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Note: this is the stoich.ipynb notebook. The PDF version "The stoich module" is available
here.

1 Introduction

BondGraphTools is a python based toolkit for the creation and analysis of bond graph models of
physical systems. Such physical systems include biomolecular systems; stoich is a toolkit for the
stoichiometric analysis of such systems.

This document provides a simple introduction to stoich by means of a built-in bond graph
model of a simple enzyme-catalysed reaction.

2 Example.

stoich.model() implements the enzyme-catalysed reaction: A+E = C = B+E where A is the sub-
strate, B the product, E the enzyme and C an intermediate compound. This can be analysed using
the following code.

First import some code:

In [1]: import BondGraphTools as bgt
import numpy as np
import sympy as sp
import IPython.display as disp
import stoich as st

2.1 Basic analysis

Now perform stoichiometric analysis on the model:

In [2]: s = st.stoich(st.model())

Swapping Re:r1 for two Sf in ABCE
Swapping Re:r2 for two Sf in ABCE

s is a Python dict containing the stoichiometric information. For example, the stoichometric
matrix N where Ẋ = NV is revealed as:

In [3]: print(s['N'])

[[-1 0]
[ 0 1]
[ 1 -1]
[-1 1]]

This can be displayed in a more readable form as:

In [4]: disp.Latex(st.sprintl(s,'N'))
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Out[4]:

N =


−1 0
0 1
1 −1
−1 1

 (1)

The state (vector of concentrations) X and the vector V of reaction flows are:

In [5]: disp.Latex(st.sprintl(s,'species'))

Out[5]:

X =


XA
XB
XC
XE

 (2)

In [6]: disp.Latex(st.sprintl(s,'reaction'))

Out[6]:

V =

(
Vr1
Vr2

)
(3)

The corresponding reactions can be displayed:

In [7]: disp.Latex(st.sprintrl(s))

Out[7]:

A + E⇔ C (4)
C ⇔ B + E (5)

The stoichometric matrix N gives the species state X in terms of reaction flow V from Ẋ = NV.
N is also used together with thermodynamic constants K and rate constants κ to give an explicit
expresion for reaction flow V in terms of species state X. stoich computes the symbolic expression
as:

In [8]: disp.Latex(st.sprintl(s,'N'))

Out[8]:

N =


−1 0
0 1
1 −1
−1 1

 (6)
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In [9]: disp.Latex(st.sprintvl(s))

Out[9]:

vr1 = κr1 (KAKExAxE − KCxC) (7)
vr2 = κr2 (−KBKExBxE + KCxC) (8)

2.2 Conserved moieties and Pathways

Conserved moieties are revealed by the matrix G where GT N = 0. In this case:

In [10]: disp.Latex(st.sprintl(s,'G'))

Out[10]:

G =

(
1 1 1 0
−1 −1 0 1

)
(9)

The first row corresponds to ẋA + ẋB + ẋC = 0, the sum of the rows (0 0 1 1) corresponds to
ẋC + ẋE = 0

Pathways are revealed by the matrix K where NK = 0. In this case:

In [11]: disp.Latex(st.sprintl(s,'K'))

Out[11]:

K = () (10)

There are no pathways: there is zero flow (V = 0) in the steady state.

2.3 Chemostats.

Consider the case where both substrate A and product B are chemostats:

In [12]: chemostats = ['A','B']

The same system, but with the chemostats, can be analysed using:

In [13]: sc = st.statify(s,chemostats=chemostats)

The stoichometric matrix N is now:

In [14]: disp.Latex(st.sprintl(sc,'N'))
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Out[14]:

N =


0 0
0 0
1 −1
−1 1

 (11)

The first two rows are zero, corresponding to ẋA = ẋB = 0: this is because both substrate A
and product B are chemostats.

The pathway matrix K is now:

In [15]: disp.Latex(st.sprintl(sc,'K'))

Out[15]:

K =

(
1
1

)
(12)

This means that the flow though reactions r1 and r2 are the same and can be non-zero at
steady-state. The conserved moieties of this chemostated system are revealed by the matrix G

In [16]: disp.Latex(st.sprintl(sc,'G'))

Out[16]:

G =

1 0 0 0
0 1 0 0
0 0 1 1

 (13)

The three rows correspond to: - ẋA = 0 (xA is constant) - ẋB = 0 (xB is constant) - ẋC + ẋE = 0
(xC + xE is constant)

2.4 Pathway analysis

In [17]: ## Find the pathway stoichiometric matrix
sp = st.path(s,sc)
## And show the coreponding reaction
disp.Latex(st.sprintrl(sp))

Out[17]:

A⇔ B (14)
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2.5 Simulation

Although BondGraphTools has its own simulation tool, the particular form of stoichiometric
equations allows for a special purpose simulation tool taking advantage of explicit equations and
reducing the state dimension in the presence of conserved moieties.

The system (without chemostats) can be simulated as:

In [18]: X0 = np.array([2,1,1,1]) # Set initial states
result = st.sim(s,X0=X0) # Simulate

In [19]: st.plot(s,result)

The flows V though r1 and r2 seem to be heading towards zero as predicted by pathway
analysis. This can ve verified by simulating over a longer time:

In [20]: t = np.linspace(0,10)
result = st.sim(s,X0=X0,t=t)
st.plot(s,result)
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The system with chemostats can be simulated as:

In [21]: t = np.linspace(0,10)
result = st.sim(s,X0=X0,t=t,sc=sc)
st.plot(s,result)
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As predicted by pathway analysis, the two flows converge on a non-zero value.
Of course, these simulations have been using default (unity) values for parameters. These

defaults can be changed by explicitly supplying parameters:

In [22]: parameter={'kappa_r2':0.1}
result = st.sim(s,X0=X0,t=t,sc=sc,parameter=parameter)
st.plot(s,result)

Moreover, the four initial conditions can be explicity chosen, for example: -

X0 =
(
1 2 1 1

)T

Note that the default value was -
X0 =

(
2 1 1 1

)T

In [23]: X0 = np.array([1,2,1,1])
result = st.sim(s,t=t,sc=sc,parameter=parameter,X0=X0)
st.plot(s,result)
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As the product B amount is greater than that of the substrate A, the flow proceeds in reverse.

2.5.1 Time-varying chemostats

By default, chemostats remain at the corresponding initial state. This can be changed by declaring
a time-varying expression for the chemostat state. For example, set the chemostat for substrate A
to have a value of 1 + t:

In [24]: X_chemo = {'A':'1+t'}
result = st.sim(s,t=t,sc=sc,parameter=parameter,X_chemo=X_chemo)
st.plot(s,result)
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Note that the flow rates reach a maximum value as the amount of enzyme xE reduces to zero.
This behaviour is typical of systems with conserved moities in general and enzyme catalysed
reactions in particular.
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