GRIN code for the function twice f x = f (f x).a sequence of inlined applys can easily be simpli�ed to avoid these intermediatefunction values.8 The innards of the points-to analysisWhen we designed our points-to analysis, an overriding design goal was that ithad to be very fast, in order to be able to analyse large entire programs at once� if it had to be done at the cost of some precision, then so be it! The resultis an analysis which we think is no costlier than, e.g., live variable analysis. Weaccomplish this by the following means:� a single abstract heap approximates the real heap at all times and at allprogram points: this makes the analysis �ow insensitive,� a single abstract environment approximates all local environments; this ar-rangement does not actually impose any extra approximation, since all localvariables are uniquely named and an abstract local environment is always asubset of this `global' abstract environment,� the analysis is insensitive to calling context: a procedure parameter gets itsabstract value by `unioning' the corresponding actual parameters at the callsites, and the same abstract return value is returned as a result of all callsfor each procedure.As mentioned in section 5, we also include a sharing analysis into the points-toanalysis machinery. Not only does this provide desired sharing information forupdate avoidance, it also serves to improve the precision of the points-to result!The analysis works in two steps:� setting up a system of data �ow equations, for the variables of the abstractenvironment and the abstract heap,� solving the equations.

cLoc = 1; 2; : : : �Cons points�cVal = fBASg+ cLoc �Small� valuesbV = P(cVal)dNode = Con� bV � Node valuesbN = P(dNode)dHeap = cLoc ! bNdVarVal = bV [bN Abstract values of variablesFig. 16. Abstract domains for the heap points-to analysis.t1 = f 1 gt2 = f 2 gt3 = f 3 gt4 = f 4 gr' = f BAS gm = t1 t m1n = t2 t n
m' = f BAS gn' = f BAS gb' = f BAS gm1' = f BAS gm1 = f 5 gp = f 6 gl = t3 t xsl2 = EVAL(FETCH heap l)

x = l2 # CCons # 1xs = l2 # CCons # 2x' = f BAS gs' = f BAS gax' = f BAS gru = f CNil[]; Ccons[m; p] grs = f CInt[fBASg] gFig. 17. Abstract environment equations.heap = [1 ! f CInt[fBASg] g2 ! f CInt[fBASg] g3 ! f Fupto[t1; t2] g t ru4 ! f Fsum[t3] g t rs5 ! f CInt[fBASg] g6 ! f Fupto[m1; n] g t ru]Fig. 18. Abstract heap equations.EVAL S = ftag L j tag L 2 S ^ is-value-node taggFETCH heap fl1; : : : ; lng = heap # l1 t : : : t heap # lnf: : : ; tag [v1; : : : ; vi; : : :]; : : :g # tag # i = vif: : : tag[x1; : : : ; xi; : : :]; : : :g t f: : : tag[y1; : : : ; yi; : : :]; : : :g =f: : : tag[x1 [y1; : : : ; xi [yi; : : :]; : : :gFig. 19. Utility functions.We �rst describe the basic machinery without the sharing analysis part, andthen discuss the modi�cations needed to implement the sharing analysis, and todeal with higher order functions.8.1 The basic analysis machineryDeriving the equations. From the GRIN program, we set up a system ofdata �ow equations which describes the values of the variables in the abstractenvironment, and the locations of the abstract heap. Figures 17 and 18 showsthese equations for our running GRIN program example (�gure 7).

The abstract domains are summarised in �gure 16. We now proceed to explaineach of the di�erent forms of equations.The abstract environment contains the variables of the GRIN program, plusone variable for each procedure, which denotes the return value of such a call:ru for upto, and rs for sum.To begin with, quite a lot of the variables can immediately be seen to havethe value {BAS}.As mentioned, we use a single �xed abstract location for each store state-ment: hence the equations for t1, t2, t3, t4, m1, and p in the environment part.The heap variable has at each location the value of the corresponding store,possibly unioned with one more item. If an abstract location has the value of anode which represent an unevaluated function application, in our case Fupto orFsum, we simply set these locations also to have the value of the correspondingreturn values, since such nodes will most likely be updated with these eventually:hence the union with ru and rs respectively.Parameter variables, like m, n, and l, has the value of the union of all theactual arguments of the applications of the program, both direct calls, e.g.,sum xs, or `lazy calls' .e.g., store (Fupto m1 n). So for instance, m is the �rstargument of upto, and hence gets the value t1tm1 from the two di�erent storesof Fuptos.The variable l2 holds the value of an eval: this is simply obtained by takingthe union of the value of the abstract locations which l might point to (doneby FETCH), and then extracting those nodes that represent value constructors(done by EVAL).Values for variables which are bound in a case, like x and xs, get theirabstract value by extracting out the corresponding component value for thevariable being cased upon.In taking the union (t) of sets of node values, these are unioned tag-by-tagso that in the resulting set there is only one element for each node tag (see�gure 19). Unions of sets of abstract pointers are like ordinary unions.Solving the equations. Having obtained the data �ow equations for thepoints-to analysis, the natural way of solving these equations is by �xpoint it-eration, starting with an empty abstract environment and an empty heap, andapply the equations until a �xpoint is reached.In our implementation, convergence is speeded up by using a `depth �rstordering' [ASU86, sec. 10.9] of the variable equations. Using this for our example,it takes only 4 iterations to converge to a �xpoint.8.2 Adding sharing analysisAs mentioned already in section 5, a sharing analysis can easily be incorporatedinto the points-to analysis by adding a third component, suitably called a sharingheap, a mapping from abstract locations to a boolean value: True if an instanceof this abstract location might be shared, False if it cannot be.

The initial value of the sharing heap is all Falses. The value of the sharingheap is awkward to express in equational form, instead we do as follows: duringan iteration, an abstraction location is set to shared, i.e. True, either if it mightbe pointed to by a nonlinear variable, or from another shared location.In the abstract heap the return value part, e.g., ru of location 3, is only t'edif the same abstract location becomes shared.The semantic function EVAL also needs to be modi�ed: it cannot just takethe subset of the node values which represent proper values, but needs to extract`by itself' from elsewhere what the values of an Fupto application, etc, mightbe. We omit those details here.8.3 Higher order functionsHigher order functions cause no fundamental di�culties to add into our analysis� only practical ones!The abstract value of an apply f a depends, obviously, on the abstract valueof a: if the value of f contains e.g., a Pupto_2 node, then the apply containsPupto_1 a where a is the abstract value of a; if the value of f contains e.g., aPupto_1 b node, then the value of the apply contains whatever upto returnssince the application becomes saturated at that point (c.f. �gure 14).Previously, a parameter of a procedure gets its abstract value from the union(t) of some other variables � for example l = t3txs. Unfortunately, due to theapply calls, the equations for the variables are no longer this static. Now, if a callof some procedure occurs as a result of an apply call, then the actual argumentsof those call need to be t'ed with the abstract values of the correspondingparameter variables.We have solved that problem practically as follows. A single variable, let uscall it aa here, is used to collect all the possible `extra' arguments as a result ofthe applys in the program. It is convenient to represent these extra argumentsby closure nodes for those applications, e.g., Fupto x1 x2. If there is an applya b in the GRIN program, then there is also an APPLICATONS a b being t'edto the rhs of aa. If a call of, e.g., upto could occur as a result of that apply(in which case the value of a need to contain a Pupto_1 c node), then the valueof APPLICATIONS a b should contain a Fupto c b node. Finally, the variablefor the parameter need to extract the relevant part of aa: the �rst argumentof upto, for example, need to add aa # Fupto # 1 to the right hand side of itsequation.9 RISC code generationAfter all GRIN transformations, the resulting code is translated into machinecode for a hypothetical RISC machine (load-store architecture) assuming anin�nite number of available virtual registers. These virtual registers will laterbe mapped onto real machine registers by the register allocator. The translationto RISC code is rather straightforward, since the �nal GRIN code is in a verysimple form.

Each procedure is represented as a �ow graph of basic blocks. The (intraproce-dural) �ow graphs are at this stage always DAGs, since GRIN can not represent(intraprocedural) loops. Later in the compilation, tail recursion optimisationswill indeed, turn tail calls (to the same function) into �real loops� in the �owgraph. On the interprocedural level, i.e., between procedures, the �ow graphsare linked together using call and return edges.Throughout the entire back end we do a lot of book keeping and analy-sis aimed at determining enough information about what registers contain rootpointers, i.e., need to be followed during GC. For space reasons we will have topostpone a description of how this is done to a future paper.10 Interprocedural register allocationWe believe good register allocation to be a vital optimisation. For reasons ex-plained in section 2, we also believe it to be important to do interproceduralregister allocation for lazy functional languages. Or, put in another way, whatwe need, to implement these languages e�ciently, is to minimise the procedurecall and return overhead, and doing interprocedural register allocation can be agood method for achieving that [Cho88].Our register allocation algorithm was described in [Boq95a,Boq95b], and, forspace reasons we will not explain it in detail here (although it has changed abit since then). In summary, it is an interprocedural graph colouring algorithm,based on optimistic graph colouring [BCKT89], but with several additions; e.g.interprocedural coalescing and a restricted form of live range splitting.Cheap procedure calls. The register allocator helps reducing the procedurecall penalty in the following ways:� It is very successful in passing procedure arguments in registers, using tailor-made argument registers for each procedure.� It often achieves good targeting, i.e., a value that later will be used as ar-gument in a call, will actually be calculated in the correct register. In mostcases, no extra �register shu�ing� will be necessary at the call site.� Likewise with procedure return values (we will often use more than oneregister to return a result).� Local variables that are live5 across a call site, can often be kept in a registerduring the call. This should be seen in contrast to a global register allocator,which normally will have to save and then restore certain registers aroundeach call site, if they risk being clobbered by the callee.Graph colouring. The main task of the register allocation algorithm is tobuild an interference graph (con�ict graph) for the complete program, and thencolour it. We initially assume that all variables are allocated to virtual registers.5 A variable is said to be live at a certain point if its value may be used on someexecution path leading from that point.

If the allocator fails to �nd a colour for some variable it will be spilled, i.e., thevalue kept in memory instead, or splitted, i.e. kept in di�erent registers duringdi�erent periods. The �variables�, that participate in the colouring are: proce-dure arguments and return values, local variables and all kinds of temporariesintroduced by the compiler.11 RISC optimisationsThe RISC optimiser implements a number of di�erent low level optimisations.Naturally, we implement the �standard� optimisations for lazy functional lan-guages, like heap pointer and tail call optimisations. We also optimise stack usage(the stack pointer, frame building and the return address) using a shrink-wraptechnique similar to the one used in [Cho88] to optimise the use of callee-savesregisters. For example, the return address register,6 can be seen as a callee-savesregister, i.e. we need not save it until we are certain to do a new procedure call.In a similar way, we can avoid creating a stack frame,7 until it is absolutelyneeded. The di�erent stack optimisations, together with tail call optimisations,often succeed very well in creating small tight loops for tail recursive functions.Other optimisations are of a more general kind, like instruction schedulingand branch optimisations. The Sparc processor is a delayed-load architecturewith call and branch delay slots, which means that it is important to separateloads instructions and uses of the loaded result, and to �ll delay slots with usefulinstructions. We use a rather standard instruction scheduler to accomplish this,in the style of [GM86].Currently, most our RISC optimisations are placed after the register alloca-tion (see �gure 5), which might seem a bit odd in comparison with conventionalcompilers where normally many optimisations are done before the register allo-cation. However, in our case it turns out that many of the standard optimisationsare subsumed by transformations already done at the GRIN level.12 MeasurementsWe have compared our back end to the Chalmers and Glasgow Haskell compil-ers, hbc and ghc, respectively. Our implementation is still rather experimental,and unfortunately we have not been able to compile any large programs. There-fore, the measurements shown here should be taken for what they are, onlytoy programs experiments. On the other hand, one positive thing about havingsmall test programs is that it is possible to examine the code produced in var-ious stages of the compilation, to get �fair� tests between compiler �sub-parts�.The measurements in �gure 12 show four example programs: nfib 32, sieve2(summing all primes below 10000), fqueens (the queens problem of size 10, a�rst order program) and hqueens (ditto, but using higher order functions). The6 Assuming a RISC style jump-and-link instruction used for doing procedure calls.7 On the Sparc we use the standard system stack.

hbca GRIN hbcc+GRIN ghcbinstructions 341.9 123.4 81.1 -nfib stack 84.6 28.2 21.1 -time 7.6 4.6 1.8 2.2instructions 72.9 24.2 24.2 -sieve2 stack 17.2 3.1 3.1 -time 3.2 1.7 1.9 3.5instructions 174.3 49.4 48.9 -fqueens stack 44.6 3.0 3.0 -time 5.1 2.0 1.9 4.4instructions 198.3 - 57.8 -hqueens stack 50.8 - 3.3 -time 5.0 - 2.0 4.1a hbc-0.9999.1 -O -msparc8b ghc-0.29 -O2 -fvia-C -O2-for-CFig. 20. Performance of some small programs.column marked just GRIN means that handwritten GRIN code is input to ourback end. The intention of this is to create a fair comparison of hbc's and ourback ends. We have made sure that this code is written exactly as what is inputto hbc's back end, i.e., the same strictness and boxity, and it reads and writesexactly the same nodes in the heap. In other words, the hbc and GRIN columnswill perform exactly the same graph reduction.The column marked hbcc+GRIN shows our back end together with the hbccfront end, and is supposed to be a more fair comparison against the ghc column.Ghc and hbcc should be roughly comparable as front ends.Our main measurements are done using a tool to collect dynamic instructioncounts.8 We show the total instruction count and the total number of stackreferences (loads + stores), all in millions of instructions. We also include sometimings.9 However, given how hard it is to accurately measure time on a UNIXsystem, especially for such small programs, these should be seen mainly as areference. Garbage collection times are not included (for any compiler).If we look at the total instruction count, we can see that the GRIN column isroughly 3 times as fast as hbc, i.e. our back end compared to the hbc back end.Moving to the hbcc+GRIN column, we see that we get slightly better yet, around3-4 times fewer instructions executed compared to hbc. The total instructioncount also correlate rather well with the timings. Comparing hbcc+GRIN withghc, we are roughly twice as fast as ghc for all the examples except nfib.We have included stack reference counts as a measure on how well our regis-ter allocator succeeds, since good register allocation typically means that stackallocated variables (including temporaries and function parameters and results),have been allocated to registers instead. Looking at the �gures, we see a dra-8 Unfortunately, we have not yet been able to make this tool work for ghc binaries.9 User times on a 40MHz SuperSparc with 1Mb external cache and 80Mb memory.

matic reduction in the number of stack references for our back end compared tohbc, ranging from 70% to 95% eliminated stack references.13 Related workInterprocedural optimisation. Recently, various interprocedural optimisa-tions have gained increasing popularity, simply because they are much morepowerful than their corresponding global (i.e., per procedure) optimisations.Practical di�culties with whole-program optimisation can be reduced by theuse of an integrated programming and optimisation environment, like the Rnenvironment [CKT86].For a lazy language like Haskell, compilers typically compile one module ata time. At �rst sight, this might appear as a good opportunity to optimiseseveral procedures at once. However, it seems as if this does not apply very wellto low level optimisations, like those presented in this paper, where the actualdynamic control �ow is important, as explained in section 2. In a lazy language,a function that is local to a module in the source code, might very well escapefrom the module at run time (if it is built into a closure) and then be called fromsomewhere else (using eval).GRIN and transformations. Our intermediate code, GRIN, is in its essencenot very di�erent from any other intermediate code used to implement lazyfunctional languages (usually called code for a particular abstract machine); e.g.the G-machine [Joh84], the ABC-machine [SNvGP91] and TIM [FW87]. In somesense, GRIN is on a slightly �higher level� than the machines mentioned above.On the other hand, compared to the STG language [PJ92], GRIN is more �lowlevel� which has proven itself useful in some transformations (see section 6).The idea of �compilation by transformation� is not new, see for example[KH89,App92]. In particular, the idea of using a large number of very smalltransformations is similar to what is used by the simpli�er [PJ96] in the Glas-gow Haskell Compiler. The main di�erence compared to our transformations isthat the GRIN code is a low level code compared to both the Core and theSTG language used by ghc (they are both essentially 2:nd order �-calculus, theSTG language is on a slightly lower level). A typical example of the di�erence isthat we, in GRIN, can �inspect� a node value (closure) without having to force(evaluate) it, something which is not expressible in the STG language.It may be an illusion, but the monadic presentation of GRIN code gives ita very �functional �avour�, and hence a nice framework for doing analysis andtransformations.The relationship between GRIN and Continuation Passing Style (CPS) [AJ89],can be compared to programming using either monads or continuations, i.e., itis probably mainly a matter of taste. One might also compare GRIN to StaticSingle Assignment (SSA) code [CFR+91], which has received recent popular-ity for implementing imperative languages (mainly Fortran). In GRIN, we willget single assignment �for free�, i.e. all variables in a GRIN program are onlyassigned once, yet another example of the �functional �avour� discussed before.

Heap points-to analysis. A great deal of work has been done on points-to analysis of more conventional languages � see, for example, the overview in[SH97]. However, with the notable exception below, none other seem to haveaddressed the problem in the context of lazy graph reduction.The work by Karl-Filip Faxén [Fax95,Fax96] is quite similar in scope to ours,and he addresses many of the same problems as we do. Central to his work isa type based program analysis, called �ow inference, which analyses programsexpressed in his intermediate language, Fleet (Functional Language with ExplicitEvals and Thunks). As the name suggests, he analyses programs on a higher levelthan our GRIN code. His �ow inference derives information quite similar to ours,and he uses the information to eliminate evals and thunks, to do unboxing, andupdate elimination.Register allocation. To our knowledge, interprocedural register allocation hasnot been applied previously to code generated from a lazy functional language.It has been applied to other kinds of languages though, e.g. to Lisp [SH89] andto C [Cho88,Wal86].14 Conclusions and further workOur preliminary results look very promising, but there is a lot of implementationwork that needs to be done before we can say if our back end really can be madepractical. We can not yet say how our interprocedural approach will scale up tolarge programs. Two possible problem areas are the heap points-to analysis andthe interprocedural register allocation. Although there are various methods fortrading exactness for speed in both these cases, it is di�cult to predict exactlyhow the code quality will be a�ected by less precise program information.The GRIN back end described in this paper constitutes quite a heavy basicmachinery. But once that has come o� the ground, many other opportunities forfurther optimisations present themselves:So far, the only use of inlining in our GRIN transformations are to unfoldcalls to eval and apply, but we plan to experiment with more aggressive meth-ods. Inlining of conventional calls, together with simpli�cation of the resultingGRIN code, might e�ectively give a compile-time version of the vectored returnmechanism of the STG machine [Joh91].As an area for further work, we would like to investigate which of the trans-formations usually done closer to the front end, e.g., ghc's (or hbcc's) �functional�transformations, that could be pro�tably done on the GRIN level: for exampleunboxing, deforestation, �rsti�cation, possibly even strictness analysis!The simpli�er in ghc is a kind of �transformation engine� that will apply (andrepeat) transformations rather automatically. We plan to implement a similarmachinery in our back end.Doing aggressive optimisations like the ones described here might very wellturn out to be impractical to do on large entire programs. We might consider apro�ling based approach, where the optimisation e�ort is spent where it reallymatters for the overall execution speed of the program.

Acknowledgements. The second author, Johnsson, visited the Glasgow Func-tional Programming Group 1989-90, on an SERC fellowship: the �rst ideas[Joh91] concerning the GRIN approach occured in that inspiring environment.References[AJ89] A.W. Appel and T. Jim. Continuation-passing, closure-passing style. InConference Record of the 16th Annual ACM Symposium on Principles ofProgramming Languages, pages 293�302, Austin, TX, January 1989.[App92] A. W. Appel. Compiling With Continuations. Cambridge University Press,1992.[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,Tools. Addison-Wesley Publishing Company, Reading, Mass., 1986.[BCKT89] Preston Briggs, Keith D. Cooper, Ken Kennedy, and L. Torczon. Coloringheuristics for register allocation. In Proceedings of the ACM SIGPLAN '89Conference on Programming Language Design and Implementation, vol-ume 24, pages 275�284, Portland, OR, June 1989.[Boq95a] Urban Boquist. Interprocedural Register Allocation for Lazy FunctionalLanguages. In Proceedings of the 1995 Conference on Functional Pro-gramming Languages and Computer Architecture, La Jolla, California, June1995. URL: http://www.cs.chalmers.se/~boquist/fpca95.ps.[Boq95b] Urban Boquist. Interprocedural Register Allocation for Lazy FunctionalLanguages. Licentiate Thesis, Chalmers University of Technology, Mars1995. URL: http://www.cs.chalmers.se/~boquist/lic.ps.[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, andF. Kenneth Zadeck. E�ciently computing static single assignment formand the control dependence graph. ACM Transactions on ProgrammingLanguages and Systems, 13(4), October 1991.[Cho88] Fred C. Chow. Minimizing Register Usage Penalty at Procedure Calls. InProceedings of the SIGPLAN '88 Conference on Programming LanguageDesign and Implementation, June 1988.[CKT86] Keith D. Cooper, Ken Kennedy, and Linda Torczon. The impact of in-terprocedural analysis and optimizations in the R(n) programming envi-ronment. ACM Transactions on Programming Languages and Systems,8(4):419�523, October 1986.[Fax95] Karl-Filip Faxén. Optimizing lazy functional programs using �ow-inference. In A. Mycroft, editor, Static Analysis Symposium(SAS), volume 883 of LNCS. Springer Verlag, September 1995.URL: http://www.it.kth.se/~kff/fvSAS.ps.[Fax96] Karl-Filip Faxén. Flow Inference, Code generation, and Garbage Collec-tion for Lazy Functional Languages. Licentiate Thesis, Department ofTeleinformatics, Royal Institute of Technology, Stockholm, January 1996.URL: http://www.it.kth.se/~kff/TRITA-IT-9601.ps.[FW87] J. Fairbairn and S. C. Wray. TIM: A simple, lazy abstract machine toexecute supercombinators. In Proceedings of the 1987 Conference on Func-tional Programming Languages and Computer Architecture, Portland, Ore-gon, September 1987.[GM86] P.B. Gibbons and Steven S. Muchnick. E�cient instruction schedulingfor a pipelined architecture. In Proceedings of the ACM SIGPLAN '86

Symposium on Compiler Construction, volume 21, pages 11�16, Palo Alto,CA, June 1986.[Joh84] T. Johnsson. E�cient Compilation of Lazy Evaluation. In Proceedingsof the SIGPLAN '84 Symposium on Compiler Construction, pages 58�69,Montreal, 1984. Available from http://www.cs.chalmers.se/~johnsson.[Joh91] Thomas Johnsson. Analysing Heap Contents in a Graph Reduction In-termediate Language. In S.L. Peyton Jones, G. Hutton, and C.K. Holst,editors, Proceedings of the Glasgow Functional Programming Workshop,Ullapool 1990, Workshops in Computing, pages 146�171. Springer Verlag,August 1991. Available from http://www.cs.chalmers.se/~johnsson.[KH89] R. Kelsey and P. Hudak. Realistic compilation by program transformation.In Conference Record of the 16th Annual ACM Symposium on Principlesof Programming Languages, pages 281�292, Austin, TX, January 1989.[PJ92] S. L. Peyton Jones. Implementing lazy functional languages on stock hard-ware: the Spineless Tagless G-machine. Journal of Functional Program-ming, 2(2), April 1992.[PJ96] Simon Peyton Jones. Compiling Haskell by program transformation: areport from the trenches. In Proceedings of the European Symposium onProgramming, Linköping, April 1996.[PJL91] Simon L. Peyton Jones and John Launchbury. Unboxed values as �rst classcitizens in a non-strict functional language. In Functional Programming andComputer Architecture, Sept 1991.[PJPS96] Simon Peyton Jones, Will Partain, and André Santos. Let-�oating: mov-ing bindings to give faster programs. In Proceedings of the InternationalConference on Functional Programming, Philadelphia, 1996.[SH89] Peter A. Steenkiste and John L. Hennessy. A Simple Interprocedural Reg-ister Allocation and Its E�ectiveness for LISP. ACM Transactions on Pro-gramming Languages and Systems, 11(1):1�32, January 1989.[SH97] Marc Shapiro and Susan Horwitz. Fast and Accurate Flow-InsensitivePoints-To Analysis. In Conference Record of POPL'97: 24nd ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages,Paris, France, January 1997.[SNvGP91] Sjaak Smetsers, Erik Nöcker, John van Groningen, and Rinus Plasmeyer.Generating e�cient code for lazy functional languages. In Proceedings ofthe 1991 Conference on Functional Programming Languages and ComputerArchitecture, Cambridge, Massachusetts, July 1991.[Wad92] P. Wadler. The essence of functional programming. In Proceedings 1992Symposium on principles of Programming Languages, pages 1�14, Albu-querque, New Mexico, 1992.[Wal86] David W. Wall. Global Register Allocation at Link Time. In Proceedings ofthe SIGPLAN '86 Symposium on Compiler Construction, pages 264�275,New York, 1986.

