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Note: this is the Allosteric.ipynb notebook. The PDF version "Allosteric inhibition as a con-
trol actuator: loop-gain analysis” is available here.

1 Introduction

Using the methods of control theory to examine and reexamine the behaviour of living systems
is well-established (Craik, 1947) (Wiener, 1961) (Bayliss, 1966) (Savageau, 2009) (Jagacinski and
Flach, 2003) (Iglesias and Ingalls, 2010) (Wellstead et al., 2008) (Drion et al., 2015) (Del Vecchio,
2013). This notebook examines the enzyme-catalysed reaction as a control actuator and its behav-
ior within a feedback loop controlling product concentration. The feedback mechanism used is
Allosteric inhibition - see section 1.4.3 (Keener and Sneyd, 2009).

1.1

The notebook fECR looks at an alternative feedback mechanism : feedback inhibition.

As discussed in the sequel, feedback inhibition is a special case of allosteric inhibition.

As discussed in the notebook fECR, the control methodology is based on Linearisation.
This notebook introduces a novel method for deducing the feedback loop-gain L(s) from the
bond graph describing the biomolecular system. L(s) is a crucial component of feedback
control analysis.

Import some python code

The bond graph analysis uses a number of Python modules:

In [1]: ## Some useful imports

import BondGraphTools as bgt
import numpy as np

import sympy as sym

import matplotlib.pyplot as plt
import IPython.display as disp

## Stoichiometric analysts
import stoich as st

## SVG bg representation conversion
import svgBondGraph as sbg

## Control systems package
import control as con

## Set quiet=False for wverbose output
quiet = True

## Set slycot=True if slycot is installed (see control module)
slycot=True

## For reimporting: use imp.reload(module)
import importlib as imp


https://github.com/gawthrop/BondGraphTools-Biomolecular/blob/master/fECR.ipynb
https://github.com/gawthrop/BondGraphTools-Biomolecular/blob/master/Linearisation.ipynb

## Printing options
np.set_printoptions(precision=3)
fmt = '{:5.3f}"

## Allow output from within functions
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

## Minreal (minimum realisation algorithm) tolerance
tol = le-2

## Chemostat EM and CM
chemostatEMCM = True

1.2 Derive stoichiometry from bond graph

In [2]: def stoichiometry(abg,chemostats=[]):
s = st.stoich(abg.model(),quiet=quiet)
sc = st.statify(s,chemostats=chemostats)
return s,sc

2 Enzme catalysed reaction with allosteric inhibition

2.1 Bond graph model

¢ Ce:A: substrate

¢ Ce:B: product

¢ Ce:B0: product sink

¢ Ce:E: enzyme

¢ Ce:C: enzyme bound to A

¢ Ce:F and Ce:G: species pumping the reaction
¢ Ce:B: product

¢ Ce:EM: enzyme bound to M

¢ Ce:CM: complex C bound to M

¢ Corresponding reactions are:

I
A+E+F == C
C=2>B+E+G
I3
B<:)BO
ra
CM A + EM
5B+ C == CM

EM === 5B+ E

In [3]: sbg.model('aiRE_abg.svg',quiet=quiet)
import aiRE_abg

(1)
(2)
3)
4)
)
(6)



abg = aiRE_abg
disp.SVG('aiRE_abg.svg')

Out[3]:

Rex Ce:B Re:r3 Ce:B0O
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0

1 — Re:rc

0 - Ce:CM

In [4]: ## Stoichiometry
#chemostats=['A"','BO','F','G', 'EM', 'CM']
chemostats=['A','BO','F','G']
if chemostatEMCM:

chemostats += ['EM','CM']

s,sc = stoichiometry(abg,chemostats=chemostats)
print ('Reactions: ')
disp.Latex(st.sprintrl(s,chemformula=False))

sp = st.path(s,sc)

Reactions:



OQut [4]:

A+E+F&C
C&B+E+G
B < B0
CM<s A+EM
5B+C & CM
EM < 5B+ E

2.2 Numerical parameters

In [5]:

## Parameters
X0_A =1

K_A =
K_B =
K_C =
K_E =
K_F = 1e2
K_G = 1/K_F

1
1
1
1

K_EM = 1
K_CM = 1

kappa = 1
kappa_rl = kappa
kappa_r2 = kappa

## Open-loop

kappa_ra = 0
kappa_rc = 0
kappa_re = 0
K_BO =1

X0_BO = 1le-6
kappa_r3 = 1

pars = ['XO_A','K_A','K_B','K_C','K_E','K_F','K_G',
'K_EM','K_CM',
'kappa_rl', 'kappa_r2', 'kappa_ra', 'kappa_rc', 'kappa_re',
'K_BO','X0_BO', 'kappa_r3"']
parameter = {}
for par in pars:
parameter [par] = eval(par)

if not quiet:
print ('Parameters',parameter)

)
(8)
©)
(10)
(11)
(12)



2.3 Utility functions

In [6]: def plotStep(tf,chemo,spec,T):

t,y = con.step_response(tf,T=T)

plt.plot(t,y)

plt.grid()

plt.xlabel('t"')

plt.ylabel('x_B')

plt.title('Step response from '+chemo+' to '+spec)
plt.show()

def showTF(tf):
## Show info
print (tf)
in_gain_X = con.dcgain(tf)
print('\tgain:',fmt.format(in_gain_X))
print('\tpoles:', con.pole(tf))
print('\tzeros:', con.zero(tf))

def extractTF(TF,chemo,spec):

## Index of product
species = s['species']
i_prod = species.index(spec)

## Index of input
i = chemostats.index(chemo)

## Extract tf

print ('\nTransfer function from','x_'+chemo,'to','x_'+spec)
tf = con.minreal (TF[i_prod,il)

showTF (tf)

return tf

def extractTFflow(TF,chemo,chemostats,reac):

## Index of reaction
reaction = s['reaction']
i_v = reaction.index(reac)

## Index of input
i = chemostats.index(chemo)

## Extract tf
print ('\nTransfer function from','x_'+chemo,'to','v_"'+reac)



tf = con.minreal (TF[i_v,i])
showTF (tf)

return tf

3 Closed-loop analysis

The function ClosedLoop derives the closed-loop properteis of the system from the bond graph
model in the following steps:

¢ Extract stoichiometry

¢ Simulate the system to give a steady state

¢ linearise the closed-loop system about this steady state to give:

¢ the multivariable transfer function relating chemostats to species states
¢ the multivariable transfer function relating chemostats to reaction flows
* extract the scalar transfer functions relating the “disturbance” xp, to

- the product state xp
— the ’actuator’ flow v,,

In [7]: def ClosedLoop(abg,chemostats,parameter,t_step,quiet=False):
## Analyse the system

## Stoichiometry
s,sc = stoichiometry(abg,chemostats=chemostats)

## Steady-state simulation
t = np.linspace(0,1000,1000)
ssdat = st.sim(s,sc=sc,t=t,parameter=parameter,quiet=quiet)

## Use the final value as the steady-state
x_ss = ssdat['X']J[-1,:]

if not quiet:
print(s['species'])
print('x_ss =', x_ss)

##Linearise
SysX = st.lin(s,sc,x_ss=x_ss,parameter=parameter,outvar='X',quiet=quiet)
SysV = st.lin(s,sc,x_ss=x_ss,parameter=parameter,outvar='V',quiet=quiet)

## Multivariable transfer functions
TF = con.ss2tf (SysX)
TFV = con.ss2tf (SysV)

## Scalar transfer function to z_B
tf_BO = extractTF(TF,'B0O','B"')



t,x_B = con.step_response(tf_BO,T=t_step)

## Scalar transfer function to v_r2
tf_v2 = extractTFflow(TFV, 'BO',chemostats, 'r2')
t,v_r2 = con.step_response(tf_v2,T=t_step)

return x_B,v_r2,x_ss

3.1 Open-loop system

Setting x,, = K, = ks = 0 prevents flow through the inhibition system and thus feedback is
prevented. The system is open-loop.

1
¢ the closed-loop transfer function relating xpg to xp is ——t This has a steady-state gain of

unity: the disturbance is not reduced.
¢ the closed-loop transfer function relating xpg to x,; is ~ 0. It becomes zero as Kr — co. There
is no feednack.

In [8]: ## Open loop
t_step = np.linspace(0,20,100)
print("Open loop")

I
(@]

parameter['kappa_re']
parameter [ 'kappa_rc']
parameter['kappa_ra'] = 0

Il
o

x_ol,v_ol,x_ss_ol = ClosedLoop(abg,chemostats,parameter,t_step,quiet=quiet)
Open loop

Transfer function from x_BO to x_B
1 states have been removed from the model

1
s +1
gain: 1.000
poles: [-1.]
zeros: []

Transfer function from x_BO to v_r2
0 states have been removed from the model

-0.0003921 s - 0.0396

s”2 + 103 s + 102.1



gain: -0.000
poles: [-102.02 -1. 1]
zeros: [-101.]

3.2 Feedback inhibition

Setting ;. = xr, = 0 and ;. = 1 restricts feedback to the path through re and is thus equivalent
to feedback inhibition.

¢ the closed-loop transfer function relating xpp to xp has a steady-state gain of 0.167; the effect
of the disturbance is reduced by feedback.

¢ the closed-loop transfer function relating xp to x,2 has a steady-state gain of -0.833; this is
negative feedback.

In [9]: ## Feedback tinhibition
print ('Feedback inhibition')

parameter['kappa_re'] = 1
parameter['kappa_rc'] = 0
parameter['kappa_ra'] = 0

x_fi,v_fi,x_ss_fi = ClosedLoop(abg,chemostats,parameter,t_step,quiet=quiet)
Feedback inhibition

Transfer function from x_BO to x_B
0 states have been removed from the model

s72 + 128.1 s + 52.09

s73 + 142.1 s72 + 1509 s + 312.6

gain: 0.167
poles: [-130.551 -11.329 -0.211]
zeros: [-127.657  -0.408]

Transfer function from x_BO to v_r2
0 states have been removed from the model

-0.0003839 s”2 + 0.001222 s - 260.5

s73 + 142.1 s72 + 1509 s + 312.6

gain: -0.833
poles: [-130.551 -11.329 -0.211]
zeros: [1.592+823.657j 1.592-823.657j]



3.3 Allosteric inhibition

Setting x,, = K,c = Ky, = 1 releases all feedback paths.

¢ the closed-loop transfer function relating xpg to xp has a steady-state gain of 0.166; the effect
of the disturbance is reduced by feedback.

¢ the closed-loop transfer function relating xp to x,2 has a steady-state gain of -0.834; this is
negative feedback.

In [10]: ## Allosteric inhibition
print('Allosteric inhibition')

parameter['kappa_re']
parameter['kappa_rc']
parameter['kappa_ra'] = 1

x_ai,v_ai,x_ss_ai = ClosedLoop(abg,chemostats,parameter,t_step,quiet=quiet)
Allosteric inhibition

Transfer function from x_BO to x_B
1 states have been removed from the model

s"2 + 47.5 s + 10.51

gain: 0.166
poles: [-47.273 -0.222]
zeros: [-1.74]

Transfer function from x_BO to v_r2
0 states have been removed from the model

-0.0003179 s”2 - 8.734 s - 910.2

8”3 + 151.2 s72 + 4938 s + 1091

gain: -0.834
poles: [-103.753 -47.273 -0.222]
zeros: [-27366.453 -104.613]

3.4 Comparison of step responses

The product state xp and feedback flow v are plotted against time for a unit step in the disturbance
xpo for each of the three scenarios. In this case, both forms of feedback attenuate the disturbance
by about the same amount.

10



In [11]: def Plot(t_step,x_ol,x_fi,x_ai):
plt.plot(t_step,x_ol,label='0L")
plt.plot(t_step,x_fi,label='FI'")
plt.plot(t_step,x_ai,label="'AIl")
plt.legend()
plt.grid()
plt.xlabel('t"')
plt.show()

In [12]: plt.ylabel('x_B')
Plot(t_step,x_ol,x_fi,x_ai)

Out[12]: Text(0,0.5,'x_B"')
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In [13]: plt.ylabel('v_2')
Plot(t_step,v_ol,v_fi,v_ai)

Out[13]: Text(0,0.5,'v_2")
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4 Loop-gain analysis

* The product component Ce:B is converted into a chemostat. This 'breaks the loop” and
enables the open-loop transfer functions relating xp to the various flows impinging on the
corresponding 0 junction to be computed. In this case the relevant flows are:

- 0y - the main feedback path

- 0,3 - the product flow flow absorbed by Ce:B0
— 50y, - the flow transiently absorbed by Ce:EM
— 50 - the flow transiently absorbed by Ce:CM

¢ The function LoopGain

In [14]: def LoopGain(abg,chemostats,parameter,x_ss,quiet=False):
"""Compute the loop gain tf"""

## Add the chemostat for B and recompute stoichiometry

chemostatsL = chemostats+['B']
sL,scL = stoichiometry(abg,chemostats=chemostatsL)

## Linearise using the appropriate steady-state z_ss
SysL = st.lin(sL,scL,x_ss=x_ss,parameter=parameter,outvar='V',quiet=quiet)

## The multivariable transfer function
TFL = con.ss2tf(SysL)

12



## Stotchiometry of feedback

N = sL['N'] # Stoichiometric matriz

i_B = sL['species'].index('B"')

N_B = N[i_B,:] # Row of N corresponding to B

## Indices of reactions impinging on Ce:
j_FB = np.nonzero(N_B) [0] [:]

## Reactions impinging on B and the transfer functions
reaction = sL['reaction']

R =[]
FB = {}
fb = 0

for j in j_FB:
r = reaction[j]
R.append(r)
FB[r] = extractTFflow(TFL, 'B',chemostatsL,r)
fb = con.parallel(fb,-N_B[jl*FB[r])
print('\nRelevant reactions:', R)

## Total feedback transfer function
print('Net feedback')

fb = con.minreal (fb,tol=tol)

showTF (£b)

## Transfer function of CE:B
G = con.tf([K_B], [1,0])
print("Forward gain to B")
showTF (G)

print('Loop gain L')
L = con.series(G,fb)
print (L)

print("Closed loop")
LL = con.minreal(con.feedback(G,sys2=£fb),tol=tol)
showTF (LL)

## Plot Bode diagram
print('Bode diagram')

w = np.logspace(-1,3)
mag,phase,ww = con.freqresp(L,w)
plt.loglog(w,mag[0,0])
plt.xlabel('$\omega$ (rad/sec)')
plt.ylabel('$[LI$")

plt.grid()

13



plt.show()

plt.semilogx (w,phase[0,0]*180/np.pi)
plt.xlabel('$\omega$ (rad/sec)')
plt.ylabel('arg $L$ (deg)')
plt.grid()

plt.show()

4.1 Open-loop system

Setting «,, = K, = ks = 0 prevents flow through the inhibition system and thus feedback is
prevented. The system is open-loop.

¢ The only non-zero feedback path is via v;3.
* The closed-loop system derived from L is the same as given above.

In [15]: ## Open loop
print('Open loop')
parameter['kappa_re']
parameter['kappa_rc']
parameter['kappa_ra']l = 0

o
o O

LoopGain(abg,chemostats,parameter,x_ss_ol,quiet=quiet)

Open loop

Transfer function from x_B to v_r2
0 states have been removed from the model

-0.0003921 s - 0.0396

gain: -0.000
poles: [-102.02]
zeros: [-101.]

Transfer function from x_B to v_r3
1 states have been removed from the model

gain: 1.000
poles: []
zeros: []

Transfer function from x_B to v_rc
0 states have been removed from the model

14



1
gain: 0.000
poles: []
zeros: []

Transfer function from x_B to v_re
0 states have been removed from the model

0
1
gain: 0.000
poles: []
zeros: []
Relevant reactions: ['r2', 'r3', 'rc', 're'l]

Net feedback
1 states have been removed from the model

1

1
gain: 1.000
poles: []
zeros: []

Forward gain to B

1

s
gain: inf
poles: [0.]
zeros: []

Loop gain L

1

s

Closed loop
0 states have been removed from the model

15



s +1
gain: 1.000
poles: [-1.]
zeros: []

Bode diagram
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4.2 Feedback inhibition

Setting ;. = xr; = 0 and «,, = 1 restricts feedback to the path through re and is thus equivalent
to feedback inhibition. - In addition to the non-zero feedback path is via v,3, the feedback paths
through v,, (the main feedback path) and via v,, are non-zero. - The main feedback path has a
steady-state gain of 5. - The steady-state gain via v, is zero - the effect of this path is transient. -
The closed-loop system derived from L is the same as given above.

In [16]: ## Feedback inhibition
print('Feedback inhibition')

parameter['kappa_re'] 1
parameter['kappa_rc']

parameter['kappa_ra']l = 0

LoopGain(abg,chemostats,parameter,x_ss_fi,quiet=quiet)

Feedback inhibition

Transfer function from x_B to v_r2
0 states have been removed from the model

-0.0003839 s”2 + 0.001222 s - 260.5

17



s"2 + 128.1 s + 52.09

gain: -5.000
poles: [-127.657  -0.408]
zeros: [1.592+823.657j 1.592-823.657]]

Transfer function from x_B to v_r3
2 states have been removed from the model

gain: 1.000
poles: []
zeros: []

Transfer function from x_B to v_rc
0 states have been removed from the model

gain: 0.000
poles: []
zeros: []

Transfer function from x_B to v_re
0 states have been removed from the model

-2.605 872 - 265.8 s - 1.137e-13

s"2 + 128.1 s + 52.09

gain: -0.000
poles: [-127.657  -0.408]
zeros: [-1.020e+02 -4.278e-16]

Relevant reactions: ['r2', 'r3', 'rc', 're'l
Net feedback

2 states have been removed from the model
14.03 872 + 1457 s + 312.6

s72 + 128.1 s + 52.09

gain: 6.000

18



poles: [-127.657  -0.408]
zeros: [-103.655 -0.215]
Forward gain to B

1

s
gain: inf
poles: [0.]
zeros: []

Loop gain L

14.03 s72 + 1457 s + 312.6

873 + 128.1 s72 + 52.09 s

Closed loop
0 states have been removed from the model

s"2 + 128.1 s + 52.09

s”3 + 142.1 s”2 + 1509 s + 312.6

gain: 0.167
poles: [-130.551 -11.329 -0.211]
zeros: [-127.657  -0.408]

Bode diagram

19
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4.3 Allosteric inhibition

Setting x,, = K,c = Ky, = 1 releases all feedback paths.

¢ All feedback paths are now in use.

¢ The main feedback path has a steady-state gain of about 5.

¢ The steady-state gains via v,, and v,. are small - the effect of these paths is transient.
¢ The closed-loop system derived from L is the same as given above.

In [17]: ## Allostertic inhibition
print('Allosteric inhibition')

parameter['kappa_re']
parameter['kappa_rc'] =
parameter['kappa_ra']

]
=

LoopGain(abg,chemostats,parameter,x_ss_ai,quiet=quiet)

Allosteric inhibition

Transfer function from x_B to v_r2
0 states have been removed from the model

-0.0003179 s”2 - 8.734 s - 910.2

s"2 + 105.5 s + 180.5

gain: -5.042
poles: [-103.751 -1.74 ]
zeros: [-27366.453 -104.613]

Transfer function from x_B to v_r3
2 states have been removed from the model

gain: 1.000
poles: []
zeros: []

Transfer function from x_B to v_rc
0 states have been removed from the model

8.704 s”2 + 903 s - 12.8

s”2 + 105.5 s + 180.5

21



gain: -0.071
poles: [-103.751 -1.74 ]
zeros: [-1.038e+02 1.418e-02]

Transfer function from x_B to v_re
0 states have been removed from the model

-0.2476 s”2 - 25.69 s - 12.8

s”2 + 105.5 s + 180.5

gain: -0.071
poles: [-103.751 -1.74 ]
zeros: [-103.248 -0.501]

Relevant reactions: ['r2', 'r3', 'rc', 're']
Net feedback
5 states have been removed from the model

45.76 s + 10.51

gain: 6.042

poles: [-1.74]

zeros: [-0.23]
Forward gain to B

1

s
gain: inf
poles: [0.]
zeros: []

Loop gain L

45.76 s + 10.51

872 + 1.74 s

Closed loop
0 states have been removed from the model

s"2 + 47.5 s + 10.51

22



gain: 0.166
poles: [-47.274 -0.222]
zeros: [-1.74]

Bode diagram
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5 Discussion

¢ A novel approach to determining loop-gains from bond graphs of biomolecular systems is
given

* An example, enzyme catalysed reaction with allosteric inhibition, illustrates the approach

¢ In this simple case, the product xg and the control signal v, are collocated; this would not
generally be the case.

* Because of the collocation, the phase lag of the loop-gain is less that 90° (check this) thus
there are no stability issues on closing the loop.

¢ Systems where the product is at the end of a chain of reactions are more problematic from
the control point of view.

¢ There can be numerical issues with manipulating transfer functions. Minreal (minimum
realisation) has been used here with a large tolerance to remove appoximate pole-zero can-
cellations. Balred (Balanced reduced order model) could also be useful here.

¢ Setting chemostatEMCM = False in the preamble shows the case where these species are not
fixed.

¢ it would be interesting to apply this approach to the metabolic model of (Cloutier and Well-
stead, 2010).
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